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Refactoring Information Systems
- Handling Partial Compositions -

Michael Löwe, Harald König, Michael Peters, and Christoph Schulz

FHDW Hannover, Freundallee 15
D-30173 Hannover, Germany

Abstract: We present  our formal  framework for  the  refactoring of complete  information 
systems, i.e., the data model and the data itself. It is described using general and 
abstract notions of category theory and can handle addition, renaming and removal 
of  model  objects as well  as folding and unfolding within complete and partial 
object compositions.
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1. Introduction
The only constant thing is change. This is especially true for the information and communica-
tion business. Currently, information systems in many companies are subject to change. This is 
mainly due to the technological progress connected to the Internet which enables completely 
new sorts of electronic business. Thus, we see big efforts to re-engineer the technical basis on 
the one hand and to improve the business processes and information models on the other hand 
[1].

This development has been reflected in the research and development community in the last 
years. Agile and Extreme Programming Techniques  [2] [3] [4] aim at supporting the ongoing 
reengineering processes by providing refactoring methods, techniques, patterns [5] [6] and tools 
[7]. These tools enable consistent global changes of a whole software system, for example to 
introduce some design patterns which are necessary for the system to take the next evolution 
step. This puts the flexibility into the development process that is needed to keep a system up-
to-date (without any over-specifications at the beginning of the development) and to realize 
changing requirements quickly.

For the time being, agile techniques in database engineering were often restricted to the im-
provement and change of model artifacts. The main obstacle for agile techniques here is existing 
data. Attempts to describe semantics-preserving schema transformations that also migrate data 
can  be  found  in  [8] [9].  A  transformational  approach  that  considers  the  instance  level  is 
discussed in [10].

If  a  model  of  a  productive  information  system is  changed,  we  are  faced  with  one  central 
question: “What shall we do with the data conforming to the old model?” Up to now, we hear 
two major answers: 
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1. Leave the data as it is and map the new model to the old one using for example some object-
relational-mapping tools [11].1

2. Migrate the data from the old model to the new one by crafting corresponding migration 
scripts and performing the (long-running) data migration at night or on the weekend.

Both solutions possess big disadvantages. The first one leads to complex mappings if applied 
several times. This complexity is very likely to produce performance problems and reduce the 
development speed of the engineering team in the long run.2 The second solution requires long 
production breaks and consumes a lot of development and test time for software (migration 
scripts) that is thrown away after success. 

We propose another approach, namely the generation of the necessary data migration directly 
from model refactoring, compare also [12]. One central issue is the correctness of the induced 
migrations. We can only benefit from this approach if we can trust in the produced migrations 
without any further tests. Therefore, we present a theoretical framework in this paper, which

1. is able to represent models and instances in a uniform meta-model,

2. comes equipped with a suitable notion of model refactoring,

3. provides refactoring-induced correct transformations of the instances (migrations), and

4. proves its applicability by satisfying necessary and natural properties for refactorings and 
migrations, i.e., that refactoring can be composed in a natural way. 

The framework is built on category theory [13] and algebraic graph transformation [14]. In this 
theory, we not only have a very general notion of structured object. By the notion of morphism, 
we also get a natural way of representing (1) typings of instance objects in model objects as well 
as (2) model changes (refactorings) and instance migrations. 

Section 2 presents our current framework built on a double-pullback construction, which can 
handle  addition,  renaming,  and removal  of  model  objects  as well  as  folding and unfolding 
within  complete object compositions  [15].  This framework is not able to handle inheritance 
structures directly. Section 3 provides a slight generalization: We do not longer require that the 
right-hand side of a migration is a pullback. Instead we re-use the explicit construction of the 
pullback complements in more general situations. It turns out that this construction enjoys some 
categorical properties that guarantee uniqueness up to isomorphism. Section 4 shows that the 
usual sequential composition of refactorings extends to migrations in the generalized framework 
as well. We sketch in section 5, how the results in this paper can be reformulated on a purely 
categorical level. We explicitly point out the similarities to the approach of Ehrig et al. using 
adhesive categories [14]. Section 6 provides a conclusion and contains hints for future research 
activities. 

1 An older and worse version of this approach is: Leave the data-model and the corresponding data as it 
is and redefine the meaning of the data within the model, for example by using comma-separated 
multi-value fields in a single string column.

2 The longer this approach is applied, the bigger the problems to switch to the second one. 
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2. Migration Framework
For  a  motivation  of  the  following 
theoretical  aspects,  consider  the 
situation  of  a  class  Department.  A 
possible  refactoring  would  be  to 
extract an abstract superclass Unit  in 
order  to  be  prepared  for  additional 
specializations  [5].  If  we  interpret 
generalization  as  object  composition 
on  the  instance  level,  an  automated 
migration must  add a  Unit-Object to 
each  Department-Object  in  a  1:1 
fashion3.  After  the  migration  client 
objects  no  longer  use  a  single 
Department-Object  but  a  new object 
which  contains  the  Unit-information 
as  an  aggregated  object,  see  Fig.  1. 

Since Unit is an abstract class, we can model this refactoring by unfolding Department to two 
classes. This can be done by a morphism  l  that maps the new model  N to the old model  M 
assigning the two classes Department and Unit in N to Department in M. Having data D which 
is typed by the morphism t : DM  we obviously can generate the migrated data by calculating 
the pullback object F of t and l4.

Another possible refactoring is the addition of a new class  [5]. This can be achieved with a 
(non-surjective) map r from the old to the new model, see Fig. 2. Here the question arises which 
categorical construct generates a reasonable migration. Moreover, different data structures are 
possible after the migration: one possibility would be to create no B-object, another to create a 

default-value  or  prototype  object  for 
B.  Both  solutions  lead  to  pullback 
diagrams,  if  objects  a1 and  a2  are 
preserved.

Category theory can be applied in the 
following  way.  We  can  express  the 
typing of some data  D in a model  M 
by  a  morphism  t : DM .  And  we 
need to express refactorings between 
models and migrations between typed 
data.  We  will  have  to  use  the  two 
variations  l  and  r  discussed  above. 
But we are not only interested in the 
model  states  before  and  after 

3 This interpretation is often used when object models are mapped to relational database systems using 
the “one table per class”-strategy. This strategy provides one relational table for each class and maps 
each inheritance association to a foreign key relation from the special to the general class.

4 Later, we discuss in which category the construction is carried out. 

4 / 17 Volume 3 (2006)

Fig. 1: Extracting a superclass
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refactoring but in the refactoring process itself.  Hence, it  is a  good choice to represent  one 
model refactoring from model M to N by a combination of the two variants, i.e., by a pair of 
morphisms: M 

l
K 

r
N . The pair (l, r) represents an arbitrary relation between M and N and can 

model:

1. Deletion of model objects, i.e., l is not surjective,

2. Addition of model objects, i.e., r is not surjective,

3. Renaming of model objects, i.e., l and r are bijective but not identities,

4. Splitting or unfolding of model objects, i.e., l is not injective, and

5. Gluing or folding of model objects, i.e., r is not injective.

Given a typed database t : DM  and a model refactoring M 
l

K 
r

N , we 
want  to  canonically  construct  the  induced  migration  to  some  typed 
database u: E N . As a first step, we can use the pullback construction of 
t and  l,  which shall result in a typed database  v : FK .  For reasons of 
symmetry, we need to construct a pullback complement of  v and r in the 

second  step. 
Unfortunately,  such  a  pullback 
complement is not guaranteed to exist nor 
need be unique if it exists (see Fig. 2). 

Even worse, there is no simple property for 
r that guarantees existence and uniqueness 
of the pullback complement. Some authors 
argue  that  r  being  epimorphism  is 
sufficient,  compare  [16] or  [17].  This  is 
wrong  as  the  following  examples 
demonstrate. 

Example  1  (Ambiguous  Pullback 
Complements).  Consider  the  situation 
depicted in Fig. 3 in the usual category of 
graphs  and  graph  morphisms.  The 
epimorphism f and the morphism g do not 
possess  a  unique  (up  to  isomorphism) 
pullback  complement,  since  (g,  f1*)  is 
pullback of (f,  g1*) and (g,  f2*) is pullback 
of  (f,  g2*) but  D1 and  D2 are  not 
isomorphic. □

In  the  category  of  sets  and  mappings, 
however,  pullback  complements  seem  to 
be uniquely determined. This is not (really) 
true, as is demonstrated by the following 
example.
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Fig. 3: Ambiguous Pullback Complement
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Example  2  (Ambiguous  Pullback 
Complements  in  Set).  Let 
g:{1,2,3,4}→{a,b}  be  given  by  g(1)=a, 
g(2)=a,  g(3)=b,  g(4)=b and  f:{a,b}→{3} be 
the constant function as in  Fig. 4. There are 
two pullback complements: 

1. ({13,24},  f*1:{1,2,3,4}→{13,24}, 
g*1:  {13,24}→{3})  with  f*1(1)=13, 
f*1(2)=24, f*1(3)=13, and f*1(4)=24.

2. ({14,23},  f*2:{1,2,3,4}→{14,23}, 
g*2:  {13,24}→{3})  with  f*2(1)=14, 
f*2(2)=23, f*2(3)=23, and f*2(4)=14.

Obviously, {13,24} and {14,23} are isomor-
phic.  But  no  isomorphism 
i:{13,24}→{14,23}  translates  f*1 to  f*2,  in 

the sense:  i ○  f*1  =  f*2.  Hence,  we have isomorphic  pullback complement  objects.  But  the 
induced  morphisms  are  ambiguous  since  they  cannot  be  compared  by  the  existing 
isomorphisms. □

This type of ambiguity cannot be accepted in our context, since the morphisms represent the 
transition of the data from the old to the new model. There seems to be no chance to avoid this 
type of ambiguity, if we do not put additional requirements on the “vertical” morphisms g, g1* 
and  g2*.  These  properties  shall  single  out  a  unique  choice  for  the  pullback  complement 
extension of g.

These examples provide the motivation for the following definitions:

Definition 3 (Graph). The category G of graphs is the algebraic category w. r. t. the signature:

Sorts: O(bject) 

Opns: s(ource), t(arget): O → O.

This is a simple form of graphs where we do not distinguish between nodes and edges. In such a 
graph, nodes can be characterized as objects n such that s(n) = n = t(n). Graphs and graph mor-
phisms  of  this  type  provide  more  flexibility  in  the  refactoring/migration  context  we  are 
considering here, for example: if two nodes x and y are mapped to the same node z, it is possible 
that a morphism maps an edge e with s(e) = x and t(e) = y to z,  too. E.g. in  Fig. 1,  l(Unit) = 
l(Dept.) = Dept. and the edge between them is mapped to the node Dept. as well. 

Definition 4 (Component Graph).  A  component graph g:  G → G is a morphism in  G.  A 
component graph morphism α: (g: G → G) → (h: H → H) is a pair (α: G → H, α: G → H) such 
that the resulting square commutes, i.e.,  ° g=h° .  The comma category CG consists of all 
component graphs and all morphisms between them.

If not otherwise stated, we just  write  g for a component graph  g:  G → G.  Note that  G is the 
underlying graph and  g provides a decomposition of  G into parts or components via the the 
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Fig. 4: Ambiguous pullback complement in SET
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congruence kern(g)5. Thus for the carrier set G we have G= {[ x ]g : x∈G} where [ ]g denotes 
congruence  classes  of  kern(g). We  also  note  that  congruence  classes  are  not  necessarily 
subgraphs of G as can easily be seen in component graphs id: G → G where G contains edges.

The  additional  component  structure  on  graphs  provides  means  to  distinguish  typings  from 
refactorings. In a typing, we require that all components are instantiated completely in a 1:1 
manner. In a refactoring we allow identification of objects if and only if they belong to the same 
component. Hence, refactorings map components injectively and typings map objects within 
components bijectively.

Note that CG has all limits and that pullbacks in CG can be constructed component-wise.

Definition 5 (Typings, Refactorings, and Migrations). 

A typing t: g → h is a CG-morphism if for each x∈G the mapping t : [ x]g[ t  x]h considered 
as a SET-morphism is bijective.

A refactoring is a pair of morphisms m
l

k
r

n  in CG such that l 
and  r are injective. The morphisms  l and  r  are called  refactoring 
morphisms in this case.

A refactoring m
l

k
r

n  and a typing t :d m  induce a migration 
from typing  t :d m  to typing  u :en ,  if  there is a diagram as 
depicted to the right that satisfies: 

1. (1) and (2) are pullbacks, and

2. r' is epimorphism.

The proof of the following proposition is straightforward and relies on the fact, that pullbacks 
preserve monomorphisms and isomorphisms.

Propositon 6 (Refactorings, Typings, and Pullbacks).  If (n*:  l → g,  m*:  l → k) is the pull-
back of (n: k → h, m: g → h) in CG, then 

1. m* is a refactoring if m is,

2. n* is a typing if n is, and

3. if  n  is injective on components, i.e.,  ∀ x , y∈K : n  x=n  y∧k x =k  y⇒ x= y , then 
the same property holds for n*, i.e., ∀ x , y∈L:n*  x=n*  y∧l  x=l  y⇒ x= y

Proposition 7 (Existence and Uniqueness of Migrations). Let m
l

k
r

n  be a refactoring and 
let
t: d → m be a typing. If r: K → N is an epimorphism, then:

1. There is a migration as defined in definition 5 and

2. The result of the migration is uniquely determined (up to isomorphism).

5 The relation kern(f) denotes the congruence that the morphism f induces on its domain, i.e., (x, y) ∈ 
kern(f) iff f(x) = f(y).
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Proof. Subdiagram (1) can be constructed as a pullback. Thus (F, v, l') are unique up to isomor-
phism. The morphism v is a typing due to proposition 6. Having a typing  v and a refactoring 
morphism r, we construct diagram (2), i.e., (E, r', u), as follows and depicted in Fig. 5: 

If the component graph f is the morphism f: F → F, then

1. r'   is the identity on F,

2. E=F /≡  where ≡=kern  f   ∩  kern r °v   

3. r '=[ ]≡ ,

4. u  =  r °v , 

5. u is  the  unique  morphism  providing 
u°r '=r°v  which exists since kern r°v⊇≡ , 

and 

6. component  graph  e:  E  →  E is  the  morphism 
with e° r'= f  which exists since kern  f ⊇≡
.

By  construction  u°r '=r°v  and  r' is  epimorphism. 
Since kern r ' =kernr °v   on each component and r 
is an epimorphism,  u is bijective on components and 
thus a typing. And it is easy to show that (v, r') is pullback of (r, u) in SET and therefore in CG: 
if there is  o such that  r(x(o)) =  u(y(o)), then choose  o '  = r'−1  y o  ∩  v−1 x o .  This is 
unique, since v is bijective on components and, by construction,  r' folds on components only. 
This completes the proof of the first statement.

To prove the second statement, let (r*: F → E', u*: E' → N) be any other completion with the 
required  properties.  It  is  easy  to  see,  that  the  two  pullback  situations  project  to  pullback 
situations  in  SET on  each  component.  Here  we  have  u*° r *=u° r '  where  u* and  u are 
bijective. Hence kern(r*) = kern(r') on each component of F. Because r is a refactoring, so are 
r' and r* (see proposition 6) such that this property holds throughout F. Thus E=~ E ' . □

Although the framework presented so far allows copying and gluing of objects within the same 
component only, it provides some nice features for our purposes of information system refactor-
ing,  as  the  following  example 
demonstrates.

Example  8  (Association 
Redirection). In Fig. 1 we showed 
how to introduce a superclass Unit. 
Subsequently,  one needs to check 
the  references  to  Department-
objects and redirect them to  Unit-
objects  if  necessary.  To  do  this, 
consider  the  model  refactoring  in 
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Fig. 6: Redirection of associations
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Fig. 66: All three graphs have 3 components; the non-trivial component in each graph (the com-
ponent that has more than one element) is highlighted. Using this refactoring in a migration 
redirects all associations of type “7” from the source of “6” to the target of “6”. It uses an 
intermediate vertex “2”, that is introduced by the left-hand side l as an unfolding and removed 
again by the right-hand side r by a corresponding folding. This example shows, that we are able 
to redirect association sources and targets as long as we stay in the same component. □

With  these  features,  we  should  be  able  to  handle  all  refactorings  that  are  concerned  with 
inheritance structures. Recall, that inheritance can be considered as some sort of static com-
position between objects: an object of class  c can be considered to be composed of a set of 
(sub-)objects,  namely one object for each direct or indirect ancestor class  c' of  c.  All these 
objects  are  created  at  the  same time the  most  special  object  is  created.  And they are  also 
destroyed at the same time. Hence, we can model them as explicit parts in a component graph 
on the instance level in our framework .

But these components are not components in the sense of typings (Def. 5). It is not the case, that 
the  complete inheritance tree of classes needs to be instantiated, if one class is. If there are 
concrete classes that possess subclasses, an object might instantiate a proper subpart of the com-
plete inheritance tree of its class, only. Our approach is not able to handle those incomplete 
parts, since pullback complements do not always exist in these situations.

Example 9 (Missing Pullback 
Complement). Consider  the 
reverse process as in example 
8.  An  association  to  class 
“1,2,6” (a concrete superclass 
of  “4”)  shall  be  redirected  to 
its  subclass,  see  Fig.  7.  We 
apply this  rule  to  an instance 
of “1,2,6”, called “1,2,6' ”. The 
pullback  on  the  left  produces 
an intermediate object “2' ” in 
F.  But  we can easily  deduce, 
that the right part is not able to 
complete  the  diagram  to  a 
double-pullback situation. This 
is mainly due to the fact  that 
the non-trivial component in K 
is only partially instantiated in 
F (there is no “4”-object). For 
suppose,  that  such a  pullback 
complement  r':
F → E, u: E → N exists. Then 
r'(2')  is a preimage of “2,4,5” 
under u. This is only possible if there is a preimage of “4” in F. □

6 We indicate the model objects numerically to clarify the mappings.
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Fig. 7: Missing pullback complement
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We might use a trick to handle inheritance. We always instantiate complete inheritance graphs, 
when an object is created and keep the information about the most special  real object in the 
resulting part (of real and extra objects). Then we distinguish two views on the system: (1) the 
refactoring perspective and (2) the operational perspective. In the first perspective, all objects 
are visible and our framework is applicable. The second perspective blends out all extra objects 
in order to keep the system's state consistent from the operational point of view.7 With these 
additional arrangements, inheritance structures and the typical refactorings could be modeled.

But there are also disadvantages of this approach: the additional instantiations might cause a 
significant  memory  overhead.  In  this  paper,  we use  a  different  approach,  which omits  this 
problem:  In  the  next  section,  we  slightly  generalize  our  framework  such  that  partial 
instantiations of components in the model are allowed. To achieve that, we do no longer require 
that the right-hand side of a migration is a pullback.

3. Partial Instantiation of Components 
In this section, we relax the requirements for typings. Weak typings allow partial instantiations 
of model components, since they are injective on each component but need not be surjective.

Definition 10 (Weak Typing). A component graph morphism α: (g: G → G) → (h: H → H) is 
a  weak  typing if  it  is  injective  on  each  component,  i.e., 
 x   =   y   ∧  g x   = g  y   ⇒  x  =  y .

Now we use the construction in the proof of proposition 7 to construct the right-hand side of a 
migration. This works for weak typings as well.

Construction  11  (Folding). Consider  Fig.  8, 
where weak typing n and refactoring morphism 
m are  given.  We  construct  the  folding 
completion of this situation as follows:

1. m* = ([]≡, idG), where 
≡  =  kerng   ∩  kernm°n ,

2. n* = (i,  m°n ),  where  i is  the  unique 
morphism  with  i °[ ]≡  =  m°n ,  since 
kern m°n⊇≡ , and

3. the  component  graph  j is  the  unique 
morphism  with  j °[ ]≡  =  id ° g ,  since 
kern g ⊇≡ .

m* is  a  CG-morphism  by  construction. 
Moreover, we obtain  k ° i  =  m°n° j , since []≡ 

is epi and k °i °[ ]≡  =  k °m°n  =  m°n°g  = m°n° j °[ ]≡ . Thus, n* is a CG-morphism, too. □

Lemma 12 (Folding). If (m*,  n*) is folding of (m,  n),  m* is refactoring morphism and n* is 
typing.

7 Note that the model is stable under the operational perspective!
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Fig. 8: Construction of a Folding 
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Proof. The first part is obvious, since m  *   has been constructed as the identity which is a mono.

For  the  proof  of  the  second  statement  let  i x   = i  y and  j x   =  j  y  .  Now consider 
arbitrary  preimages  x'  and  y'  for  x and  y wrt.  []≡,  i.e.,  [x']≡ =  x and  [y']≡ =  y. Since 
j °[ ]≡  =  id °g ,  we conclude  g(x')  =  g(y').  Since  i °[ ]≡  =  m°n ,  it  follows that  m(n(x'))  = 

m(n(y')). 

Thus, x ' , y ' ∈ kern g  ∩ kernm°n , which means that [x']≡ = [y']≡. Hence, x = y. □

Folding diagrams possess an interesting universal property as the following proposition shows.

Proposition 13 (Initiality of Foldings). Let the pair of morphisms (m*: g → f, n*: f → k) be the 
folding of a weak typing n: g → h and a refactoring morphism m: h → k as it is constructed in 
construction 11. Then for every triple of morphisms (w: g → b, t: b → a, v: k → a) such that t is 
weak typing and t°w  = v°m°n , there is a unique morphism u: f → b with t °u  = v°n*  and 
u°m* =  w .

Proof. Let  the  folding  be  given  as  in  Fig.  8.  We  set  u =  w and  get  immediately  (1) 
u°m* =  u° id  = u  = w . We show that  ≡  ⊆  kernw . Let  m(n(x)) =  m(n(y)) and  g(x) = 

g(y). It follows  t(w(x)) =  v(m(n(x))) =  v(m(n(y))) =  t(w(y)) and  b(w(x)) =  w(g(x)) =  w(g(y)) = 
b(w(y)). Since t is weak typing, we get w(x) = w(y) as desired. Now there is a unique u: G/≡ → B 
with  (2)  u°[ ]≡  =  u°m *  =  w .  Since  b°u°[ ]≡  = b°w  =  w °g  =  w ° j °[ ]≡  = u° j °[ ]≡ , 
we can conclude (3)  b°u  =  u ° j . And t °u°[ ]≡  =  t °w  =  v °m°n  = v° i °[ ]≡  provides (4) 
t °u  = v°i  =  v°n* . Finally, we also have (5) t °u  =  v°m°n  = v°n* . □

Proposition  13  characterizes  foldings  up  to  isomorphism.  In  the  following,  we  say  that  a 
diagram is an abstract folding if it has the property of proposition 13:

Definition 14 (Abstract Folding).  As depicted in  Fig.
9,  a  pair (m*:  g →  f,  n*:  f →  k)  consisting  of  a 
refactoring morphism  m* and a weak typing  n* is the 
abstract  folding of  a  weak  typing  n:  g  →  h and  a 
refactoring morphism m: h → k if (1) n*°m *  =  m°n  
and (2) for every triple (w: g → b,  t: b → a,  v: k → a) 
such that t is weak typing and t°w  = v°m°n , there is 
a  unique morphism  u:  f →  b with  t °u  = v°n*  and 
u°m* =  w .

Corollary 15 (Uniqueness of Abstract Foldings). Two 
abstract  foldings  of  a  weak  typing  n:  g  →  h and  a 
refactoring  morphism  m:  h  →  k coincide  up  to 
isomorphism. Hence (m*: g → f, n*: f → k) is the abstract folding if and only if the statement

m* is epimorphism and m * x=m*  y ⇔ g  x=g  y ∧m n x =m n y

holds.

Proof. Direct consequence of Definition 14 and the fact that the first folding compares to the 
second and vice versa. Therefore, we get two morphisms between the two foldings, which must 
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Fig. 9: Abstract Folding
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be  inverse  morphisms,  because  their  composition  coincide with  the  identity  on  the  folding 
objects (unique morphism from a folding to itself). □

Abstract  foldings  enjoy the  same composition and decomposition properties  as  pushouts  or 
pullbacks.

Proposition 16 (Composition and Decomposition of Abstract Foldings).

Consider the situation depicted in the diagram below8.

1. If the squares (1) and (2) are abstract foldings, then the rectangle (1) + (2) is an abstract 
folding.9 

2. If the rectangle (1) + (2) and the square (1) are 
abstract foldings, then (2) is an abstract folding.

3. If  typing  e and  refactoring  h is  the  abstract 
folding of typing c and refactoring b°a , it can 
be  decomposed  into  two  foldings  as  in  the 
diagram on the right, where  h  =  g° f , if the 
underlying category has all abstract foldings.

Proof. 

(1) Let morphisms  v,  t,  w, be given such that  t is typing and  t °w  = v°b°a °c . Since (1) is 
abstract folding, we get u1 such that u1° f  = w  and t °u1  =  v °b°d . Now u1, t and v compare 
to  (2)  and  we  get  u2 with  u2°g  = u1  and  t °u2  = v°e .  Substituting  u2°g  = u1  in 
u1° f  = w  provides  u2°g ° f  = w . For the proof of uniqueness, let morphism u3  be given 

such  that  u3°g ° f  = w  and  t °u3  =  v °e .  Then  u3°g ° f  = u 2°g ° f  and 
t °u3°g  =  v°b°d  = t °u 2° g  hold. We obtain  u3°g  =  u2°g ,  since (1) is abstract folding. 

But this implies u3 = u2, since (2) is abstract folding. 

(2)  Let  v,  t,  w,  be  given  such  that  t is  typing  and  t °w  =  v°b°d .  It  follows 
t °w° f  =  v °b°a°c . Since (1)+(2) is abstract folding, there is  u such that  u°g ° f  = w° f  

and t °u  = v°e . We also have t °u°g  =  v °e°g  =  v °b°d . Since (1) is abstract folding, we 
get u°g  = w . Uniqueness follows from the uniqueness of u for (1)+(2).

(3) If there are all abstract foldings, we can construct (d, f) as a folding, which provides diagram 
(1). The morphism g is obtained as the unique completion of the diagram from the folding (1). 
That diagram (2) is an abstract folding follows from (2) of this proposition. □

Definition 17 (Generalized Migration). A refactoring m
l

k
r

n  and a weak typing t :d m  
induce  a  generalized  migration from  t :d m  to  weak  typing 
u :en , if there is a diagram as depicted to the right that satisfies: 

1. Subdiagram (1) is pullback and

2. Subdiagram (2) is abstract folding.

8 Here, for the sake of readability, CG-objects are presented in capital letters.
9 (1)+(2) consists of the morphisms b°a , e , g ° f , and c .
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Theorem 18 (Existence and Uniqueness of Generalized Migrations). Given a weak typing 
t : DM  and refactoring M 

l
K 

r
N  for the model of t, there is an induced migration and the 

result of the migration is unique up to isomorphism.

Proof. Direct  consequence  of 
(1)  the  existence  and 
uniqueness of pullbacks in CG, 
(2)  the  fact  that  pullbacks  in 
CG preserve  weak  typings 
(proposition 6, 3.),  and (3) the 
existence  and  uniqueness  of 
abstract  foldings  in  CG 
(Construction 11 and Corollary 
15). □

Theorem  18  justifies  that  we 
write  R(t) for the result  typing 
of  a  migration  from  a  typing 
t : DM  using a refactoring  R 

=  M 
l

K 
r

N .  Fig.  10 shows 
the  generalized  migration  that 
we searched for in Fig. 7.

4. Sequential Composition
In this section, we show that there is a natural sequential composition R2°R1  of refactorings R1 

and R2 and that applying a sequential composition to a weak typing t provides exactly the same 
result as the sequence of first applying R1 to t and second R2 to R1(t), i.e., R2°R1t =R2R1 t .

Definition  19  (Sequential  Composition  of 
refactorings).  The  sequential composition 
R2 °R1=l1 ° p1: J  M , r2° p2: J  P  of  two refactorings 
R1=l1: K M , r1: K N   and 
R2=l 2: H N , r2 :H P  is defined with the help of the 

pullback  object   p1 : J K , p2 :J H   of  r1 and  l2 as 
depicted in Fig. 11.

Note that the sequential composition is well-defined due 
to proposition 6, 1. and the fact that the composition of 
two refactoring morphisms is a refactoring morphism again.

In order to prove our main theorem, i.e., R2 °R1t =R2R1t  , we need the following technical 
lemma.

Lemma 20 (Pullback Cubes Preserve Abstract Foldings). Consider the commuting diagram 
in CG below10. If the pair of morphisms (i, q) is the abstract folding of the morphism pair (r, m), 

10 Here, we depict CG-objects as arrows with filled tip.
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Fig. 11: Sequential composition
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the pair (p, t) is the pullback of the pair (s, q), and (j, v) is the pullback of (t, i), then the pair of 
morphisms (j, p) is the abstract folding of (n, k).

Proof.  The assumptions of the lemma provide that  i is the identity. Since pullbacks preserve 
isomorphisms,  we  can  set  j =  id  without  loss  of  generality.  Because  the  bottom face  is  a 
pullback and i is an epimorphism (see Corollary 15), j is an epimorphism as well. Again, from 
Corollary 15 we deduce that it suffices to show, that

j  x  = j y  ⇔  [k n x   =  k n  y   ∧ g  x  =  g  y ]
holds for all x , y  ∈  G .

“⇒”: (1) j  x  = j y  ⇒  p j  x =  p  j  y   ⇒  k n x   =  k n  y 

(2)
j  x  = j y  ⇒  c j  x =  c j  y   ⇒  id g  x  =  id g  y  ⇒  g  x  = g  y

“⇐”: Let  k n  x =  k n  y  ∧  g  x  =  g  y   be  given.  Since  (p,  t)  is  pullback,  it  is 
sufficient to show: (3) t  j x   =  t  j  y   ∧  (4) p  j x   = p j  y :

(3) (a) g  x  =  g  y   ⇒  v g  x  =  v  g  y   ⇒  h v  x  =  h v  y  .

(b) k n x  =  k n  y   ⇒  sk n x   = sk n  y  ⇒  mrv x   = mr v  y  .

Since (q, i) is abstract folding, it follows from Corollary 15, (a) and (b) that 
i v  x  =  i v  y  , which provides t  j x  =  t  j  y , because t° j  =  i°v

.

(4) k n  x =  kn  y ⇒  p  j x   =  p  j y  . □

Theorem 21 (Sequential Composition). If R2R1t   for two refactorings R1 and R2 is defined, 
we have R2 °R1t =R2R1t  .
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Fig. 12: Pullback Cube
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Proof. Consider the following diagram, which depicts  R2R1t  . This migration sequence is 
given by the four squares (1) MKFD, (2) KNEF, (3) NHCE, and (4) HPBC. (1) and (3) are 

pullbacks  and  (2)  and  (4)  are 
abstract  foldings.  The  additional 
material  in the diagram is defined 
as follows: The pair of morphisms 
(p1,  p2) is given as a pullback of r1 

and  l2,  compare  construction  of 
R2 °R1  in definition 19. We write 

(5) for the resulting square NKJH. 
We construct (p1',p2') as pullback of 
(r1',l2').  We  write  (6)  for  the 
resulting  square  EFIC.  The  mor-
phism  u2 is  the  universal 
completion of the diagram into the 
pullback object  J. Now, the square 
(7) KJIF is pullback as well. This is 
due  to  the  fact  that  (3)+(6)  is 
pullback11,  (3)+(6)  =  (5)+(7),  and 
(5)  is  pullback12.  The  square  (8) 

JICH is abstract folding due to Lemma 20. Now diagram (1)+(7) is pullback, since pullbacks 
compose.  It  is  the  left-hand  side  of  the  migration  induced  by  R2 °R1 .  Diagram (8)+(4)  is 
abstract folding, since abstract foldings compose (compare Proposition 16, 1.). It is the right-
hand side of the migration induced by R2 °R1 . This together shows that R2 °R1  migrates t to w 
as well. □

With Theorem 21 we are, on the one hand, able to compose long refactoring sequences into one 
single refactoring, which can capture the effect of the whole sequence. On the other hand, we 
can decompose complex refactorings into a composition of simpler ones. 

5. General Framework
The whole approach presented above is almost independent from the underlying category of 
graphs resp. component graphs. What we need for the existence and uniqueness of migrations is 
the  existence  of  pullbacks  and  abstract  foldings.  For  the  results  concerning  sequential 
composition, we need the cube lemma 20, i.e.,  that pullbacks “pull  back” abstract foldings. 
Thus, we can present our requirements for a category to provide the infrastructure for unique 
migrations and sequential compositions as follows:

An abstract migration framework is a category C together with two subcategories T and R which 
have the same objects as C. The morphisms in T are called typings and the morphisms in R are 
called refactoring morphisms. The system (C, T, R) is subject to the following requirements:

(1) C has all pullbacks 

11 Composition property of pullbacks.
12 Decomposition property of pullbacks.
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Fig. 13: Migration sequence
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(2) C has abstract foldings for all pairs of morphisms (f: A → B ∈ T, g: B → C ∈ R).

(3) Pullbacks in C preserve morphisms of T and of R.

(4) In each cube with corners K, N, H, J, F, E, C, and I, as it is depicted in Fig. 13, the square 
JICH is an abstract folding if KNEF is abstract folding and the squares IFEC and NECH 
are pullbacks.

Since abstract foldings are a generalization of surjective pullback complements13, the framework 
presented in section 2 fits into this setting as well. Another instance is given by simple graphs, 
arbitrary morphisms as typings and injective morphisms as refactoring morphisms. Here we can 
use surjective pullback complements as abstract foldings as well [15].

6. Conclusion
We propose formalizations of aspects in the process of refactoring information systems. The 
power of our attempt is that a model refactoring can uniquely and automatically be extended to 
the instance level. In contrast to other more practical solutions, we can prove correctness of our 
approach. The framework is described using abstract notions from category theory.

With a strong assumption to the typing morphisms we can generalize a migration to a double-
pullback diagram. As a first step, it is possible to handle addition, renaming, and removal of 
model  objects.  The investigation under  which conditions  folding and unfolding is  possible, 
leads to a model structure where one had to restrict to 1:1 associations on certain components. A 
refactoring  morphism may fold or  unfold on  these  components,  only.  In  a  second step  we 
showed that these settings are correct as well.

However, object trees of inheritance structures are, in general, not completely instantiated. To 
treat this case in a similar way, we have to weaken the assumptions on the type mappings. But 
weak typings do not always lead to double-pullback constructions. Thus, this third step requires 
a generalization of pullback complements. We introduced abstract foldings that enjoy some of 
the  well-known  properties  of  pullbacks  and  pushouts.  Abstract  foldings  are  initial  in  a 
reasonable  context,  which  reveales  a  uniqueness  statement  of  generalized  migrations  and 
prepares a statement on the composition of refactorings. 

Composing migrations into larger projects and decomposing migrations into smaller steps leads 
to the question if there is a minimal set of atomic refactorings, from which each refactoring can 
be constructed by sequential composition. This might be an interesting topic for future research 
as  well  as  the  question,  under  which  conditions  refactorings  are  parallel  or  sequential 
independent  and  can  be  performed  concurrently.  These  results  are  valuable  for  tools  that 
produce migrations on the basis of the construction of pullbacks and abstract foldings.

Finally, in a forth step, we describe a way of integrating refactoring and migration procedures in 
a more general framework that abstracts away from the underlying category. We define require-
ments that are the basis for a generalized system. These requirements are very similar to the 
axioms  for  adhesive  categories  in  [14].  It  is  up  to  future  research  to  investigate  if  both 
frameworks can be seen as two instances of an even more general system.

13 pullback complements such that the morphism into the complement is surjective
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