
Electronic Communications of the EASST
Volume 3 (2006)

Proceedings of the
Third Workshop on Software Evolution

through Transformations:
Embracing the Change

(SeTra 2006)

From C++ Refactorings to Graph Transformations

Lászĺo Vidács and Martin Gogolla and Rudolf Ferenc

15 pages

Guest Editors: Jean-Marie Favre, Reiko Heckel, Tom Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

From C++ Refactorings to Graph Transformations

Lászĺo Vidács1 and Martin Gogolla2 and Rudolf Ferenc1

1Department of Software Engineering, University of Szeged, Hungary
2Department for Mathematics and Computer Science, University of Bremen, Germany

Abstract: In this paper, we study a metamodel for the C++ programming language.
We work out refactorings on the C++ metamodel and present the essentialsas graph
transformations. The refactorings are demonstrated in terms of the C++ source code
and the C++ target code as well. Graph transformations allow to capture refactoring
details on a conceptual and easy to understand, but also very precise level. Using this
approach we managed to formalize two major aspects of refactorings: the structural
changes and the preconditions.

Keywords: Metamodel, C++, UML, Graph Transformation, OCL, Refactoring

1 Introduction

The programming language C++ is widely used in industry today. Many applications written
in C++ exist which are constantly developed further, for example, to be adapted to modern
service-oriented aspects. On the other hand, there is an important current trend in software
engineering that focuses on development activities for using models instead of concentrating on
code production only.

This contribution tries to narrow the bridge between industrial, code-centricdevelopment
with C++ and model-centric development employing languages like the Unified Modeling Lan-
guage (UML). We discuss a C++ metamodel and display first ideas how development and main-
tenance of C++ artifacts can be performed on instantiations of this C++ metamodel based on
refactorings. Our proposal is to express C++ refactorings and development steps as graph trans-
formations. We think it is important to clearly express transformation conceptsfor an involved
domain like C++ software development. Graph transformations possess a sound theoretical ba-
sis and allow to express properties on a conceptual level, not only on an implementation level.
Surprisingly, graph transformations have not yet been applied for C++software development.

Graph transformations have been applied for the transformation of metamodels, see for exam-
ple the work of Gogolla [Gog00] (among many other works on graph transformation on meta-
models). In industry, refactoring techniques [Ref06b] are regarded as promising means for soft-
ware development. Refactoring of C++ code is supported by a variety of tools [Sli06][Ref06a]
[Xre06]. However, refactorings are usually considered from the implementation point of view
only, not from a conceptual view. A conceptual view on C++ refactorings on the basis of meta-
models and graph transformations allows to express properties like refactoring applicability more
precise. A conceptual view also opens the possibility for viewing refactorings on the semantical
level, for example, in order to describe semantics preserving refactorings or to test whether they
are semantics preserving.

The paper is organized as follows. The next section introduces the C++ language metamodel
used in this work. Section3 discusses C++ refactorings on this metamodel in terms of graph

1 / 15 Volume 3 (2006)



From C++ Refactorings to Graph Transformations

transformations. Section4 gives insight to our implementation. In Section5 we mention some
important contributions of this area. Finally, the paper ends with a short conclusion.

2 C++ Metamodel

Metamodels, which are also called schemas in the re-engineering community, play a very impor-
tant role in the process of source code analysis. They define the central repository for the whole
process, from where the facts can be reached with the help of different transformations.

Several researchers have been working on defining metamodels for C++ programs for re-
verse engineering purposes (also for program comprehension or to define an exchange format)
[EKRW02], [Bel00], [FSH+01].

The Columbus Schema for C++ [FBTG02] satisfies some important requirements of an ex-
change format. It reflects the low-level structure of the code, as well ashigher level semantic
information (e.g., semantics of types). Furthermore, the structure of the metamodel and the used
standard notation (UML Class Diagrams) make its implementation straightforward,and what is
even more important, an API (Application Programming Interface) is very simpleto be realized
as well.

Because of the high complexity of the C++ language, the metamodel is divided into six pack-
ages. To introduce all packages is beyond the scope of this paper. To clearly present our ideas
we created an excerpt mainly from thestrucpackage of the metamodel. The presented approach
is not limited to this subset of the C++ language, for example templates are also supported by the
metamodel. To carry out refactorings on a C++ program it is necessary todeal with preprocessor
directives. Although we have a separate metamodel for the preprocessor directives [VBR04],
coping with them is not included to this contribution. The excerpt of the C++ metamodel can
be seen in Figure1 The upper part in the figure represents the scoping structure of a C++ pro-
gram. ClassMemberis the parent of all kinds of elements which may appear in a scope (we use
the term “member” in a more general way than usual). In the excerpt there are three important
subclasses ofMember. ClassClassstands for C++ classes. It may contain further members; it
may have base classes (shown byBaseSpecifier) and friends. In C++ a friend (class or function
shown byFriendSpecifierin the figure) can access also protected and private members of the
class. The classFunctionstands for C++ functions. It has body (represented byBlock) which
contains any number ofStatements; and has parameters (classParameter). The classObject
represents both variables and member fields in aClass. In the lower left corner there are the
necessary enumerations.

In the middle there are classes for type representation. Like in C, in C++ types can be complex,
so each language element which has a type contains a wrapper class calledTypeRep. A TypeRep
containsTypeFormers(in complex cases a type consists of many code pieces, each piece is a
type-former). In the figure many type-formers are omitted, only one is shown (TypeFormerType)
which refers directly to a type (to aClassin this case). This typing structure enables to express
all kinds of types and helps to avoid redundancies in storing types. In the lower right corner there
are some expressions which are used in this paper (FunctionCall, MemberSelection, Id). An Id
expression is an identifier in the code which refers toMember- in the metamodel this means that
it may refer to both classes and class members.

These are the main classes used in our example. For further details please see [Fro06]. As

Proc. SeTra 2006 2 / 15



E
C

E
A

S
S

T

���������	
������

���
����
��������	�
�

�����

����	
��

�
��������	������
��������	�������

������

����		�����������	�
�

��
���	�


���	�

�����	

�
��������

�
��������

�

����
�
�����

�

�

�������� 

����
���

�

�

�������� 

����
���

��
!����"����#


����

�

����

�
�$�%&
	'�

�������

�

����

���	
���

�����

�
��������

�
��������	���

���&���'
	������	�
�

��������
�
�


�

�������
�
�



���������

�

�
�
��
��"����%���

���
�(�����"����%���

����)��(��!

#�
���(���������

#�
���(���������

�*� 


���������

�*� 

�

�

�������� 

����
���

��%���������


��+���


��,��)
��


��,��������


��,'�	��

-��'!��
����.

������
�
�
	��
��

�	��	
��

�	�"��'��

�	�/����

-��'!��
����.

������
��

��	�������

������
��
����

����
���

�

�

�������� 

��	�������

�

0

�������� 

����
���

����	
������

������

��������1�!���"�	����������

�����
�����	
��

�����

����
���

�
��������

��
!����"����#

��

�

����

��%�����+
!�

���������

!��$��

!��
���2

-��'!��
����.

�����
�����	
���
��

F
igure

1:
E

xcerptfrom
the

C
olum

bus
S

chem
a

for
C

+
+

-
U

M
L

class
diagram

3
/15

V
olum

e
3

(2006)



From C++ Refactorings to Graph Transformations

usual in case of complex class diagrams, we cannot express everythingusing UML class dia-
gram notations easily. For example a function body (block statement) containsorderedPosi-
tionednodes. However aParameteris alsoPositionedbut it cannot be a part of a function body.
OCL expressions as constraints of the class diagram solve many similar issues. We define the
following condition (boolean expression, called invariant) that must be truefor all Blockobjects:

context Block inv:
not self.contains.oclIsTypeOf(struc_Parameter)

In the following sections we use the introduced metamodel and the OCL expressions together.

3 Graph Transformation Rules on the C++ Metamodel

In this section we show how refactorings on the C++ metamodel can be described with graph
transformation. We provide example, which are “classical” refactorings from Fowler’s catalog
[Ref06b]. The basic idea is simple in both cases, however many subtle details arise when realiz-
ing these refactorings. We also concentrate on C++-specific issues.

3.1 Graph transformation approach, notation

We use a single pushout approach for graph transformation rules possessing a left and a right
hand side. Instead of too complicated NACs (Negative Application Condition)we provide pre-
conditions as OCL expressions.

The definition of directed, attributed graphs are used as usual. A program graph is directed,
labelled, attributed graph where:

• nodes are labelled with class names shown in the UML class diagram

• nodes have attributes which are called as class attributes, the possible values of the at-
tributes are from the corresponding UML types

• edges are labelled with relation names shown in the UML class diagram

Program graphs are introduced using an object diagram-like notation (see Figure2).

� � � � � � � � � � �
� 	 	 � � � 
 � 
 � 
 
 � � � 	 � � � � � 
 	
� 
 � � � 	 � � � � � � �

 � � � � 
 � � 	 
 � � � � � �

� � �� � �

� � � � � � 
 	 � � � � �
� 	 	 � � � 
 � 
 � 
 
 � � � 	 � � � � 
 � 	 
 � �

� � � � � 	 


Figure 2: Object diagram like notation of the graph

Not all graphs that correspond to the definition above represent C++ programs. For example
an undeclared variable may occur according to the metamodel but the belonging code could not
compile. The well formedness is not checked in this paper. In reverse engineering context we
assume that the starting graph is a well-formed graph and this property is preserved due to the
conditions of transformations. Note that C++ class attributes are modeled with class Object in

Proc. SeTra 2006 4 / 15



ECEASST

the metamodel - so the nodes representing them have labelObject. All Object andFunction
nodes haveTypeRepnodes which show their C++ type. These nodes are omitted from the figures
and presented only where it aids comprehension. Furthermore the notationof multi-nodes is
introduced to describe general subgraphs. A multi-node with valuek represents k pieces of
nodes of the same type. Usage of multi-nodes is shown in Figure3.

���������	�




�����	�





���������	�





��


����������

���������

���������	�

�����	�


���������	�

�����	�


���������	�

�����	�


���������	�


��


����������

��������

���������	� ���������	�

Figure 3: Usage of multi-nodes

3.2 Extract class

Classes should serve a clear, well-defined aim. During development, classes are growing. In lots
of cases, there are new responsibilities added to them. The aim of this refactoring is to extract a
separate concept and corresponding data to a new class to improve the quality of the design. The
idea is shown in Figure4 which is taken from the Refactoring catalog [Ref06b].

� � � � � � � � � �  ! � " # $ % � & ' (

) ! *+ , ! - $ �
)  . . * + � / & � - 0  1 �
)  . . * + � " # $ % � &

2 3 4 5 6 7

� � � � � � � � � �  ! � " # $ % � & ' (
) ! *+ , ! - $ �

2 3 4 5 6 7

� � � � � � � � � �  ! � " # $ % � & ' (

)  . . * + � / & � - 0  1 �
)  . . * + � " # $ % � &

8 3 9 3 : ; 6 7 3 < = > ? 3 4

@

 . . * + � � � �� � �  ! �

Figure 4: Extract class refactoring example

There is a long way from this semi-informal description to an applicable transformation.
Based on this figure we make decisions about the context and purpose ofthe refactoring. Af-
ter that we formalize it as graph transformation in two steps: the first part concentrates on the
structure of the rule and the second part declares conditions using OCL expressions.

The main questions to be considered when realizing this refactoring as a graph transformation
is: who can use the new (extracted) class and how can it be used. At first, the old class must
somehow access it. If it is the only class that uses the new class then their relationship can be
implemented either as the new class is a member in the old class or as a dynamic objectcreation

5 / 15 Volume 3 (2006)



From C++ Refactorings to Graph Transformations

in the constructor of the old class and as a deletion of the object in the destructor of the old
class (in this case the other classes can access the new class through public interface functions
of the old class). On the other hand, if the new class is free to be used by other classes then it is
more complicated - for example a reference counter can be used. This is related to the question:
who can instantiate the new class. Similarly, it has to be determined how the new class can be
accessed by other classes: through the old class only or through public functions of the new class
as well. Another obstacle is introduced by attributes which are used externallyfrom the old class
and are now moved to the new class. We assume that the visibility enables one to access those
members through a known interface only (this is not a constraint, using the C++ metamodel, all
usages of an attribute can be checked).

In this paper we choose to protect the newly created class. The new classcan be instantiated
only by the old class. Its properties can be modified by the old class, furthermore the old class
provides the public interface to use the new class.

As refactorings can be realized in many different ways so we formalize theextract class first as
a rule schema. A rule schema has parameters and multi nodes and can be instantiated in concrete
cases. We call rule only these concrete cases when the rule schema has concrete arguments and
can be applied directly on a program graph. The attributes and operationsto be moved must
be determined by analyzing their usage. Therefore these are parametersof the transformation:
any number ofObject andFunction nodes which are contained by the old class. The graph
transformation rule schema of ExtractClass(... : (Object—Function)) is shown in Figure5.

���������	
��
����

�������	�
�����������	
��

�����������

�

��������
��
���

�������	�
�����������	
��

����
����

����������	��

�������	�
�������

����	���� ��������
��
���

�������	�
�����������	
��

����
���

�����������
���

�������	�
�����������	
��

����
��� �

����������	��

�������	�
�������

����	����

����������������
����

�������	�
������������������

�����������




����������������
����

�������	�
������������������

�����������


 �

���������	
��
����

�������	�
������������������

�����������

�����������
���

�������	�
������������������

����	����

������� ��

�����������������

���������!����"���

���������	
��
����

�������	�
�����������	
��

�����������

�




���#
���

�

���#
���

�

���#
���

�

�������������



�

����

���$�

�

���#
���




���#
���

Figure 5: Extract class refactoring as graph transformation

On the left hand side there is the old class. Its members are divided into 3 groups: attributes,
public (interface) functions and protected functions. On the right hand side there are both the
old class and the new (extracted) class. The selected attributes and protected functions are com-

Proc. SeTra 2006 6 / 15



ECEASST

pletely moved to the new class. Public functions are copied from the old class tothe new class.
The existing implementation of these functions goes to the copy in the new class. The remaining
functions in the old class have a new implementation: they only have to call the copied functions
in the new class. The new class cannot be accessed from outside, so thecopied public functions
became protected.

To ensure the connection between the two classes we have a new member (Object) in the old
class, its type is the new class. This is represented by newTypeRepandTypeFormerTypenodes.
(This abstraction of types is required to represent complex types in C++ [FBTG02].) Now we
have to let the old class access the new one, which has protected members/functions. This is
done by giving friendship grant to the old class. This is represented by theFriendSpecifiernode.

Concrete rule and OCL conditions

The left hand side and right hand side of a concrete rule is given in the figures below. The C++
code before the transformation with the left hand side is shown in Figure6. The graph is in fact
the object model of the code, so it contains a node (nickname) which does not take part in the
transformation. The resulting source code and the right hand side is shown in Figure7.

class Person {
protected:

string nickname;
string officeAreaCode;
string officeNumber;

public:
string getTelephoneNumber();

};

A B C D E F D G H I A
B J J D H H K L K M K N O E B J P F Q L M KJ
P K A R E J M P S MB H H
KH T L H N G B J N E U B MH D

V S M B H H
A B C D E A K J P A B C D
B J J D H H K L K M KN O E B J P F G I N D J N D R

V W L X D J N

A B C D E Y D N Z D MD [ \ I A D ] Q C L D G
B J J D H H K L K M KN O E B J P F Q L M KJ

V ^ Q A J N KI A
A B C D E I U U KJ D T G D B S I R D
B J J D H H K L K M KN O E B J P F G I N D J N D R

V W L X D J N

A B C D E I U U KJ D ] Q C L D G
B J J D H H K L K M KN O E B J P F G I N D J N D R

V W L X D J N

V _ MI J P

Figure 6: Extract class - C++ code and model instance before the transformation

class Person {
protected:

string nickname;
TelephoneNumber _TelephoneNumber;

public:
string getTelephoneNumber();

};
class TelephoneNumber {
protected:

TelephoneNumber();
string officeAreaCode;
string officeNumber;
string getTelephoneNumber();
friend class Person;

};

`abc d ec fgh `aiicggjkjljmn d aioepkljioj`q d ilorlaggjgs kgmfaim d ta lgc

u rlagg
`abc d `jio`abcaiicggjk jljmn d aioefhmcimc q

u vkw cim
`abc d xc lc yzh`c{pbkc fa iicggjk jljmn d aioepkljioj`q d ilor laggjgs kgm fa im d ta lgc

u r lagg

`abc d | xc lcyzh `c {pbkcfaiicggjkjljmn d aioefhmc imcq
u vkw cim

`abc d }cmxc lc yzh`c{pbkc fa iicggjk jljmn d aioepk lji
u ~p`imjh`

u �lhio

u xnyc�cy

u xnyc ~hfbc fxn yc

u ~fjc`q�ycijtjc f

`abc d httjics fcarhqcaiicgg jkjljmn d aioefhmcimcq
u vkw cim

`abc d httjic{pbkc faiicgg jkjljmn d aioefhmcimcq
u vkw cim

`abc d {c� rlaggaiicggjk jljmn d aioefh mc imc q
u ~p`im jh `

`abc d }cmxc lc th `c {pbkcfaiicggjkjljmn d a ioefhmcimcq
u ~p`im jh `

u �lh io

u �lhio

u ~p`imjh`ra ll

u �q

Figure 7: Extract class - transformed C++ code and model instance

7 / 15 Volume 3 (2006)



From C++ Refactorings to Graph Transformations

Moving function from one class to another requires careful examinationsof the body. Class
members or functions referenced from the body may become unaccessiblebecause of changing
the class (they are ”foreign” in the new class). (Note that the friendship relation is not symmetric,
only the old class can reach the new class.) To prevent accessing unreachable class members we
have to check the subgraph of the function body. References to class members/functions are
classified based on the relation of the old class and the referenced class as follows: inside the
class, class hierarchy (base classes upwards) and outer classes. Bad references that prevent
applying the rules are the following ones:

• reference to protected/private member of the old class which is not among theparameters
of the rule (if the referenced member is public it means that the extract class refactoring is
not so reasonable here)

• reference to protected/private member of one of the base classes (in public case the above
note applies)

• reference to protected/private member of an outer class which is a friend of the old class

According to the metamodel a reference is an Id node which has a refersToName relation to
a Member, especially to a Function or Object. The referenced Member is contained by a class
which is the class we are looking for. To distinguish the 3 different cases mentioned above it
is not enough to search Ids in the subgraph in special container nodes like MemberSelection or
FunctionCall. It may happen that a member selection contains this pointer and thefunction call
without a memberselection may reference a function in a base class. So we have to scan all Ids
and find the referenced class members/functions and their container classes. Note that in the case
of MemberSelection expressions the container class can be found through the left hand side child
Id as well.

The scan can be implemented as an OCL expression.

let Old : struc_Class = B1.hasBody.containsMember.oclAsType(struc_Class)
in
let Bases : Bag(struc_Class) = Old.hasBaseSpecifier.derivesFrom
in
let M : Bag (struc_Member) = B1.containsPositioned->select(i | i.oclIsTypeOf(expr_Id)).

oclAsType(expr_Id).refersToMember.select(oclIsTypeOf(struc_Object) or
oclIsTypeOf(struc_Function))

in
M.iterate( m : struc_Member; res : Boolean = true |
let Cont : struc_Class = m.contains.oclAsType(struc_Class)
in
--condition A : referenced members are in the old class but they are not
-- among the parameters of the transformation rule
if ((m.accessibility=’protected’) or (m.accessibility=’private’) and

(Cont=Old) and not (Bag{O2,O3,F1}.exists(i | i=m)) )
then
res and false
else
--condition B : referenced members are in the base classes

if ((m.accessibility=’protected’) or (m.accessibility=’private’) and

Proc. SeTra 2006 8 / 15



ECEASST

(Bases.exists(bc | bc=Old)))
then
res and false
else
--condition C : referenced members are outer friends
let Friends : Bag(struc_Class) = Old.hasFriendSpecifier.grantsFriendship
in
if ((m.accessibility=’protected’) or (m.accessibility=’private’) and

(Friends.exists(fc | fc=Cont)))
then
res and false
else
res
endif

endif
endif

The expression checks for wrong references in a function body B1 (argument of the expres-
sion). In case of any occurrence of a wrong reference the expression returns false and prevents
the rule to be applied. This example show the expressiveness of the OCL. OCL expressions
may contain searches through collections which cannot be easily formulatedwith simple NACs.
A general subgraph notation is needed for instance to check whether a class is one of the base
classes of the old class.

3.3 Other refactorings

There are several refactorings which can be implemented on our metamodelas graph transforma-
tions in a similar way. In this paper we give only the (detailed) case study of extract class not only
because of space limitation. It contains many structural changes and also complex preconditions.
In a work of Eetvelde [VJ05] there is a list of 15 formalized refactorings in 29 pages. Papers
usually demonstrate two refactorings like pull up method and encapsulate variable [MVDJ05],
or extract code and move method refactorings [BPT04]. We may say that presenting more of the
above examples will not say more than our extract class example regardingthe two important
aspects of refactorings: formalization of the structural changes and thepreconditions; which was
the aim of the current contribution.

4 Implementation

The extract class refactoring graph transformation was implemented using the USE (UML-based
Specification Environment) software [USE05] instead of an existing graph transformation en-
gine. USE is a system for the specification of information systems. It is basedon a subset of
the Unified Modeling Language (UML). A USE specification contains a textual description of
a model using features found in UML class diagrams (classes, associations, etc.). Expressions
written in the Object Constraint Language (OCL) are used to specify additional integrity con-
straints on the model. A model can be animated to validate the specification againstnon-formal
requirements.

9 / 15 Volume 3 (2006)



From C++ Refactorings to Graph Transformations

The USE specification of C++ metamodel contains enumerations, classes andrelations corre-
sponding to the UML class diagrams of the metamodel. Every C++ program canbe instantiated
as an object diagram (a graph based on the specification). USE can handle and display our meta-
model and model instances before and after the transformation fairly well. The transformation
itself can not be handled directly in the environment. The left hand side and the right hand side
of the transformation is modelled in the environment, both are saved to a text file.OCL expres-
sions (used as postconditions to modify attributes of nodes) are added to thisdescription. The
description is processed by a script1 which creates a sequence of basic graph operations from it
(create/delete nodes, insert/delete edges). After the USE command file of therule is generated
this way, the rule can be applied on any model in the USE environment. The script (based on
the description) also generates a function that can list the possible nodes on which the rule can
be applied and a function which applies the transformation (see AppendixA). There is a gener-
ated class (called RuleCollection) in the USE model which contains information and functions
regarding to transformation rules. To apply the rule, one has to pass the appropriate nodes as
parameters.

Figure 8: Object diagram in USE after the refactoring

The result of the extract class refactoring in USE can be seen in Figure8. The execution
of the script was quick because the parameters determined the place of the transformation so
the modifications were made locally (below 1 sec). Future work is to try this implementation

1 Thanks to Fabian B̈uttner

Proc. SeTra 2006 10 / 15



ECEASST

on real life software systems. Running time of the rule-creator script (which creates basic graph
operations from a rule) depends on the size of the rule. In general the most time consuming part is
identification of the places where the transformation is applicable. In case ofrefactorings in most
cases the programmer has to consider and choose a place to apply the refactoring. The decision
is made based on criteria which are not easy to formalize. For instance extract class refactoring
may be applicable on almost every class (which has members or functions) but only in few cases
it is useful to apply. Thus in a real life software the identification of the big class can be done
using other visualization or analyzer tools. After we have identified the place(parameters of the
rule), the actual refactoring can be applied quickly - like in our example.

5 Related work

Since the pioneering work of Opdyke [Opd92] there were lots of efforts made to give a formalism
for refactorings. Graph transformations are also considered as a basis of formalizing refactor-
ings. Our work has close connections to such approaches. A solid contribution that shows the
current state of the art is given in the work of Mens at al. [MVDJ05]. The graph representation
of a program plays an essential role in the formalism. The paper describesa language inde-
pendent formalism and also introduces two major issues in detail: preconditions and behaviour
preservation. We borrowed ideas of the graph formalization from Eetvelde at al. [VJ05] like
the multi-nodes and edges. Bottoni [BPT04] uses a similar formalism, the focus in that work
is on the coordination of a change in different model views of the code using distributed graph
transformations. These works however are not specialized towards C++ as our approach is.

Although there is much progress in this area, industry uses more or less the same solutions
as before: language specific refactorings are implemented separately. Fanta and Rajlich [FR98]
contribute a natural way of implementing refactorings. The paper shows thekey points but this
solution is somehow “out of control” without a formal base. They state that these transformations
are surprisingly complex and hard to implement. Two reasons they give for that are the nature
of object-oriented principles and the language specific issues. We agreewith this view, our
work shows how to deal with C++ specific issues on meta level with the checking possibilities
provided by the OCL. Our work also differs from the others in that insteadof the usual graph
transformation engines we used a script based OCL solution of the USE system.

6 Conclusion

This paper presents work in progress on using graph transformations toexpress C++ refactorings
in a clear way and on a conceptual level. Although graph transformations have been used for
metamodel transformation of various languages, they have not been extensively used for C++.
For a successful use of graph transformations, it is necessary to work on cumbersome subjects
like C++ refactorings and the accompanying nasty details. We are aware ofthe fact that many of
our concepts are already known from other successful application areas of graph transformation.

Future work will elaborate further C++ language refactorings. We will also improve these
refactorings in a graph rewriting machine resp. modeling tool. We think that such an imple-
mentation will give insight into the application conditions and properties of C++ refactorings

11 / 15 Volume 3 (2006)



From C++ Refactorings to Graph Transformations

on a conceptual level. Such an implementation will thus enable a deeper understanding of C++
refactorings.2

Bibliography
[Bel00] Bell Canada Inc. DATRIX – Abstract semantic graph reference manual. Montŕeal,

Canada, version 1.2 edition, Jan. 2000.
[BPT04] P. Bottoni, F. Parisi-Presicce, G. Taentzer. Specifying Integrated Refactoring with

Distributed Graph Transformations.Lecture Notes in Computer Science. 3062:220–
235, 2004.

[EKRW02] J. Ebert, B. Kullbach, V. Riediger, A. Winter. GUPRO - Generic Understanding of
Programs.Electronic Notes in Theoretical Computer Science72(2), 2002.

[FBTG02] R. Ferenc,Á. Besźedes, M. Tarkiainen, T. Gyiḿothy. Columbus - Reverse Engi-
neering Tool and Schema for C++. InICSM 2002: Proceedings of the International
Conference on Software Maintenance. Pp. 172–181. IEEE Computer Society, Mon-
treal, Canada, Oct. 2002.

[FR98] Richard Fanta and Vaclav Rajlich. Reengineering object-orientedcode. In ICSM
1998: Proceedings of the International Conference on Software Maintenance, page
238, IEEE Computer Society. Washington, DC, USA, 1998.

[Fro06] Homepage of FrontEndART Ltd.http://www.frontendart.com, 2006.
[FSH+01] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, T. Gyimóthy. Towards a Standard

Schema for C/C++. InWCRE 2001. Pp. 49–58. IEEE Computer Society, Oct. 2001.
[Gog00] M. Gogolla. Graph Transformations on the UML Metamodel. InGVMT’2000.

Pp. 359–371. Carleton Scientific, Waterloo, Ontario, Canada, 2000.
[MVDJ05] T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens. Formalizing refactorings with

graph transformations.Journal on Software Maintenance and Evolution: Research
and Practice, 2005.

[Opd92] W. F. Opdyke.Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.

[Ref06a] Homepage of Ref++.http://www.refpp.com, 2006.
[Ref06b] Refactoring catalog.http://www.refactoring.com/catalog/, 2006.
[Sli06] Homepage of Slickedit.http://www.slickedit.com/, 2006.
[USE05] Homepage of USE.

http://www.db.informatik.uni-bremen.de/projects/USE/,
2006.

[VBR04] L. Vidács,Á. Besźedes, F. Rudolf. Columbus Schema for C/C++ Preprocessing. In
CSMR 2004. Pp. 75–84. IEEE Computer Society, Mar. 2004.

[VJ05] N. Van Eetvelde, D. Janssens. Refactorings as Graph Transformations. Technical
report, University of Antwerp, February 2005. UA WIS/INF 2005/04.

[Xre06] Homepage of Xrefactory.http://xref-tech.com, 2006.

2 Lászĺo Vidács acknowledges the financial support provided through the European Community’s Human Potential
Programme under contract HPRN-CT-2002-00275, SegraVis.

Proc. SeTra 2006 12 / 15



ECEASST

Appendix

A USE description
----------------------------------------------------------------------
-- Extract Class refactoring
----------------------------------------------------------------------
rule ExClass
left

C1:struc_Class
O1:struc_Object
O2:struc_Object
F1:struc_Function
(C1,O1): containsMember
(C1,O2): containsMember
(C1,F1): containsMember

right
C1:struc_Class
C2:struc_Class
O1:struc_Object
O2:struc_Object
NO1:struc_Object
F1:struc_Function
NF1:struc_Function
NF2:struc_Function
NB1:statm_Block
FS:struc_FriendSpecifier
TR:type_TypeRep
TF:type_TypeFormerType
(C2,O1): containsMember
(C2,O2): containsMember
(C2,F1): containsMember
(C2,NF1): containsMember
(C1,NF2): containsMember
(NF2,NB1): hasBody
(C1,NO1): containsMember
(NO1,TR): objectHasTypeRep
(TR,TF): containsTypeFormer
(TF,C2): refersToClass
(C2,FS): hasFriendSpecifier
(FS,C1): grantsFriendshipToClass
-- postconditions
[C2.name = ’TelephoneNumber’]
[C2.accessibility = ’ackProtected’]
[C2.kind = ’clkClass’]
[C2.isAbstract = false]
[C2.isDefined = true]
[NF1.name = ’TelephoneNumber’]
[NF1.accessibility = ’ackProtected’]
[F1.accessibility = ’ackProtected’]
[NO1.name = ’TelephoneNumber’]
[NO1.accessibility = ’ackProtected’]
[NF2.name = ’getTelephoneNumber’]
[NF2.accessibility = ’ackPublic’]

end

13 / 15 Volume 3 (2006)



From C++ Refactorings to Graph Transformations

----------------------------------------------------------------------
-- Extract Class refactoring
-- ExClassGT_ExClass.cmd
-- ExClass(_C1,_O1,_O2,_F1)
-- the ’match’ parameter can be bound with ’!let match = ...’
----------------------------------------------------------------------
!let _C1 = match->at(1)
!let _O1 = match->at(2)
!let _O2 = match->at(3)
!let _F1 = match->at(4)
!openter rc ExClass(_C1,_O1,_O2,_F1)

!create _C2 : struc_Class
!create _NO1 : struc_Object
!create _NF1 : struc_Function
!create _NF2 : struc_Function
!create _NB1 : statm_Block
!create _FS : struc_FriendSpecifier
!create _TR : type_TypeRep
!create _TF : type_TypeFormerType
!insert(_C2,_O1) into containsMember
!insert(_C2,_O2) into containsMember
!insert(_C2,_F1) into containsMember
!insert(_C2,_NF1) into containsMember
!insert(_C1,_NF2) into containsMember
!insert(_NF2,_NB1) into hasBody
!insert(_C1,_NO1) into containsMember
!insert(_NO1,_TR) into objectHasTypeRep
!insert(_TR,_TF) into containsTypeFormer
!insert(_TF,_C2) into refersToClass
!insert(_C2,_FS) into hasFriendSpecifier
!insert(_FS,_C1) into grantsFriendshipToClass
!set _C2.name := ’TelephoneNumber’
!set _C2.accessibility := ’ackProtected’
!set _C2.kind := ’clkClass’
!set _C2.isAbstract := false
!set _C2.isDefined := true
!set _NF1.name := ’TelephoneNumber’
!set _NF1.accessibility := ’ackProtected’
!set _F1.accessibility := ’ackProtected’
!set _NO1.name := ’TelephoneNumber’
!set _NO1.accessibility := ’ackProtected’
!set _NF2.name := ’getTelephoneNumber’
!set _NF2.accessibility := ’ackPublic’
!delete(_C1,_O1) from containsMember
!delete(_C1,_O2) from containsMember
!delete(_C1,_F1) from containsMember
!opexit

Proc. SeTra 2006 14 / 15



ECEASST

Figure 9: Class diagram of the C++ metamodel excerpt in USE

Figure 10: Object diagram in USE before the refactoring

15 / 15 Volume 3 (2006)


	Introduction
	C++ Metamodel
	Graph Transformation Rules on the C++ Metamodel
	Graph transformation approach, notation
	Extract class
	Other refactorings

	Implementation
	Related work
	Conclusion
	USE description

