Electronic Communications of the EASST

Volume 3 (2006)

Proceedings of the
Third Workshop on Software Evolution
through Transformations:
Embracing the Change
(SeTra 2006)

From C++ Refactorings to Graph Transformations
Laszb Vidacs and Martin Gogolla and Rudolf Ferenc

15 pages

Guest Editors: Jean-Marie Favre, Reiko Heckel, Tom Mens

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eﬁ ECEASST

From C++ Refactorings to Graph Transformations

Laszb Vidacs' and Martin Gogolla? and Rudolf Ferenct

IDepartment of Software Engineering, University of Szeged, Hungary
2Department for Mathematics and Computer Science, University of Brenesmay

Abstract: In this paper, we study a metamodel for the C++ programming language.
We work out refactorings on the C++ metamodel and present the essestaisph
transformations. The refactorings are demonstrated in terms of the Ctcesmde

and the C++ target code as well. Graph transformations allow to captactoeng
details on a conceptual and easy to understand, but also very preeisésing this
approach we managed to formalize two major aspects of refactorings: thiistiu
changes and the preconditions.

Keywords: Metamodel, C++, UML, Graph Transformation, OCL, Refactoring
1 Introduction

The programming language C++ is widely used in industry today. Many afiplicawritten
in C++ exist which are constantly developed further, for example, to bg@tad to modern
service-oriented aspects. On the other hand, there is an importanhtciiened in software
engineering that focuses on development activities for using modelsdnsteancentrating on
code production only.

This contribution tries to narrow the bridge between industrial, code-cedésielopment
with C++ and model-centric development employing languages like the Unifiatklihg Lan-
guage (UML). We discuss a C++ metamodel and display first ideas hosdageaent and main-
tenance of C++ artifacts can be performed on instantiations of this C++ met¢himaged on
refactorings. Our proposal is to express C++ refactorings andagewent steps as graph trans-
formations. We think it is important to clearly express transformation conéep# involved
domain like C++ software development. Graph transformations possessa theoretical ba-
sis and allow to express properties on a conceptual level, not only on denraptation level.
Surprisingly, graph transformations have not yet been applied fordoftware development.

Graph transformations have been applied for the transformation of metianeskefor exam-
ple the work of GogollaGog0(Q (among many other works on graph transformation on meta-
models). In industry, refactoring techniqué&ffO61 are regarded as promising means for soft-
ware development. Refactoring of C++ code is supported by a varietylsf [8li06][Ref063
[XreO€. However, refactorings are usually considered from the implementator pf view
only, not from a conceptual view. A conceptual view on C++ refacgsion the basis of meta-
models and graph transformations allows to express properties like mrfgapplicability more
precise. A conceptual view also opens the possibility for viewing refexggeion the semantical
level, for example, in order to describe semantics preserving refacsaing test whether they
are semantics preserving.

The paper is organized as follows. The next section introduces the Ggttdge metamodel
used in this work. Sectiofi discusses C++ refactorings on this metamodel in terms of graph

1/15 Volume 3 (2006)

From C++ Refactorings to Graph Transformations Eﬁ

transformations. Sectiofigives insight to our implementation. In Sectibrwve mention some
important contributions of this area. Finally, the paper ends with a shoctusian.

2 C++ Metamodel

Metamodels, which are also called schemas in the re-engineering communryitg,yeley impor-
tant role in the process of source code analysis. They define thelgepipaitory for the whole
process, from where the facts can be reached with the help of diffeassformations.

Several researchers have been working on defining metamodels fop@grams for re-
verse engineering purposes (also for program comprehension efit@ én exchange format)
[EKRWO0Z, [Bel0q, [FSH"01].

The Columbus Schema for C+FBTGO0Z satisfies some important requirements of an ex-
change format. It reflects the low-level structure of the code, as wéligher level semantic
information (e.g., semantics of types). Furthermore, the structure of the nugtharal the used
standard notation (UML Class Diagrams) make its implementation straightforesaddyhat is
even more important, an API (Application Programming Interface) is very sitogbe realized
as well.

Because of the high complexity of the C++ language, the metamodel is divittesixrpack-
ages. To introduce all packages is beyond the scope of this papelearty present our ideas
we created an excerpt mainly from tekeuc package of the metamodel. The presented approach
is not limited to this subset of the C++ language, for example templates are pjsartad by the
metamodel. To carry out refactorings on a C++ program it is necessdeatavith preprocessor
directives. Although we have a separate metamodel for the preproachssctives YBR04],
coping with them is not included to this contribution. The excerpt of the C++ madel can
be seen in Figuré The upper part in the figure represents the scoping structure of a f&++ p
gram. ClasMemberis the parent of all kinds of elements which may appear in a scope (we use
the term “member” in a more general way than usual). In the excerpt thet@rge important
subclasses dflember ClassClassstands for C++ classes. It may contain further members; it
may have base classes (shownBaseSpecifigrand friends. In C++ a friend (class or function
shown byFriendSpecifielin the figure) can access also protected and private members of the
class. The clasBunctionstands for C++ functions. It has body (representedlmck) which
contains any number ddtatemerst; and has parameters (cld®ramete). The clasObject
represents both variables and member fields @lass In the lower left corner there are the
necessary enumerations.

In the middle there are classes for type representation. Like in C, in C+3% tgmebe complex,
so each language element which has a type contains a wrapper clasggpd&tpA TypeRep
containsTypeFormergin complex cases a type consists of many code pieces, each piece is a
type-former). In the figure many type-formers are omitted, only one is slidypeFormerType
which refers directly to a type (to@lassin this case). This typing structure enables to express
all kinds of types and helps to avoid redundancies in storing types. Inwlee laght corner there
are some expressions which are used in this pdpardtionCall MemberSelectigrid). An Id
expression is an identifier in the code which refersteamber- in the metamodel this means that
it may refer to both classes and class members.

These are the main classes used in our example. For further details megseo8q. As

Proc. SeTra 2006 2/15

ST /€

(9002) £ awnjop

welBelp ssepd AN - ++ 10} BWaYIS snquinjod ay) woJj 1d1aox3 T aunbi4

Named

-name : String

ZAN

*

{ordered}

/\

* 0.1
{ordered} refersToName, contains
contains declares
e Member *
N
“accessibility : AccessibilityKind Statement
—Z!X % 0..1
1 Block
Scope 1
yAND hasB%d)
Object i *>—
BaseSpecifier i Function]
-accessibility derivesFrom _
-isVirtual : Boolean Q ,_contains
- 1 1 {ordered} 1 hasDefValue
hasBaseSpecifier Class hasTypeRep
hasFriendSpecifier 1 -kind : ClassKind Parameter
%—isAbstract: Boolean| hasTypeRep -isEllipsis : Boolean 0.1

——< Expression

T

— — grantsFriendship
rrier er
{OR}
grantsFriendship
refersToType . 1
TypeRep
«enumeration» | |«enumeration» {ordered} ’m‘L'_lhaSTypeRep
AccessibilityKind ClassKind
ackNone clkClass TypeFormer
ackPrivate clkStruct
ackProtected clkUnion
ackPublic H
«enumeration» TypeFormerType

MemberSelectionKind
mskDot
mskArrow

Id

-name : String

FunctionCall

MemberSelection

-kind : MemberSelectionKind

1SSv303

From C++ Refactorings to Graph Transformations Eﬁ

usual in case of complex class diagrams, we cannot express everyinggUML class dia-
gram notations easily. For example a function body (block statement) comtaiasedPosi-
tionednodes. However Rarameteris alsoPositionedbut it cannot be a part of a function body.
OCL expressions as constraints of the class diagram solve many similss.idseedefine the
following condition (boolean expression, called invariant) that must befonedl Blockobjects:

context Bl ock inv:
not sel f.contains. ocl|sTypeO (struc_Paraneter)

In the following sections we use the introduced metamodel and the OCL sigmisesogether.
3 Graph Transformation Rules on the C++ Metamodel

In this section we show how refactorings on the C++ metamodel can bealsbsevith graph
transformation. We provide example, which are “classical” refactorings fFowler’s catalog
[Ref06. The basic idea is simple in both cases, however many subtle details arineeudtie-
ing these refactorings. We also concentrate on C++-specific issues.

3.1 Graph transformation approach, notation

We use a single pushout approach for graph transformation ruleegsirsg a left and a right
hand side. Instead of too complicated NACs (Negative Application Condiverprovide pre-
conditions as OCL expressions.

The definition of directed, attributed graphs are used as usual. A pnogyraph is directed,
labelled, attributed graph where:

e nodes are labelled with class names shown in the UML class diagram

e nodes have attributes which are called as class attributes, the possible ehthe at-
tributes are from the corresponding UML types

e edges are labelled with relation names shown in the UML class diagram

Program graphs are introduced using an object diagram-like notatiefrigere2).

: Class

name = Person : Object
laccessibility = ackPublic
kind = clkClass
isAbstract = false

name = nickname
accessibility = ackProtected

Figure 2: Object diagram like notation of the graph

Not all graphs that correspond to the definition above represent @gragms. For example
an undeclared variable may occur according to the metamodel but the inglaogle could not
compile. The well formedness is not checked in this paper. In reverseesmmng context we
assume that the starting graph is a well-formed graph and this propertysieryed due to the
conditions of transformations. Note that C++ class attributes are modeled lasth ©bject in

Proc. SeTra 2006 4/15

Ea ECEASST

the metamodel - so the nodes representing them have Gitjett All Objectand Function
nodes hav@ypeRemodes which show their C++ type. These nodes are omitted from the figures
and presented only where it aids comprehension. Furthermore the nat&tioulti-nodes is
introduced to describe general subgraphs. A multi-node with vialuepresents k pieces of
nodes of the same type. Usage of multi-nodes is shown in Figyure

Blook : Block : Block : Block

_: Class : Class

kind kind
isAbstract isAbstract

k

Figure 3: Usage of multi-nodes

3.2 Extract class

Classes should serve a clear, well-defined aim. During developmengskgsgrowing. In lots
of cases, there are new responsibilities added to them. The aim of thitorafgds to extract a
separate concept and corresponding data to a new class to improvealiteajuhe design. The
idea is shown in Figuré which is taken from the Refactoring cataldgef061.

Person
TelephoneNumber
#nickname Person officeTelephone
#officeAreaCode q #nickname :ggzzﬁze;g::le
#officeNumber
+getTelephoneNumber() 1
+getTelephoneNumber() +getTelephoneNumber()

Figure 4: Extract class refactoring example

There is a long way from this semi-informal description to an applicable wamstion.
Based on this figure we make decisions about the context and purptise rafactoring. Af-
ter that we formalize it as graph transformation in two steps: the first padecdrates on the
structure of the rule and the second part declares conditions using Xpéssions.

The main questions to be considered when realizing this refactoring aglatgaasformation
is: who can use the new (extracted) class and how can it be used. tAtHeld class must
somehow access it. If it is the only class that uses the new class then thiimsigp can be
implemented either as the new class is a member in the old class or as a dynamicrebjiéanh

5/15 Volume 3 (2006)

From C++ Refactorings to Graph Transformations Eﬁ

in the constructor of the old class and as a deletion of the object in the destafidhe old
class (in this case the other classes can access the new class throligintarface functions
of the old class). On the other hand, if the new class is free to be useddryotdlses then it is
more complicated - for example a reference counter can be used. THetér the question:
who can instantiate the new class. Similarly, it has to be determined how the rsmsacalabe
accessed by other classes: through the old class only or through putdt®ohs of the new class
as well. Another obstacle is introduced by attributes which are used exteinoatiyhe old class
and are now moved to the new class. We assume that the visibility enables auess those
members through a known interface only (this is not a constraint, using ther@tamodel, all
usages of an attribute can be checked).

In this paper we choose to protect the newly created class. The newalabg instantiated
only by the old class. Its properties can be modified by the old class, fartiierthe old class
provides the public interface to use the new class.

As refactorings can be realized in many different ways so we formalizextinect class first as
arule schema. A rule schema has parameters and multi nodes and canri@testan concrete
cases. We call rule only these concrete cases when the rule schenmabigearguments and
can be applied directly on a program graph. The attributes and operatidmesmoved must
be determined by analyzing their usage. Therefore these are paraofeteedransformation:
any number ofObj ect andFunct i on nodes which are contained by the old class. The graph
transformation rule schema of ExtractClass(... : (Object—Function)) isrshoiigures.

: FriendSpecifier|
k : Class | : Class : Class k
: Object name = OldClass name = OldClass name = NewClass : Object
hame = Member laccessibility = ackPublic| accessibility = ackPublic| accessibility = ackPublic| name = Member
accessibility = ? —‘ laccessibility = ?
[m] [[m | m___| [
: Function : Function : Function : Object : Function : Function
name = Public_Func [|name = Protected_Func name = Public_Func name = newclass name = Public_Func name = Protected_Func
accessibility = ackPublic accessibility = ackProtected| ac ibility = ackPublic| [accessibility = ackProtected: [|accessibility = apkProtected accessibility = ackProtected|
] Block Biock
e —— L L

Figure 5: Extract class refactoring as graph transformation

On the left hand side there is the old class. Its members are divided into Bsgratiributes,
public (interface) functions and protected functions. On the right hadelthere are both the
old class and the new (extracted) class. The selected attributes andqadteations are com-

Proc. SeTra 2006 6/15

£

pletely moved to the new class. Public functions are copied from the old cléss ®w class.
The existing implementation of these functions goes to the copy in the new clesseaining
functions in the old class have a new implementation: they only have to call tieddopctions
in the new class. The new class cannot be accessed from outside capide public functions
became protected.

To ensure the connection between the two classes we have a new mé&hjeen (n the old
class, its type is the new class. This is represented byTypeRemnd TypeFormerTypaodes.
(This abstraction of types is required to represent complex types in EB¥$04.) Now we
have to let the old class access the new one, which has protected memis&msitunThis is
done by giving friendship grant to the old class. This is representedaiyrigndSpecifienode.

ECEASST

Concrete rule and OCL conditions

The left hand side and right hand side of a concrete rule is given in theeidgpelow. The C++
code before the transformation with the left hand side is shown in Figjufée graph is in fact
the object model of the code, so it contains a node (nhickname) which doéske part in the

transformation. The resulting source code and the right hand side imshdwgure?.

cl ass Person {

prot ect ed:
string ni cknane;
string officeAreaCode;
string of fi ceNunber;

publi c:

string get Tel ephoneNunber () ;
b

: Object

: Class

name = nickname
laccessibility = ackProtected

name = Person
accessibility = ackPublic

]

kind = clkClass
isAbstract = false

: Object

name = officeAreaCode
laccessibility = ackProtected

: Function

Iname = getTelephoneNumber

: Object

ibility = ackPublic

name = officeNumber

laccessibility = ackProtected

: Block

Figure 6: Extract class - C++ code and model instance before thedraretfon

cl ass Person {
pr ot ect ed:
string ni cknane;
Tel ephoneNunber _Tel ephoneNunber ;

FriendSpecifier

1

: Function

lname = NewClass
laccessibility = ackProtected

|

Block

public: [Obiet

Class

Class

name = Person

string get Tel ephoneNurber (); Fmsi -

b

IsAbstract = false

name =
laccessibility = ackPublic
kind = clkClass
lisAbstract = false

Obiject

Function

Iname = getTelephoneNumber
laccessibility = ackPublic

cl ass Tel ephoneNunber {
pr ot ect ed:

iname = cfficeAreaCode
laccessibility = ackProtected

[Object |

: Function |

Iname = gelTelefoneNumber

Obiect |

[name = TelephoneNumber
| -

Tel ephoneNunber () ;

string of fi ceAreaCode;
string of fi ceNunber;

string get Tel ephoneNunber () ;

FunctionCall

TypeFormerType

friend cl ass Person;

name =
accessibility = ackProtected

Block

Figure 7: Extract class - transformed C++ code and model instance

7115

Volume 3 (2006)

From C++ Refactorings to Graph Transformations Eﬁ

Moving function from one class to another requires careful examinatibttee body. Class
members or functions referenced from the body may become unaccéssiblese of changing
the class (they are "foreign” in the new class). (Note that the friendshagion is not symmetric,
only the old class can reach the new class.) To prevent accessinghaipiaclass members we
have to check the subgraph of the function body. References to clasbers&functions are
classified based on the relation of the old class and the referenced slagowas: inside the
class, class hierarchy (base classes upwards) and outer classg@gef@ences that prevent
applying the rules are the following ones:

e reference to protected/private member of the old class which is not amopgrdrmeters
of the rule (if the referenced member is public it means that the extract efassaring is
not so reasonable here)

¢ reference to protected/private member of one of the base classes ljmgage the above
note applies)

o reference to protected/private member of an outer class which is a fri¢he old class

According to the metamodel a reference is an Id node which has a refasie relation to
a Member, especially to a Function or Object. The referenced Member tgiiced by a class
which is the class we are looking for. To distinguish the 3 different casedioned above it
is not enough to search Ids in the subgraph in special container nodédditaberSelection or
FunctionCall. It may happen that a member selection contains this pointer afwhitien call
without a memberselection may reference a function in a base class. Svevotsean all Ids
and find the referenced class members/functions and their containerscliisge that in the case
of MemberSelection expressions the container class can be foundlhtauigft hand side child
Id as well.

The scan can be implemented as an OCL expression.

let Ad: struc_Cass = Bl. hasBody. contai nsMenber. ocl AsType(struc_C ass)

in

| et Bases : Bag(struc_C ass) = Od.hasBaseSpecifier.derivesFrom

in

let M: Bag (struc_Menber) = Bl.containsPositioned->select(i | i.ocllsTypeO (expr_ld)).
ocl AsType(expr _I d). ref ersToMenber. sel ect (ocl | sTypeOf (struc_Obj ect) or
ocl | sTypeOF (struc_Function))

in

Miterate(m: struc_Menber; res : Boolean = true

let Cont : struc_Class = mcontains. ocl AsType(struc_0C ass)

in

--condition A : referenced nenbers are in the old class but they are not

-- anong the paraneters of the transformation rule

if ((maccessibility="protected’) or (maccessibility="private') and

(Cont=Ad) and not (Bag{Q2, C3, F1}.exists(i | i=m))
t hen
res and fal se
el se

--condition B : referenced nenbers are in the base cl asses
if ((maccessibility="protected’) or (maccessibility="private') and

Proc. SeTra 2006 8/15

Ea ECEASST

(Bases. exists(bc | bc=Ad)))
t hen
res and fal se
el se
--condition C: referenced nenbers are outer friends
let Friends : Bag(struc_Class) = Ad. hasFriendSpecifier.grantsFriendship
in
if ((maccessibility="protected’) or (maccessibility="private') and
(Friends.exists(fc | fc=Cont)))
t hen
res and fal se
el se
res
endi f
endi f
endi f

The expression checks for wrong references in a function bodyaRfinent of the expres-
sion). In case of any occurrence of a wrong reference the esipreseturns false and prevents
the rule to be applied. This example show the expressiveness of the Q1L ekpressions
may contain searches through collections which cannot be easily formwlatesimple NACs.

A general subgraph notation is needed for instance to check whettessaig one of the base
classes of the old class.

3.3 Other refactorings

There are several refactorings which can be implemented on our metaasagtaph transforma-
tions in a similar way. In this paper we give only the (detailed) case studyti@fatxlass not only
because of space limitation. It contains many structural changes anaaiptex preconditions.

In a work of Eetvelde YJOg there is a list of 15 formalized refactorings in 29 pages. Papers
usually demonstrate two refactorings like pull up method and encapsuléablegi/iVvVDJ05],

or extract code and move method refactorirg8T04. We may say that presenting more of the
above examples will not say more than our extract class example regnditgo important
aspects of refactorings: formalization of the structural changes anpuie¢benditions; which was
the aim of the current contribution.

4 Implementation

The extract class refactoring graph transformation was implemented usitgth (UML-based
Specification Environment) software/$E0] instead of an existing graph transformation en-
gine. USE is a system for the specification of information systems. It is b@asedsubset of
the Unified Modeling Language (UML). A USE specification contains a téxtaacription of

a model using features found in UML class diagrams (classes, assosjator). Expressions
written in the Object Constraint Language (OCL) are used to specify adalitiotegrity con-
straints on the model. A model can be animated to validate the specification agairfstrmal
requirements.

9/15 Volume 3 (2006)

From C++ Refactorings to Graph Transformations Eﬁ

The USE specification of C++ metamodel contains enumerations, classesatiahs corre-
sponding to the UML class diagrams of the metamodel. Every C++ progratmecistantiated
as an object diagram (a graph based on the specification). USE odle had display our meta-
model and model instances before and after the transformation fairly wedl tréansformation
itself can not be handled directly in the environment. The left hand side amlgtit hand side
of the transformation is modelled in the environment, both are saved to a tex®€le expres-
sions (used as postconditions to modify attributes of nodes) are added tes$aisption. The
description is processed by a sctipthich creates a sequence of basic graph operations from it
(create/delete nodes, insert/delete edges). After the USE command filerafehg generated
this way, the rule can be applied on any model in the USE environment. Tip¢ @@sed on
the description) also generates a function that can list the possible noaeésiah the rule can
be applied and a function which applies the transformation (see App@ndikhere is a gener-
ated class (called RuleCollection) in the USE model which contains informatibfuaictions

regarding to transformation rules. To apply the rule, one has to pass phepajpte nodes as
parameters.

£ USE:ExClassGT.use i o] 1]
Flle Edit State View Help

L& «oun B PP FEE AMDEH MNAE
1 Columbus_CPP_Schema_TR I el il |
& [Claszes 1
o [] Assaciations _
s | [
4 v RuleCollection
o [Pre-fPostionditions ! e
arantsFriendshipToClass.
partsFriendshipToClsss T T
M struc Punction
hasFrindSpecitier name="Telephanehumber*
accessiiity=ackPratected’
Clistruc Class e Ciass cortainshizmbe
ST G name=Person’ nare=Telephonzhurmber! O2struc Obijsct
p—— L I accessihilty="ackProtected! | conainshiember B
i Kind="chClass' finci='ckClass' e
accessiilty= : i aocessiiity='ackPratected”
contalrshestrE |isAbstract=false isAbstract=talse T
isDefinedsine isDefined=true
Hasiug Punglion cortaingMember cortainghiember Srstnie Qhiget
name="getTelephoneNumber’ e tficetumber
accessihilty="ackPublic’ accessiilty='ackProtected!
hasfiod
NO1:struc Object Elistrue Function
name="Telsphonenumber* retersTpdlass | name=gefTelsphonsblumber()*
MB1:statm Block accessibiity="ackProtected’ accessibilty="ackProtected
objectHed Typefiep hasBody
TRiype TypeRep B1:statm Block
cortairsTH
T type TypeFormerTvps
Log
rote layout file :use- 2.3 DN EXClass B Tpre olt [
Reading layout file Diuse-2.3.0binExClass GTpost.olt -
Feading lauant file Nluse-7 % NihiniEyClase AThe alt =
Ready.

Figure 8: Object diagram in USE after the refactoring

The result of the extract class refactoring in USE can be seen in F&gjufiéhe execution
of the script was quick because the parameters determined the place airniitmation so
the modifications were made locally (below 1 sec). Future work is to try this impletiem
1

Thanks to Fabian &tner

Proc. SeTra 2006 10/15

Eﬁ ECEASST

on real life software systems. Running time of the rule-creator script fwdrieates basic graph
operations from a rule) depends on the size of the rule. In general thidime consuming part is
identification of the places where the transformation is applicable. In caséoforings in most

cases the programmer has to consider and choose a place to apply ¢charirefa The decision

is made based on criteria which are not easy to formalize. For instancetetérss refactoring

may be applicable on almost every class (which has members or functidgrs)lypin few cases

it is useful to apply. Thus in a real life software the identification of the big<lzan be done
using other visualization or analyzer tools. After we have identified the |ffer@ameters of the
rule), the actual refactoring can be applied quickly - like in our example.

5 Related work

Since the pioneering work of Opdyk@pd94 there were lots of efforts made to give a formalism
for refactorings. Graph transformations are also considered agsadfdermalizing refactor-
ings. Our work has close connections to such approaches. A solidediun that shows the
current state of the art is given in the work of Mens at BMVPJO05]. The graph representation
of a program plays an essential role in the formalism. The paper deserilkeguage inde-
pendent formalism and also introduces two major issues in detail: precomsditimhbehaviour
preservation. We borrowed ideas of the graph formalization from Eehegicl. /JO5 like
the multi-nodes and edges. BottoBHT04 uses a similar formalism, the focus in that work
is on the coordination of a change in different model views of the codeyuBstributed graph
transformations. These works however are not specialized towarda€eur approach is.
Although there is much progress in this area, industry uses more or lesanigesslutions
as before: language specific refactorings are implemented separatetg. &hd RajlichfR99
contribute a natural way of implementing refactorings. The paper showsethpoints but this
solution is somehow “out of control” without a formal base. They state tleggttransformations
are surprisingly complex and hard to implement. Two reasons they givedbath the nature
of object-oriented principles and the language specific issues. We wafgtre¢his view, our
work shows how to deal with C++ specific issues on meta level with the chggkissibilities
provided by the OCL. Our work also differs from the others in that instfatie usual graph
transformation engines we used a script based OCL solution of the U&Hrsys

6 Conclusion

This paper presents work in progress on using graph transformatierpress C++ refactorings
in a clear way and on a conceptual level. Although graph transformatires heen used for
metamodel transformation of various languages, they have not beersiegterused for C++.
For a successful use of graph transformations, it is hecessary koomaumbersome subjects
like C++ refactorings and the accompanying nasty details. We are awtre faict that many of
our concepts are already known from other successful applicagas af graph transformation.
Future work will elaborate further C++ language refactorings. We wilb afsprove these
refactorings in a graph rewriting machine resp. modeling tool. We think tht aandmple-
mentation will give insight into the application conditions and properties of Gfactorings

11/15 Volume 3 (2006)

From C++ Refactorings to Graph Transformations Eﬁ

on a conceptual level. Such an implementation will thus enable a deepestamtiing of C++
refactorings’

Bibliography

[Bel00]

[BPTO4]

[EKRWO02]

[FBTGO2]

[FR98]
[Fro06]
[FSHT01]
[GogO00]

[MVDJO5]

[Opd92]

[Ref064a]
[Ref06b]
[SIi06]

[USEO5]
[VBRO4]

[VJO5]

[Xre06]

Bell Canada Inc. DATRIX — Abstract semantic graph refeeem@anual. Mong&al,
Canada, version 1.2 edition, Jan. 2000.

P. Bottoni, F. Parisi-Presicce, G. Taentzer. Specifying rated Refactoring with
Distributed Graph Transformationsecture Notes in Computer Scien8862:220—
235, 2004.

J. Ebert, B. Kullbach, V. Riediger, A. Winter. GUPRO - Gendinderstanding of
ProgramsElectronic Notes in Theoretical Computer Scie@@¢2), 2002.

R. FerencA. Beszdes, M. Tarkiainen, T. Gyiothy. Columbus - Reverse Engi-
neering Tool and Schema for C++. l@SM 2002: Proceedings of the International
Conference on Software Maintenan&p. 172-181. IEEE Computer Society, Mon-
treal, Canada, Oct. 2002.

Richard Fanta and Vaclav Rajlich. Reengineering object-orieceé. InICSM
1998: Proceedings of the International Conference on Software Mantanpage
238, IEEE Computer Society. Washington, DC, USA, 1998.

Homepage of FrontEndART Ltdt t p: / / www. f ront endart. com 2006.

R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, T. G§thy. Towards a Standard
Schema for C/C++. IWCRE 2001Pp. 49-58. IEEE Computer Society, Oct. 2001.
M. Gogolla. Graph Transformations on the UML Metamodel. G¥MT'2000Q
Pp. 359-371. Carleton Scientific, Waterloo, Ontario, Canada, 2000.

T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens. Haingrefactorings with
graph transformationdournal on Software Maintenance and Evolution: Research
and Practice 2005.

W. F. Opdyke.Refactoring Object-Oriented FrameworkBhD thesis, Urbana-
Champaign, IL, USA, 1992.

Homepage of Ref+ht t p: / / ww. r ef pp. com 2006.

Refactoring catalognt t p: / / www. r ef act ori ng. com cat al og/, 2006.
Homepage of Slickeditit t p: / / www. sl i ckedi t. cont, 2006.

Homepage of USE.

http://ww. db.informatik. uni-bremnen. de/ proj ects/ USE/ ,

2006.

L. Vidacs,A. Bes£des, F. Rudolf. Columbus Schema for C/C++ Preprocessing. In
CSMR 2004Pp. 75-84. IEEE Computer Society, Mar. 2004.

N. Van Eetvelde, D. Janssens. Refactorings as Graph foramations. Technical
report, University of Antwerp, February 2005. UA WIS/INF 2005/04.

Homepage of Xrefactoryt t p: / / xr ef -t ech. com 2006.

2

Laszb Vidacs acknowledges the financial support provided through the Eam@pemmunity’s Human Potential

Programme under contract HPRN-CT-2002-00275, SegraVis.

Proc. SeTra 2006 12 /15

£

ECEASST

Appendix
A USE description

Cl: struc_d ass
Ol: st ruc_Qbj ect
@2: struc_QOhj ect
F1: struc_Function
(C1,01): contai nsMenber
(C1, @) : contai nsMenber
(C1, F1): contai nsMenber
right
Cl:struc_d ass
C2:struc_d ass
Ol: struc_Qbj ect
2: struc_Qhj ect
NOL: st ruc_Obj ect
F1: struc_Function
NF1: struc_Function
NF2: struc_Functi on
NB1: st at m Bl ock
FS: struc_FriendSpecifier
TR type_TypeRep
TF: type_TypeFor mer Type
(C2,01): contai nsMenber
(C2,@2): contai nsMenber
(C2, F1): contai nsMenber
(C2,NF1): contai nsMenber
(C1, NF2): cont ai nsMenber
(NF2, NBl1) : hasBody
(C1, NO1): cont ai nsMenber
(NOL, TR): obj ect HasTypeRep
(TR, TF): cont ai nsTypeFor nmer
(TF, C2): refersTod ass
(C2,FS): hasFriendSpecifier
(FS, Cl): grantsFriendshi pToC ass
-- postconditions
[C2.name = ' Tel ephoneNunber’]
[C2.accessibility = "ackProtected’]
[C2.kind = "clkd ass’]
[C2.isAbstract = false]
[C2.isDefined = true]
[NF1. nane = ' Tel ephoneNunber’]
[NF1. accessibility = "ackProtected']
[F1l.accessibility = "ackProtected’]
[NOL. nane = ' Tel ephoneNunber’]
[NOL. accessibility = "ackProtected’]
[NF2. nane = ' get Tel ephoneNunber’]
[NF2. accessibility = "ackPublic’]
end

13/15

Volume 3 (2006)

From C++ Refactorings to Graph Transformations Eﬁ

-- Extract Cass refactoring
-- Exd assGT_ExC ass. cnd
-- Exdass(_C1,_0O1,_ @2, F1)

-- the "match’ paranmeter can be bound with "!let match = ...’
Ilet _Cl1 = match->at(1)
llet _OL = match->at(2)
et @ mat ch- >at (3)

Ilet _F1 = match->at(4)
openter rc Exdass(_Cl1,_O1, @, _Fl1)

create _C2 : struc_d ass

create _NOL : struc_Object

create _NF1 : struc_Function

create NF2 : struc_Function

create _NBl : statm Bl ock

create _FS : struc_FriendSpecifier
create _TR : type_TypeRep

create _TF : type_TypeFor nmer Type
insert(_C2,_0O1) into contai nsMenber
nsert(_C2, _O2) into contai nsMenber
nsert(_C2, _F1) into contai nsMenber
nsert(_C2, _NF1) into contai nsMenber
nsert (_Cl, _NF2) into contai nsMenber
nsert (_NF2, _NB1) into hasBody

nsert (_Cl, _NOL) into contai nsMenber
nsert (_NOLl, _TR) into objectHasTypeRep
nsert (_TR, _TF) into contai nsTypeFor ner
nsert(_TF, _C2) into refersTod ass
nsert (_C2, _FS) into hasFriendSpecifier
nsert (_FS, _Cl) into grantsFriendshi pToC ass

set _C2.nane := 'Tel ephoneNunber’

set _C2.accessibility := "ackProtected

set _C2.kind := 'clkd ass’

set _C2.isAbstract := fal se

set C2.isDefined := true

set _NF1l.nanme := 'Tel ephoneNunber’

set _NF1l.accessibility := "ackProtected

set _Fl1.accessibility := "ackProtected

set _NOL. nane : = 'Tel ephoneNunber’

set _NOL.accessibility := "ackProtected

set _NF2.nane := 'get Tel ephoneNunber’
I'set _NF2.accessibility := "ackPublic’

ldel ete(_C1, _0O1) from contai nsMenber
ldelete(_Cl1, @) from contai nsMenber
Idel ete(_C1, _F1) from contai nsMenber
I opexi t

Proc. SeTra 2006 14 /15

ECEASST

USE: ExClassGT.use

File Edit State View Help

& vu B sz AMBYHE

[Columbus_CPP_Sthema_TR
9 CIClasses
[base_Base
[baze_Positioned
[base_Named
[strue_Member
[stuc_Parameter
[struc_Basespecifier
[struc_Scope
[strue_Function
[strue_object
[struc_Class
[struc_FriendSpecifier
[statm_statement
[statm_Block.
[tyne_TypeFormer
[tye_TypeRen
[type_TypeFormerType
[RuleCallection
& [Associations
[Invariants
o [Pre-Posteonditions

Class diagram

RuleCollection

struc_BaseSpecifier

derivussy

ntsFriench
erentsFrienchhi

A
[Frenssreorr]

greantsFriendspigfoFunction

throwsTypeRep

ainsTypeForme]
type_TypeRep

type_TypeFormer
N

type_TypeFormerType

Figure 9: Class diagram of the C++ metamodel excerpt in USE

s
File Edit State View Help

uClassGT.use

ol

=28 owm EPFELE LAODBEHB MM

9 Columbus_CPP_Schema TR
& [Classes
o= [Associations
[Invariants
6 [Pre-fPostconditions

Zb Object diagram

Olistuc Object
I v

|scezcstin

[T
containsherber
o Kind=clkClass’

Clistruc Class

isDefined=true

©2:struc Ohiect
e

Fistrue Function

niame=getTelephonehurber ()

hasBody

B1.stafm Block

L

oy
[Rearing [ayout e DUse-2 3 0INEXG 13550 [posLall
Reading layoutfile Duse-2 3.0InlEXCIass G Thre.olt

Ready.

Figure 10: Object diagram in USE before the refactoring

15/15

Volume 3 (2006)

	Introduction
	C++ Metamodel
	Graph Transformation Rules on the C++ Metamodel
	Graph transformation approach, notation
	Extract class
	Other refactorings

	Implementation
	Related work
	Conclusion
	USE description

