
Electronic Communications of the EASST
Volume 3 (2006)

Proceedings of the
Third Workshop on Software Evolution

through Transformations:
Embracing the Chance

(SeTra 2006)

Refactoring Information Systems

Michael Löwe, Harald König, Michael Peters, and Christoph Schulz

17 Pages

Guest Editors: Jean-Marie Favre, Reiko Heckel, Tom Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst ISSN 1863-2122

ECEASST

Refactoring Information Systems
- Handling Partial Compositions -

Michael Löwe, Harald König, Michael Peters, and Christoph Schulz

FHDW Hannover, Freundallee 15
D-30173 Hannover, Germany

Abstract: We present our formal framework for the refactoring of complete information
systems, i.e., the data model and the data itself. It is described using general and
abstract notions of category theory and can handle addition, renaming and removal
of model objects as well as folding and unfolding within complete and partial
object compositions.

Keywords: Refactoring, Migration, Graph transformation, Pullback complement

1. Introduction
The only constant thing is change. This is especially true for the information and communica-
tion business. Currently, information systems in many companies are subject to change. This is
mainly due to the technological progress connected to the Internet which enables completely
new sorts of electronic business. Thus, we see big efforts to re-engineer the technical basis on
the one hand and to improve the business processes and information models on the other hand
[1].

This development has been reflected in the research and development community in the last
years. Agile and Extreme Programming Techniques [2] [3] [4] aim at supporting the ongoing
reengineering processes by providing refactoring methods, techniques, patterns [5] [6] and tools
[7]. These tools enable consistent global changes of a whole software system, for example to
introduce some design patterns which are necessary for the system to take the next evolution
step. This puts the flexibility into the development process that is needed to keep a system up-
to-date (without any over-specifications at the beginning of the development) and to realize
changing requirements quickly.

For the time being, agile techniques in database engineering were often restricted to the im-
provement and change of model artifacts. The main obstacle for agile techniques here is existing
data. Attempts to describe semantics-preserving schema transformations that also migrate data
can be found in [8] [9]. A transformational approach that considers the instance level is
discussed in [10].

If a model of a productive information system is changed, we are faced with one central
question: “What shall we do with the data conforming to the old model?” Up to now, we hear
two major answers:

2 / 17 Volume 3 (2006)

Refactoring Information Systems

1. Leave the data as it is and map the new model to the old one using for example some object-
relational-mapping tools [11].1

2. Migrate the data from the old model to the new one by crafting corresponding migration
scripts and performing the (long-running) data migration at night or on the weekend.

Both solutions possess big disadvantages. The first one leads to complex mappings if applied
several times. This complexity is very likely to produce performance problems and reduce the
development speed of the engineering team in the long run.2 The second solution requires long
production breaks and consumes a lot of development and test time for software (migration
scripts) that is thrown away after success.

We propose another approach, namely the generation of the necessary data migration directly
from model refactoring, compare also [12]. One central issue is the correctness of the induced
migrations. We can only benefit from this approach if we can trust in the produced migrations
without any further tests. Therefore, we present a theoretical framework in this paper, which

1. is able to represent models and instances in a uniform meta-model,

2. comes equipped with a suitable notion of model refactoring,

3. provides refactoring-induced correct transformations of the instances (migrations), and

4. proves its applicability by satisfying necessary and natural properties for refactorings and
migrations, i.e., that refactoring can be composed in a natural way.

The framework is built on category theory [13] and algebraic graph transformation [14]. In this
theory, we not only have a very general notion of structured object. By the notion of morphism,
we also get a natural way of representing (1) typings of instance objects in model objects as well
as (2) model changes (refactorings) and instance migrations.

Section 2 presents our current framework built on a double-pullback construction, which can
handle addition, renaming, and removal of model objects as well as folding and unfolding
within complete object compositions [15]. This framework is not able to handle inheritance
structures directly. Section 3 provides a slight generalization: We do not longer require that the
right-hand side of a migration is a pullback. Instead we re-use the explicit construction of the
pullback complements in more general situations. It turns out that this construction enjoys some
categorical properties that guarantee uniqueness up to isomorphism. Section 4 shows that the
usual sequential composition of refactorings extends to migrations in the generalized framework
as well. We sketch in section 5, how the results in this paper can be reformulated on a purely
categorical level. We explicitly point out the similarities to the approach of Ehrig et al. using
adhesive categories [14]. Section 6 provides a conclusion and contains hints for future research
activities.

1 An older and worse version of this approach is: Leave the data-model and the corresponding data as it
is and redefine the meaning of the data within the model, for example by using comma-separated
multi-value fields in a single string column.

2 The longer this approach is applied, the bigger the problems to switch to the second one.

Proc. SeTra 2006 3 / 17

ECEASST

2. Migration Framework
For a motivation of the following
theoretical aspects, consider the
situation of a class Department. A
possible refactoring would be to
extract an abstract superclass Unit in
order to be prepared for additional
specializations [5]. If we interpret
generalization as object composition
on the instance level, an automated
migration must add a Unit-Object to
each Department-Object in a 1:1
fashion3. After the migration client
objects no longer use a single
Department-Object but a new object
which contains the Unit-information
as an aggregated object, see Fig. 1.

Since Unit is an abstract class, we can model this refactoring by unfolding Department to two
classes. This can be done by a morphism l that maps the new model N to the old model M
assigning the two classes Department and Unit in N to Department in M. Having data D which
is typed by the morphism t : DM we obviously can generate the migrated data by calculating
the pullback object F of t and l4.

Another possible refactoring is the addition of a new class [5]. This can be achieved with a
(non-surjective) map r from the old to the new model, see Fig. 2. Here the question arises which
categorical construct generates a reasonable migration. Moreover, different data structures are
possible after the migration: one possibility would be to create no B-object, another to create a

default-value or prototype object for
B. Both solutions lead to pullback
diagrams, if objects a1 and a2 are
preserved.

Category theory can be applied in the
following way. We can express the
typing of some data D in a model M
by a morphism t : DM . And we
need to express refactorings between
models and migrations between typed
data. We will have to use the two
variations l and r discussed above.
But we are not only interested in the
model states before and after

3 This interpretation is often used when object models are mapped to relational database systems using
the “one table per class”-strategy. This strategy provides one relational table for each class and maps
each inheritance association to a foreign key relation from the special to the general class.

4 Later, we discuss in which category the construction is carried out.

4 / 17 Volume 3 (2006)

Fig. 1: Extracting a superclass

D

M
Unit

Client Dept.

cl2 dept1

cl1

Client Dept.

l'

l

vt

cl2 dept1

cl1 unit1

N

F

Fig. 2: Adding a new class

r

t'

NM

t

A A B

a1

a2

r'
D

“A reasonable
object collection”

Refactoring Information Systems

refactoring but in the refactoring process itself. Hence, it is a good choice to represent one
model refactoring from model M to N by a combination of the two variants, i.e., by a pair of
morphisms: M 

l
K 

r
N . The pair (l, r) represents an arbitrary relation between M and N and can

model:

1. Deletion of model objects, i.e., l is not surjective,

2. Addition of model objects, i.e., r is not surjective,

3. Renaming of model objects, i.e., l and r are bijective but not identities,

4. Splitting or unfolding of model objects, i.e., l is not injective, and

5. Gluing or folding of model objects, i.e., r is not injective.

Given a typed database t : DM and a model refactoring M 
l

K 
r

N , we
want to canonically construct the induced migration to some typed
database u: E N . As a first step, we can use the pullback construction of
t and l, which shall result in a typed database v : FK . For reasons of
symmetry, we need to construct a pullback complement of v and r in the

second step.
Unfortunately, such a pullback
complement is not guaranteed to exist nor
need be unique if it exists (see Fig. 2).

Even worse, there is no simple property for
r that guarantees existence and uniqueness
of the pullback complement. Some authors
argue that r being epimorphism is
sufficient, compare [16] or [17]. This is
wrong as the following examples
demonstrate.

Example 1 (Ambiguous Pullback
Complements). Consider the situation
depicted in Fig. 3 in the usual category of
graphs and graph morphisms. The
epimorphism f and the morphism g do not
possess a unique (up to isomorphism)
pullback complement, since (g, f1*) is
pullback of (f, g1*) and (g, f2*) is pullback
of (f, g2*) but D1 and D2 are not
isomorphic. □

In the category of sets and mappings,
however, pullback complements seem to
be uniquely determined. This is not (really)
true, as is demonstrated by the following
example.

Proc. SeTra 2006 5 / 17

Fig. 3: Ambiguous Pullback Complement

g
2
*

1D
1

3
2

g

1

2
1
,3

1

2
2
,3

2

f
2
*

2,3

11

32

B

g
1
*

2
1
,3

2

2
2 D

2

f
1
*

2
1
,3

2

1

2
1

f

3
1

A

C

M NK

D EF

r

u v

r'l'

l

t (1) (2)

ECEASST

Example 2 (Ambiguous Pullback
Complements in Set). Let
g:{1,2,3,4}→{a,b} be given by g(1)=a,
g(2)=a, g(3)=b, g(4)=b and f:{a,b}→{3} be
the constant function as in Fig. 4. There are
two pullback complements:

1. ({13,24}, f*1:{1,2,3,4}→{13,24},
g*1: {13,24}→{3}) with f*1(1)=13,
f*1(2)=24, f*1(3)=13, and f*1(4)=24.

2. ({14,23}, f*2:{1,2,3,4}→{14,23},
g*2: {13,24}→{3}) with f*2(1)=14,
f*2(2)=23, f*2(3)=23, and f*2(4)=14.

Obviously, {13,24} and {14,23} are isomor-
phic. But no isomorphism
i:{13,24}→{14,23} translates f*1 to f*2, in

the sense: i ○ f*1 = f*2. Hence, we have isomorphic pullback complement objects. But the
induced morphisms are ambiguous since they cannot be compared by the existing
isomorphisms. □

This type of ambiguity cannot be accepted in our context, since the morphisms represent the
transition of the data from the old to the new model. There seems to be no chance to avoid this
type of ambiguity, if we do not put additional requirements on the “vertical” morphisms g, g1*
and g2*. These properties shall single out a unique choice for the pullback complement
extension of g.

These examples provide the motivation for the following definitions:

Definition 3 (Graph). The category G of graphs is the algebraic category w. r. t. the signature:

Sorts: O(bject)

Opns: s(ource), t(arget): O → O.

This is a simple form of graphs where we do not distinguish between nodes and edges. In such a
graph, nodes can be characterized as objects n such that s(n) = n = t(n). Graphs and graph mor-
phisms of this type provide more flexibility in the refactoring/migration context we are
considering here, for example: if two nodes x and y are mapped to the same node z, it is possible
that a morphism maps an edge e with s(e) = x and t(e) = y to z, too. E.g. in Fig. 1, l(Unit) =
l(Dept.) = Dept. and the edge between them is mapped to the node Dept. as well.

Definition 4 (Component Graph). A component graph g: G → G is a morphism in G. A
component graph morphism α: (g: G → G) → (h: H → H) is a pair (α: G → H, α: G → H) such
that the resulting square commutes, i.e., ° g=h° . The comma category CG consists of all
component graphs and all morphisms between them.

If not otherwise stated, we just write g for a component graph g: G → G. Note that G is the
underlying graph and g provides a decomposition of G into parts or components via the the

6 / 17 Volume 3 (2006)

Fig. 4: Ambiguous pullback complement in SET

f*1

a

b
3

1

3

4

2

13

24

14

23

f

g

f*2

g*1

g*2

Refactoring Information Systems

congruence kern(g)5. Thus for the carrier set G we have G= {[x]g : x∈G} where []g denotes
congruence classes of kern(g). We also note that congruence classes are not necessarily
subgraphs of G as can easily be seen in component graphs id: G → G where G contains edges.

The additional component structure on graphs provides means to distinguish typings from
refactorings. In a typing, we require that all components are instantiated completely in a 1:1
manner. In a refactoring we allow identification of objects if and only if they belong to the same
component. Hence, refactorings map components injectively and typings map objects within
components bijectively.

Note that CG has all limits and that pullbacks in CG can be constructed component-wise.

Definition 5 (Typings, Refactorings, and Migrations).

A typing t: g → h is a CG-morphism if for each x∈G the mapping t : [x]g[t  x]h considered
as a SET-morphism is bijective.

A refactoring is a pair of morphisms m
l

k
r

n in CG such that l
and r are injective. The morphisms l and r are called refactoring
morphisms in this case.

A refactoring m
l

k
r

n and a typing t :d m induce a migration
from typing t :d m to typing u :en , if there is a diagram as
depicted to the right that satisfies:

1. (1) and (2) are pullbacks, and

2. r' is epimorphism.

The proof of the following proposition is straightforward and relies on the fact, that pullbacks
preserve monomorphisms and isomorphisms.

Propositon 6 (Refactorings, Typings, and Pullbacks). If (n*: l → g, m*: l → k) is the pull-
back of (n: k → h, m: g → h) in CG, then

1. m* is a refactoring if m is,

2. n* is a typing if n is, and

3. if n is injective on components, i.e., ∀ x , y∈K : n  x=n  y∧k x =k  y⇒ x= y , then
the same property holds for n*, i.e., ∀ x , y∈L:n*  x=n*  y∧l  x=l  y⇒ x= y

Proposition 7 (Existence and Uniqueness of Migrations). Let m
l

k
r

n be a refactoring and
let
t: d → m be a typing. If r: K → N is an epimorphism, then:

1. There is a migration as defined in definition 5 and

2. The result of the migration is uniquely determined (up to isomorphism).

5 The relation kern(f) denotes the congruence that the morphism f induces on its domain, i.e., (x, y) ∈
kern(f) iff f(x) = f(y).

Proc. SeTra 2006 7 / 17

m k n

d f e

l r

t v(1) (2) u

l' r'

ECEASST

Proof. Subdiagram (1) can be constructed as a pullback. Thus (F, v, l') are unique up to isomor-
phism. The morphism v is a typing due to proposition 6. Having a typing v and a refactoring
morphism r, we construct diagram (2), i.e., (E, r', u), as follows and depicted in Fig. 5:

If the component graph f is the morphism f: F → F, then

1. r' is the identity on F,

2. E=F /≡ where ≡=kern  f  ∩ kern r °v 

3. r '=[]≡ ,

4. u = r °v ,

5. u is the unique morphism providing
u°r '=r°v which exists since kern r°v⊇≡ ,

and

6. component graph e: E → E is the morphism
with e° r'= f which exists since kern  f ⊇≡
.

By construction u°r '=r°v and r' is epimorphism.
Since kern r ' =kernr °v  on each component and r
is an epimorphism, u is bijective on components and
thus a typing. And it is easy to show that (v, r') is pullback of (r, u) in SET and therefore in CG:
if there is o such that r(x(o)) = u(y(o)), then choose o ' = r'−1  y o ∩ v−1 x o . This is
unique, since v is bijective on components and, by construction, r' folds on components only.
This completes the proof of the first statement.

To prove the second statement, let (r*: F → E', u*: E' → N) be any other completion with the
required properties. It is easy to see, that the two pullback situations project to pullback
situations in SET on each component. Here we have u*° r *=u° r ' where u* and u are
bijective. Hence kern(r*) = kern(r') on each component of F. Because r is a refactoring, so are
r' and r* (see proposition 6) such that this property holds throughout F. Thus E=~ E ' . □

Although the framework presented so far allows copying and gluing of objects within the same
component only, it provides some nice features for our purposes of information system refactor-
ing, as the following example
demonstrates.

Example 8 (Association
Redirection). In Fig. 1 we showed
how to introduce a superclass Unit.
Subsequently, one needs to check
the references to Department-
objects and redirect them to Unit-
objects if necessary. To do this,
consider the model refactoring in

8 / 17 Volume 3 (2006)

Fig. 6: Redirection of associations

1

2

4

5

6

3 7

1

2,4,5

6 3

 7

1,2,6

4

5 3

 7

rl

Fig. 5: Constructing the right side of a
refactoring

K N

K N

F

F

E

Er'

r'

r

r

f e

vv u u

k n

Refactoring Information Systems

Fig. 66: All three graphs have 3 components; the non-trivial component in each graph (the com-
ponent that has more than one element) is highlighted. Using this refactoring in a migration
redirects all associations of type “7” from the source of “6” to the target of “6”. It uses an
intermediate vertex “2”, that is introduced by the left-hand side l as an unfolding and removed
again by the right-hand side r by a corresponding folding. This example shows, that we are able
to redirect association sources and targets as long as we stay in the same component. □

With these features, we should be able to handle all refactorings that are concerned with
inheritance structures. Recall, that inheritance can be considered as some sort of static com-
position between objects: an object of class c can be considered to be composed of a set of
(sub-)objects, namely one object for each direct or indirect ancestor class c' of c. All these
objects are created at the same time the most special object is created. And they are also
destroyed at the same time. Hence, we can model them as explicit parts in a component graph
on the instance level in our framework .

But these components are not components in the sense of typings (Def. 5). It is not the case, that
the complete inheritance tree of classes needs to be instantiated, if one class is. If there are
concrete classes that possess subclasses, an object might instantiate a proper subpart of the com-
plete inheritance tree of its class, only. Our approach is not able to handle those incomplete
parts, since pullback complements do not always exist in these situations.

Example 9 (Missing Pullback
Complement). Consider the
reverse process as in example
8. An association to class
“1,2,6” (a concrete superclass
of “4”) shall be redirected to
its subclass, see Fig. 7. We
apply this rule to an instance
of “1,2,6”, called “1,2,6' ”. The
pullback on the left produces
an intermediate object “2' ” in
F. But we can easily deduce,
that the right part is not able to
complete the diagram to a
double-pullback situation. This
is mainly due to the fact that
the non-trivial component in K
is only partially instantiated in
F (there is no “4”-object). For
suppose, that such a pullback
complement r':
F → E, u: E → N exists. Then
r'(2') is a preimage of “2,4,5”
under u. This is only possible if there is a preimage of “4” in F. □

6 We indicate the model objects numerically to clarify the mappings.

Proc. SeTra 2006 9 / 17

Fig. 7: Missing pullback complement

F

1

2

4

5

6

3
 7

1

2,4,5

6 3

 7

r

1'

2'

6'

3'
 7'

r

v

1,2,6

4

5 3

 7
l

1,2,6'

3'

 7'

t

l'

M K N

D

?

ECEASST

We might use a trick to handle inheritance. We always instantiate complete inheritance graphs,
when an object is created and keep the information about the most special real object in the
resulting part (of real and extra objects). Then we distinguish two views on the system: (1) the
refactoring perspective and (2) the operational perspective. In the first perspective, all objects
are visible and our framework is applicable. The second perspective blends out all extra objects
in order to keep the system's state consistent from the operational point of view.7 With these
additional arrangements, inheritance structures and the typical refactorings could be modeled.

But there are also disadvantages of this approach: the additional instantiations might cause a
significant memory overhead. In this paper, we use a different approach, which omits this
problem: In the next section, we slightly generalize our framework such that partial
instantiations of components in the model are allowed. To achieve that, we do no longer require
that the right-hand side of a migration is a pullback.

3. Partial Instantiation of Components
In this section, we relax the requirements for typings. Weak typings allow partial instantiations
of model components, since they are injective on each component but need not be surjective.

Definition 10 (Weak Typing). A component graph morphism α: (g: G → G) → (h: H → H) is
a weak typing if it is injective on each component, i.e.,
 x  =  y  ∧ g x  = g  y  ⇒ x = y .

Now we use the construction in the proof of proposition 7 to construct the right-hand side of a
migration. This works for weak typings as well.

Construction 11 (Folding). Consider Fig. 8,
where weak typing n and refactoring morphism
m are given. We construct the folding
completion of this situation as follows:

1. m* = ([]≡, idG), where
≡ = kerng  ∩ kernm°n ,

2. n* = (i, m°n), where i is the unique
morphism with i °[]≡ = m°n , since
kern m°n⊇≡ , and

3. the component graph j is the unique
morphism with j °[]≡ = id ° g , since
kern g ⊇≡ .

m* is a CG-morphism by construction.
Moreover, we obtain k ° i = m°n° j , since []≡

is epi and k °i °[]≡ = k °m°n = m°n°g = m°n° j °[]≡ . Thus, n* is a CG-morphism, too. □

Lemma 12 (Folding). If (m*, n*) is folding of (m, n), m* is refactoring morphism and n* is
typing.

7 Note that the model is stable under the operational perspective!

10 / 17 Volume 3 (2006)

Fig. 8: Construction of a Folding

H

H

K

G

G

G

G/≡

Km

id

[]≡

m
k

j

h

g

 n n i

m

 ○
 n

Refactoring Information Systems

Proof. The first part is obvious, since m * has been constructed as the identity which is a mono.

For the proof of the second statement let i x  = i  y and j x  = j  y  . Now consider
arbitrary preimages x' and y' for x and y wrt. []≡, i.e., [x']≡ = x and [y']≡ = y. Since
j °[]≡ = id °g , we conclude g(x') = g(y'). Since i °[]≡ = m°n , it follows that m(n(x')) =

m(n(y')).

Thus, x ' , y ' ∈ kern g ∩ kernm°n , which means that [x']≡ = [y']≡. Hence, x = y. □

Folding diagrams possess an interesting universal property as the following proposition shows.

Proposition 13 (Initiality of Foldings). Let the pair of morphisms (m*: g → f, n*: f → k) be the
folding of a weak typing n: g → h and a refactoring morphism m: h → k as it is constructed in
construction 11. Then for every triple of morphisms (w: g → b, t: b → a, v: k → a) such that t is
weak typing and t°w = v°m°n , there is a unique morphism u: f → b with t °u = v°n* and
u°m* = w .

Proof. Let the folding be given as in Fig. 8. We set u = w and get immediately (1)
u°m* = u° id = u = w . We show that ≡ ⊆ kernw . Let m(n(x)) = m(n(y)) and g(x) =

g(y). It follows t(w(x)) = v(m(n(x))) = v(m(n(y))) = t(w(y)) and b(w(x)) = w(g(x)) = w(g(y)) =
b(w(y)). Since t is weak typing, we get w(x) = w(y) as desired. Now there is a unique u: G/≡ → B
with (2) u°[]≡ = u°m * = w . Since b°u°[]≡ = b°w = w °g = w ° j °[]≡ = u° j °[]≡ ,
we can conclude (3) b°u = u ° j . And t °u°[]≡ = t °w = v °m°n = v° i °[]≡ provides (4)
t °u = v°i = v°n* . Finally, we also have (5) t °u = v°m°n = v°n* . □

Proposition 13 characterizes foldings up to isomorphism. In the following, we say that a
diagram is an abstract folding if it has the property of proposition 13:

Definition 14 (Abstract Folding). As depicted in Fig.
9, a pair (m*: g → f, n*: f → k) consisting of a
refactoring morphism m* and a weak typing n* is the
abstract folding of a weak typing n: g → h and a
refactoring morphism m: h → k if (1) n*°m * = m°n
and (2) for every triple (w: g → b, t: b → a, v: k → a)
such that t is weak typing and t°w = v°m°n , there is
a unique morphism u: f → b with t °u = v°n* and
u°m* = w .

Corollary 15 (Uniqueness of Abstract Foldings). Two
abstract foldings of a weak typing n: g → h and a
refactoring morphism m: h → k coincide up to
isomorphism. Hence (m*: g → f, n*: f → k) is the abstract folding if and only if the statement

m* is epimorphism and m * x=m*  y ⇔ g  x=g  y ∧m n x =m n y

holds.

Proof. Direct consequence of Definition 14 and the fact that the first folding compares to the
second and vice versa. Therefore, we get two morphisms between the two foldings, which must

Proc. SeTra 2006 11 / 17

Fig. 9: Abstract Folding

h k a

g f

b

m v

n

m*

n*
t

w

u!

ECEASST

be inverse morphisms, because their composition coincide with the identity on the folding
objects (unique morphism from a folding to itself). □

Abstract foldings enjoy the same composition and decomposition properties as pushouts or
pullbacks.

Proposition 16 (Composition and Decomposition of Abstract Foldings).

Consider the situation depicted in the diagram below8.

1. If the squares (1) and (2) are abstract foldings, then the rectangle (1) + (2) is an abstract
folding.9

2. If the rectangle (1) + (2) and the square (1) are
abstract foldings, then (2) is an abstract folding.

3. If typing e and refactoring h is the abstract
folding of typing c and refactoring b°a , it can
be decomposed into two foldings as in the
diagram on the right, where h = g° f , if the
underlying category has all abstract foldings.

Proof.

(1) Let morphisms v, t, w, be given such that t is typing and t °w = v°b°a °c . Since (1) is
abstract folding, we get u1 such that u1° f = w and t °u1 = v °b°d . Now u1, t and v compare
to (2) and we get u2 with u2°g = u1 and t °u2 = v°e . Substituting u2°g = u1 in
u1° f = w provides u2°g ° f = w . For the proof of uniqueness, let morphism u3 be given

such that u3°g ° f = w and t °u3 = v °e . Then u3°g ° f = u 2°g ° f and
t °u3°g = v°b°d = t °u 2° g hold. We obtain u3°g = u2°g , since (1) is abstract folding.

But this implies u3 = u2, since (2) is abstract folding.

(2) Let v, t, w, be given such that t is typing and t °w = v°b°d . It follows
t °w° f = v °b°a°c . Since (1)+(2) is abstract folding, there is u such that u°g ° f = w° f

and t °u = v°e . We also have t °u°g = v °e°g = v °b°d . Since (1) is abstract folding, we
get u°g = w . Uniqueness follows from the uniqueness of u for (1)+(2).

(3) If there are all abstract foldings, we can construct (d, f) as a folding, which provides diagram
(1). The morphism g is obtained as the unique completion of the diagram from the folding (1).
That diagram (2) is an abstract folding follows from (2) of this proposition. □

Definition 17 (Generalized Migration). A refactoring m
l

k
r

n and a weak typing t :d m
induce a generalized migration from t :d m to weak typing
u :en , if there is a diagram as depicted to the right that satisfies:

1. Subdiagram (1) is pullback and

2. Subdiagram (2) is abstract folding.

8 Here, for the sake of readability, CG-objects are presented in capital letters.
9 (1)+(2) consists of the morphisms b°a , e , g ° f , and c .

12 / 17 Volume 3 (2006)

A B

D Ef

a

c d

C

Fg

b

e(1) (2)

m k n

d f e

l r

t v(1) (2) u

l' r'

Refactoring Information Systems

Theorem 18 (Existence and Uniqueness of Generalized Migrations). Given a weak typing
t : DM and refactoring M 

l
K 

r
N for the model of t, there is an induced migration and the

result of the migration is unique up to isomorphism.

Proof. Direct consequence of
(1) the existence and
uniqueness of pullbacks in CG,
(2) the fact that pullbacks in
CG preserve weak typings
(proposition 6, 3.), and (3) the
existence and uniqueness of
abstract foldings in CG
(Construction 11 and Corollary
15). □

Theorem 18 justifies that we
write R(t) for the result typing
of a migration from a typing
t : DM using a refactoring R

= M 
l

K 
r

N . Fig. 10 shows
the generalized migration that
we searched for in Fig. 7.

4. Sequential Composition
In this section, we show that there is a natural sequential composition R2°R1 of refactorings R1

and R2 and that applying a sequential composition to a weak typing t provides exactly the same
result as the sequence of first applying R1 to t and second R2 to R1(t), i.e., R2°R1t =R2R1 t .

Definition 19 (Sequential Composition of
refactorings). The sequential composition
R2 °R1=l1 ° p1: J  M , r2° p2: J  P of two refactorings
R1=l1: K M , r1: K N  and
R2=l 2: H N , r2 :H P is defined with the help of the

pullback object  p1 : J K , p2 :J H  of r1 and l2 as
depicted in Fig. 11.

Note that the sequential composition is well-defined due
to proposition 6, 1. and the fact that the composition of
two refactoring morphisms is a refactoring morphism again.

In order to prove our main theorem, i.e., R2 °R1t =R2R1t  , we need the following technical
lemma.

Lemma 20 (Pullback Cubes Preserve Abstract Foldings). Consider the commuting diagram
in CG below10. If the pair of morphisms (i, q) is the abstract folding of the morphism pair (r, m),

10 Here, we depict CG-objects as arrows with filled tip.

Proc. SeTra 2006 13 / 17

Fig. 11: Sequential composition

M
N

K r
1

l
1

PH
r

2
l
2

J p
2
 p

1

(PB)

Fig. 10: A generalized migration

1

2

4

5

6

3
 7

1

2,4,5

6 3

 7

r

1'

2'

6'

3'
 7'

r

u

1,2,6

4

5 3

 7
l

1,2,6'

3'

 7'

t

l'

M K N

D 1'

2'

6'

3'
 7'r'

v

F E

ECEASST

the pair (p, t) is the pullback of the pair (s, q), and (j, v) is the pullback of (t, i), then the pair of
morphisms (j, p) is the abstract folding of (n, k).

Proof. The assumptions of the lemma provide that i is the identity. Since pullbacks preserve
isomorphisms, we can set j = id without loss of generality. Because the bottom face is a
pullback and i is an epimorphism (see Corollary 15), j is an epimorphism as well. Again, from
Corollary 15 we deduce that it suffices to show, that

j  x = j y  ⇔ [k n x  = k n  y  ∧ g  x = g  y]
holds for all x , y ∈ G .

“⇒”: (1) j  x = j y  ⇒ p j  x = p  j  y  ⇒ k n x  = k n  y 

(2)
j  x = j y  ⇒ c j  x = c j  y  ⇒ id g  x  = id g  y  ⇒ g  x = g  y

“⇐”: Let k n  x = k n  y  ∧ g  x  = g  y  be given. Since (p, t) is pullback, it is
sufficient to show: (3) t  j x  = t  j  y  ∧ (4) p  j x  = p j  y :

(3) (a) g  x = g  y  ⇒ v g  x = v  g  y  ⇒ h v  x = h v  y  .

(b) k n x = k n  y  ⇒ sk n x  = sk n  y ⇒ mrv x  = mr v  y  .

Since (q, i) is abstract folding, it follows from Corollary 15, (a) and (b) that
i v  x = i v  y  , which provides t  j x = t  j  y , because t° j = i°v

.

(4) k n  x = kn  y ⇒ p  j x  = p  j y  . □

Theorem 21 (Sequential Composition). If R2R1t  for two refactorings R1 and R2 is defined,
we have R2 °R1t =R2R1t  .

14 / 17 Volume 3 (2006)

Fig. 12: Pullback Cube

s

b

c

a

d

f

g

e

h

k

j
id

i

m

id

n

p

q

r

t

u

v

Refactoring Information Systems

Proof. Consider the following diagram, which depicts R2R1t  . This migration sequence is
given by the four squares (1) MKFD, (2) KNEF, (3) NHCE, and (4) HPBC. (1) and (3) are

pullbacks and (2) and (4) are
abstract foldings. The additional
material in the diagram is defined
as follows: The pair of morphisms
(p1, p2) is given as a pullback of r1

and l2, compare construction of
R2 °R1 in definition 19. We write

(5) for the resulting square NKJH.
We construct (p1',p2') as pullback of
(r1',l2'). We write (6) for the
resulting square EFIC. The mor-
phism u2 is the universal
completion of the diagram into the
pullback object J. Now, the square
(7) KJIF is pullback as well. This is
due to the fact that (3)+(6) is
pullback11, (3)+(6) = (5)+(7), and
(5) is pullback12. The square (8)

JICH is abstract folding due to Lemma 20. Now diagram (1)+(7) is pullback, since pullbacks
compose. It is the left-hand side of the migration induced by R2 °R1 . Diagram (8)+(4) is
abstract folding, since abstract foldings compose (compare Proposition 16, 1.). It is the right-
hand side of the migration induced by R2 °R1 . This together shows that R2 °R1 migrates t to w
as well. □

With Theorem 21 we are, on the one hand, able to compose long refactoring sequences into one
single refactoring, which can capture the effect of the whole sequence. On the other hand, we
can decompose complex refactorings into a composition of simpler ones.

5. General Framework
The whole approach presented above is almost independent from the underlying category of
graphs resp. component graphs. What we need for the existence and uniqueness of migrations is
the existence of pullbacks and abstract foldings. For the results concerning sequential
composition, we need the cube lemma 20, i.e., that pullbacks “pull back” abstract foldings.
Thus, we can present our requirements for a category to provide the infrastructure for unique
migrations and sequential compositions as follows:

An abstract migration framework is a category C together with two subcategories T and R which
have the same objects as C. The morphisms in T are called typings and the morphisms in R are
called refactoring morphisms. The system (C, T, R) is subject to the following requirements:

(1) C has all pullbacks

11 Composition property of pullbacks.
12 Decomposition property of pullbacks.

Proc. SeTra 2006 15 / 17

Fig. 13: Migration sequence

J

 M K

 N

 P H
l
1

p
1

 p

2

r

1

l
2

r
2

 D F

 I

 E

B C
l
1
'

 p
1
' p

2
'

r
1
'

 l
2
'

r
2
'

t v
1

 u
2

u
1

v
2
 w

ECEASST

(2) C has abstract foldings for all pairs of morphisms (f: A → B ∈ T, g: B → C ∈ R).

(3) Pullbacks in C preserve morphisms of T and of R.

(4) In each cube with corners K, N, H, J, F, E, C, and I, as it is depicted in Fig. 13, the square
JICH is an abstract folding if KNEF is abstract folding and the squares IFEC and NECH
are pullbacks.

Since abstract foldings are a generalization of surjective pullback complements13, the framework
presented in section 2 fits into this setting as well. Another instance is given by simple graphs,
arbitrary morphisms as typings and injective morphisms as refactoring morphisms. Here we can
use surjective pullback complements as abstract foldings as well [15].

6. Conclusion
We propose formalizations of aspects in the process of refactoring information systems. The
power of our attempt is that a model refactoring can uniquely and automatically be extended to
the instance level. In contrast to other more practical solutions, we can prove correctness of our
approach. The framework is described using abstract notions from category theory.

With a strong assumption to the typing morphisms we can generalize a migration to a double-
pullback diagram. As a first step, it is possible to handle addition, renaming, and removal of
model objects. The investigation under which conditions folding and unfolding is possible,
leads to a model structure where one had to restrict to 1:1 associations on certain components. A
refactoring morphism may fold or unfold on these components, only. In a second step we
showed that these settings are correct as well.

However, object trees of inheritance structures are, in general, not completely instantiated. To
treat this case in a similar way, we have to weaken the assumptions on the type mappings. But
weak typings do not always lead to double-pullback constructions. Thus, this third step requires
a generalization of pullback complements. We introduced abstract foldings that enjoy some of
the well-known properties of pullbacks and pushouts. Abstract foldings are initial in a
reasonable context, which reveales a uniqueness statement of generalized migrations and
prepares a statement on the composition of refactorings.

Composing migrations into larger projects and decomposing migrations into smaller steps leads
to the question if there is a minimal set of atomic refactorings, from which each refactoring can
be constructed by sequential composition. This might be an interesting topic for future research
as well as the question, under which conditions refactorings are parallel or sequential
independent and can be performed concurrently. These results are valuable for tools that
produce migrations on the basis of the construction of pullbacks and abstract foldings.

Finally, in a forth step, we describe a way of integrating refactoring and migration procedures in
a more general framework that abstracts away from the underlying category. We define require-
ments that are the basis for a generalized system. These requirements are very similar to the
axioms for adhesive categories in [14]. It is up to future research to investigate if both
frameworks can be seen as two instances of an even more general system.

13 pullback complements such that the morphism into the complement is surjective

16 / 17 Volume 3 (2006)

Refactoring Information Systems

References
1 Havey, M.: Essential Business Process Modeling. O'Reilly (2005)
2 Martin, R. C.: Agile Software Development, Principles, Patterns, and Practices. Prentice Hall

(2002)
3 Beck, K.: Extreme Programming Explained. Addison Wesley (2000)
4 Beck, K.: Test-driven Development by Example. Addison-Wesley (2002)
5 Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
6 Kerievsky, J.: Refactoring to Patterns. Addison-Wesley (2004)
7 D’Anjou, J et al: The Java Developer’s Guide to Eclipse. Addison-Wesley (2005)
8 Ambler, S. W.: Agile Database Techniques. Wiley (2003)
9 Ambler, S. W.: Refactoring Databases : Evolutionary Database Design. Addison-Wesley

(2006)
10 Hainaut, J.-L.: Introduction to database reverse engineering. LIBD Publish. (2002)
11 Bauer, Ch., King, G.: Hibernate in Action. Manning Publications (2004)
12 Löwe, M.: Evolution Patterns – A Graphical Framework for Software Redesign. Proceedings

ISAS'99 (1999)
13 Adamek, J., Herrlich, H., Strecker G. E.: Abstract and Concrete Categories – The Joy of

Cats. (2004) [http://katmat.math.uni-bremen.de/acc/acc.pdf]
14 Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. Springer (2006)
15 Löwe, M., König, H., Peters, M., Schulz, Ch.: A Formal Framework for Information System

Refactorization. Proceedings WMSCI 2006, Vol. 1, 75-80 (2006)
16 Meisen, J.: Pullbacks in Regular Categories. Canad. Math. Bull. Vol.16(2) (1973)
17 Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism. Applied

Categorical Structures Vol.9(1) (2001)

Proc. SeTra 2006 17 / 17

	1.Introduction
	2.Migration Framework
	3.Partial Instantiation of Components
	4.Sequential Composition
	5.General Framework
	6.Conclusion

