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Abstract: Refactoring tools include checking of an object-oriented program for the
fulfillment of preconditions, for ensuring correctness. However, program invariants
– semantic information about classes and fields assumed valid during program exe-
cution – are not considered by this precondition checking. As a result, applicability
of automated refactorings is constrained in these cases, as refactorings that would be
applicable considering the invariants get rejected, usually requiring manual changes.
In this paper, we describe initial work on the use of program invariants (declared as
code annotations) to increase applicability of automated refactoring. We propose an
approach that uses primitive program transformations that employ the invariant to
make the program syntactically amenable to the desired refactoring, before applying
the refactoring itself.

Keywords: program invariants, refactoring

1 Introduction

A popular technique for dealing with evolution-related problems isrefactoring[Fow99, MT04],
which improves software structure while preserving behavior to better support adaptations or
additions. The practice of refactoring has been improved by supporting tools, avoiding manual
work and increasing trust on behavior preservation. Usually a catalog of refactorings is offered,
from which users can choose the desired transformation for the problem in context (for instance,
push down fields of a class to a subclass, or introduction and renaming of classes and fields).
These automated refactorings presentpreconditionsthat are checked against the code subject to
refactoring, in order to ensure correctness.

Such precondition checking involves analysis of static information from the program – decla-
rations and statements – enforcing strong conditions that limit the applicability of refactorings.
While being effective to ensure safe refactorings, it leads to prevention of refactoring on pro-
grams that would be eligible if some semantic assumptions about the program behavior were
taken into consideration. In these cases, extra manual refactoring is required, minimizing the
benefits of using refactoring tools. Examples of such refactorings are presented in Section2.
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Semantic assumptions about the program can be expressed asprogram invariants, which con-
sist of predicates about the state of objects and their inter-relationships, assumed valid through-
out every possible program execution. In this paper, we describe how invariants can be used
to increase the applicability of some automated refactorings (invariant-based refactoring). We
indicate that if certain types of invariants are assumed, transformations based on these invariants
can be applied to programs that would not be eligible for refactoring using the current tools. Pro-
grammers may provide invariants on classes and their fields ascode annotations, or invariants
may be discovered by existing analysis tools.

We propose an approach for using a sequence ofprimitive program transformationsthat em-
ploy invariants for making the program syntactically amenable to the desired refactoring, before
applying the refactoring itself. As the program initially does not satisfy the preconditions, we
use the invariants as a basis for applying some auxiliary program transformations that results
in a program that can be subject to the desired automated refactoring. As a consequence, pro-
grams not fulfilling preconditions may be automatically refactored based on information about
their behavior. By that, refactoring tools are applicable to more programs. Besides using code
annotations, this approach can be applied in combination with program verification tools for
discovering invariants from programs, using static or dynamic analysis.

2 Problem Statement

In this section, we make the case for invariant-based refactoring, by describing examples of
refactoring tool limitations related to their precondition checking. Figure1 shows a partial Java
program representing a file system. The superclassFSObject defines a general representation
for file system objects – files and directories – being specialized in correspondent subclasses.
The parent field, declared intoFSObject , defines the parent directory for each directory
object.

Suppose that it is known that theparent field is always null for non-directory objects, such
as files. In this context, it is desirable to apply a refactoring forpushing downparent to the
Dir class [Fow99]. Refactoring tools, such as Eclipse, offer this refactoring in their catalog;
selectingparent , the tool performs all related changes to apply this refactoring.

However, some of the previous accesses to the field do not allow the application of the refac-
toring. As indicated in the highlighted statements of Figure1, accesses withinFSObject and
File would be invalid after moving the field toDir . Nevertheless,parent does not make
sense to non-directory objects – for example,File only allowsnull assignments to the inher-
ited field –, and this semantic information is not taken into account by refactoring tools. This
refactoring cannot be applied correctly in existing tools; otherwise, the resulting program would
present typing errors (this situation will recur in other statically typed languages).

3 Program Invariants

Reasoning about design of object-oriented programs usually relies on a number ofobject invari-
ants, which represent consistency conditions on the program’s objects and its data fields that must
be maintained throughout the execution of the program [LM04]. This information may be stated
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Figure 1: File system implementation.

in separate artifacts, such as object models [LG01], or integrated into programming languages,
usingannotation languages. Code annotations can handle the complexities of object-oriented
code, also being directly compilable into runtime assertions.

Examples of annotation languages for Java include the Java Modeling Language
(JML) [BCC+05] and Alloy Annotation Language (AAL) [KMJ02]. We illustrate the use of
annotations by showing object invariants forFSObject and Dir , in Figure2. The invari-
ants are based on simple first-order logic based on AAL. InFSObject , the invariant states
that file system objects, except directories, have no parent directories;FSObject-Dir yields
all FSObject instances that are notDir instances. The set of dereferences of theparent
attribute from these instances is always empty (# denotes set cardinality).

Figure 2: Object invariants as code annotations.

Code annotations are provided in at least three different ways. Users may add annotations as
supplementary design information that may help program documentation and analysis. For in-
stance, advanced static analysis can be applied to programs annotated with invariants [FLL+02].
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Similarly, invariants may be transferred to the program by abstract modelsin conformance. For
instance, the invariant from Figure2 could have been defined in a structural model (UML class
diagrams with constraints) which the program conforms to. Conformance implies that if the
model constrains theparent relationship to directories only, the classes implementing the in-
volved concepts must follow this constraint.

Furthermore, likely invariants may also be discovered from several executions of a program, as
seen with Daikon tool support [ECGN01]. It consists in a program analysis that generalizes over
observed values to assume program properties, used in testing, verification and bug detection. In
this case, user intervention for dealing with invariants is minimized.

4 Approach for Invariant-based Refactoring

In Section2, we exemplified a program that would be eligible to automated refactorings if se-
mantic information was considered. In this section, we show how program invariants that rep-
resent this semantic information can be used as a basis for increasing the applicability of such
automated refactorings. We first show a systematic method for applying behavior-preserving
transformations to programs (Section4.1), that will aid making programs subject to refactoring.
These transformations build a foundation for our approach, as described in Section4.2. Other
examples of invariants that could be applied accordingly are defined in Section4.3.

4.1 Primitive Program Transformations

Refactoring must preserve the observable behavior of a program. A way to facilitate mechaniza-
tion of refactorings in tool support is to adopt analgebraicmethod, in which a refactoring is made
of a sequence of behavior-preserving transformations [Opd92]. One classical approach for defin-
ing these transformations can beprimitive laws [HHJ+87] relating language constructs. Easily
mechanized by term rewriting, these laws are immediately available as a framework for trans-
forming programs. In addition, primitive laws may be composed for deriving large-grained trans-
formations that preserve semantics of programs. For object-oriented programming, an extensive
set of laws has been defined for the Refinement Object-Oriented language (ROOL) [B+04],
which corresponds to a subset of Java.

Although defined for a simplified language, most laws can be leveraged to Java. The most
critical restriction is on itscopy semantics, rather than a reference semantics [B+04]. In ROOL,
objects are treated as primitive values (records), consequently presenting no pointers. The laws
shown in this section do not deal with object sharing; however, for laws that depend on sharing
to be correct, an additional property ofconfinementmust be ensured. In fact, the laws must be
revised in order to deal with reference semantics. In this section, the laws are presented following
the Java syntax, for simplicity.

As an example of primitive law, the following moves a field up (applying from left to right) or
down (right to left) to super or subclass, respectively, which is put in practice by refactoring tools.
Each law denotes two transformations, as it defines equivalence. The provisos (preconditions)
ensure that the transformations denoted by the law preserve semantics. The equivalence is valid
within a context of class declarationscdsand a main methodc. The symbol ‘(→)’ before the
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first proviso indicates it is only required for applications of this law from left to right. On the
other hand, ‘(←)’ is used when a proviso is necessary only for applying a law from right to left.

Law1 〈move field to superclass〉
class B extends A {

ads
ops

}
class C extends B {

a : T;ads′

ops′

}

=cds,c

class B extends A {
a : T;ads
ops

}
class C extends B {

ads′

ops′

}

provided
(→) The field namea is not declared by the subclasses ofB in cds;
(←) D.a, for anyD≤ B andD 6≤C, does not appear incds,c, ops, or ops′.

Theadsidentifier represents field declarations in the class, whileopsstands for the declaration
of methods and constructors. The notationB.adenotes uses ofa through expressions whose static
type is exactlyB (for instance, an expression yielding an object from classB, strictly). To denote
thatB is a subclass ofA, we writeB≤A. The second proviso above precludes an expression such
asthis.a from appearing inops, but does not precludethis.c.a , for a fieldc : C declared
in B. The last expression is valid inopsno matter whethera is declared inB or in C.

Several laws for commands and expressions complement laws for object-oriented constructs.
For instance, the next law allows us to introduce type casts to expressions, as long as the type of
the expression is consistent with the cast, given the type context (denoted byB).

Law2 〈introduce trivial cast in expressions〉
If cds,ABe : C, thencds,ABe= (C)e.

For ensuring that the program’s state before a given statement fulfills a given invariant, we
make use of Java assertions. Each assertion contains a boolean expression that you believe will
be true when the assertion executes. If it is not true, the system will throw an error. We can,
for example, extract assertions from guards, as stated by the following law, whereψi denotes a
boolean formula.

Law3 〈assertion condition〉
if (ψi) { ci } = if (ψi) { assert(ψi); ci }

4.2 An Approach for Invariant-based Refactoring

We now describe an approach for applying behavior-preserving transformations for refactoring
programs based on invariants. A type of invariant is identified; for that invariant, the tool can
apply a predefined sequence of primitive laws of programming which we callstrategy. Strate-
gies possess two key properties: (1) they must rewrite programs for updating statements, using
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invariants, before the desired refactoring; (2) they preserve program behavior, which entails from
the application of laws.

Checking the program from Figure1 in current refactoring tools involves type declarations
for ensuring correctness. As theparent field is to be pushed down to a particular subclass,
accessingparent from a reference whose type is not of that subclass would be invalid. On the
other hand, an intuitive analysis of the program in the light of the invariant from Figure2 shows
some interesting aspects about those fragments. The invariant guarantees that theparent field
will be null for any object references whose type isFSObject or its subclasses, exceptDir .

Strategies are illustrated by refactorings applied to the program from Section2. For push-
ing down theparent field, Law 〈move field to superclass〉 may be a straightforward option to
refactor the program. However, the highlighted statements in Figure1 clearly prohibit the appli-
cation of the law, as they make the required provisos invalid. Our aim is to apply other primitive
laws that acquire value from this information. The following derivation is related to the method
getParent , within which parent is read. This derivation is illustrative for the example; in
fact, this strategy can be generalized for programs in a similar context.

Step 1. Within FSObject , the value of thethis identifier obeys the following condition:
this instanceof Dir || !(this instanceof Dir) . We express this condi-
tion by the following if statement. Using Law〈assertion condition〉, we can change the
body ofgetParent by extracting assertions from each branch.

Dir getParent() {
if (this instanceof Dir) {

assert (this instanceof Dir);
return this.parent;

} else {
assert !(this instanceof Dir);
return this.parent;

}
}

Step 2. Concerning the first branch, we can introduce a cast to the assignment, using Law
〈introduce trivial cast in expressions〉.

Dir getParent() {
if (this instanceof Dir) {

return ((Dir)this).parent;
} else {

assert !(this instanceof Dir);
return this.parent;

}
}

Step 3. In the second branch, we now can use the invariant fromFSObject ,
defined as #((FSObject-Dir).parent)=0 . It is introduced as an as-
sertion conjoined with the previous one, as follows (translated to Java as
this instanceof Dir || this.parent==null ).
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Dir getParent() {
if (this instanceof Dir) {

return ((Dir)this).parent;
} else {

assert (this instanceof Dir || this.parent==null &&
!(this instanceof Dir));

return this.parent;
}

}

Step 4. Still in the second branch, we use simple logic rules for simplifying the assertion
(!A && A == false ).

Dir getParent() {
if (this instanceof Dir) {

return ((Dir)this).parent;
} else {

assert (this.parent==null);
return this.parent;

}
}

Step 5. As stated in the assertion, the program state defines the value read by the assignment
(alreadynull before the command), resulting in the following body forgetParent.

Dir getParent() {
if (this instanceof Dir) {

return ((Dir)this).parent;
} else {

return null;
}

}

A similar derivation can be developed in the constructor ofFile , assigningnull to
parent :

Step 1. Since the command is withinFile , we can introduce the following assertion.

File() {
assert (this instanceof File);
this.parent=null;

}

Step 2. The program invariant (this instanceof Dir || this.parent==null ),
is then introduced to the assertion.

File() {
assert (this instanceof Dir || this.parent==null &&

this instanceof File);
this.parent=null;

}
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Step 3. The assertion can now be simplified accordingly.

File() {
assert (this.parent==null && this instanceof File);
this.parent=null;

}

Step 4. The command has no effect over the state (this.parent possesses a constant value
before and after) and no other variable is changed. Hence, the assignment (along with the
assertion) can be removed with no impact on the program’s behavior.

After the application of this strategy, the program now can be subject to Law〈move field to
superclass〉, from right to left. The same could have been done to other similar occurrences
of parent in the program. Consequently, these can be generalized for any other program
presenting this type of invariant. The general sequence of transformations before the actual
move operation constitutes a strategy with the aid of the program invariant, to be applied in
conjunction with the refactoring tool.

4.3 Other invariants

Similar strategies can be defined for several types of invariants. Some of the invariants we
investigated are summarized next:

• Remove field. In general automated refactorings only remove fields when they are not
used anywhere in the program. A strategy can prepare programs that do not present this
property – although removal of the given field is desirable – by replacing all reads from
the field to be removed by the correspondent value given by an invariant. For instance,
if the invariantthis.newField=this.oldField is provided for the class declaring
the field, andoldField is to be removed, we can use the invariant to replace reads from
oldField by the corresponding expression (newField ), eliminating writings. This is
possible since no other variable depends on this field (all reads have been removed).

• Replace array field by single variable field. A field can be declared as an array even
though a design assumption defines the field as empty or holding only one element. This
is due to planned additions that did not come about, as for example accounts in a bank
that were defined with the policy of holding at most one credit card, and this assumption
did not change in the future. In this case, we can change its declaration and statements
to a single variable, given the invariant on the multiplicity of the field. For instance, an
array fieldvar , in the presence of an invariant#this.var=1 on its cardinality, can
store this single value on a variable; laws can be applied to change the statement to use
the variable (for instance,this.var[0] = a becomesthis.var = a . The reverse
transformation (variable to array) can be applied as well.
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5 Conclusions and Future Work

In this paper, we describe an approach for automatic refactorings that assumes program invari-
ants for offering more applicability to refactoring tools, avoiding some manual adjustments.
Invariants – declared as code annotations – provide semantic information about classes and their
fields, which is used to refactor the program in primitive steps – laws of programming – offering
a greater degree of applicability.

There are several other open questions. For instance, it is not clear how invariants will be
automatically identified by a refactoring tool for the application of specific refactorings. Our
intuition is that catalogs of program refactorings could be extended with improvements based
on invariants, conditionally applied based on a set of found invariants. Also, other types of
invariants must be investigated, in order to establish a more general notion of invariants that can
aid automated refactorings. These accomplishments are critical to incorporating invariant-based
refactorings in tool support.

We plan also to extend this approach to consider other types of annotations, such as pre- or
post-conditions of methods. We believe that these invariants may help more powerful refac-
torings involving methods, such as the Extract Method refactoring [Fow99]. Other promising
research topic is exploring invariants not only for refactorings, but also general evolution trans-
formations (adding a new feature to the program, for example).

In a previous work [MGB05], we propose an approach for refactoring object models (such
as UML class diagrams with OCL invariants [B+99, W+03]) and programs, as shown in Fig-
ure 3, which is an application of invariant-based refactoring. A refactoring is applied to the
object model, and a program in conformance with the model is automatically refactored accord-
ingly. The program refactorings are applied automatically from the semantic information given
by models.

Figure 3: Model-driven Refactoring.

We consider object model refactoring as a composition of primitive semantics-preserving
transformations. Each model transformation applied to the model triggers the application of
a strategy to the source code. The main idea behind strategies is the assumption that the original
program is in conformance with the model, implying that all model invariants are guaranteed to
be true in the program. Therefore, the same principle of invariant-based refactoring is applied, in
which predefined model transformations provide the original model to which the transformation
is applied, so the invariants that are considered true in the program are known in advance. The
program transformation is applied independently, although based on the model transformation;
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this scenario avoids the problems related to round-trip engineering tools, in which programs are
generated from models, and vice-versa. This is certainly a useful formal investigation for modern
development methodologies, such as Model-driven Architecture [K+03].

Acknowledgements: We’d like to thank the anonymous referees for useful suggestions, be-
sides members of the Software Productivity Group.
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