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Abstract: Web services are imposing as the technology to integrate highly hetero-
geneous systems. BPEL, the standard technology to compose services, assumes a
single “orchestrator” that controls the execution flow and coordinates the interac-
tions with selected services. This centralized approach simplifies the coordination
among components, but it is also a too heavy constraint. To this end, the paper
introduces the idea of distributed orchestrations and presents a proposal to couple
BPEL and distributed execution in mobile settings. The approach —exemplified
on a simple case study— transforms a centralized BPEL process into a set of co-
ordinated processes. An explicit meta-model and graph transformation supply the
formal grounding to obtain a set of related processes, and to add the communication
infrastructure among the newly created processes. The paper also presents a com-
munication infrastructure based on tuple spaces to make the different orchestrators
interact in mobile contexts.

Keywords: WS-BPEL, Graph transformation, Distributed system

1 Introduction

Web services are a well-known technology to implement and deploy service-oriented systems.
Their flexibility is playing a key role to integrate highly heterogeneous systems. Specific tech-
nologies are hidden behind simple XML interfaces written in WSDL (Web Services Description
Language [CCMWO01]) and services interact by means of SOAP (Simple Object Access Proto-
col) messages —another XML-based technology. The same ease and freedom do not apply to
the paradigms with which services can be composed to support business processes. WS-BPEL
(Web Services Business Process Execution Language [BEAO3]), the most prominent standard
technology to compose Web services, only allows for a “’strict” centralized approach to compo-
sition, where a single orchestrator controls the execution flow and coordinates the interactions
with selected services.

This centralized approach to execution helps simplify the coordination among components,
but it is also a too heavy constraint for those systems that have a distributed nature and imply the
cooperation of decentralized (maybe nomadic) actors. The Web services community is already
pushing more decentralized approaches to composition. Choreographies (WS-CDL, Web Ser-
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vices Choreography Description Language [NicO4]) —instead of orchestrations— support peer-
to-peer interactions among services, and event-based architectures, with WS-Notification [Aka04]
as one of the emerging standards in this direction, support even looser cooperations among Web
services, where the interaction is limited to reacting to events generated within the composition.
Unfortunately, available technology is still limited and it is not as widely accepted as WS-BPEL.

Even if we stick to a workflow-like view of the Web services composition, in many cases, the
centralized process needs to be deployed in a distributed setting. The “conceptual” monolithic
process must be partitioned into a well-organized set of sub-processes, and the implied coordi-
nation and synchronization actions among the parts must be suitably designed and implemented.
This is the case, for example, of cross-departments business processes, where each division is in
charge of a particular fragment of the process, and they all concur to the success of the global
process. Nowadays, we can also envisage another, completely different, scenario with the cen-
tralized model split because it has to be executed by a set of federated mobile devices. No single
device has the capability of executing the whole process, but they all can contribute with the ex-
ecution of a dedicated portion. The scenario might become even bolder if we thought of moving
the partitioning process at runtime to dynamically select and allocate the pieces of a process to
the devices that are available, and have enough resources, at a given moment. Nomadic users are
supposed to move with their devices, and thus the set of cooperating devices can change. This
scenario could be useful for disaster recovery situations, and more in general in all those cases
where a stable and reliable network is not available, but the process must rely on a mobile ad-hoc
network.

Given the wide diffusion of WS-BPEL, and the good set of supporting tools, the paper tackles
the problem of decentralizing the execution of WS-BPEL processes by fostering the idea of
decentralized orchestration. It proposes an automatic and formal approach to partition WS-
BPEL processes, and to add the necessary synchronization and coordination stuff. The approach
transforms a centralized WS-BPEL process into a set of coordinated processes. An explicit
and precise meta-model [Obj02] and graph transformation systems [BHO2] supply the formal
grounding to slice a single WS-BPEL process, obtain a set of related processes, and add the
communication infrastructure among the newly created processes to both exchange data and
propagate the execution flow. The paper demonstrates the approach on a simple case study.

The approach is supported by two different families of tools, which are currently under devel-
opment. We are working on a CASE tool, based on AGG (Attributed Graph Grammar [Bey92]),
that implements partitioning rules and automatize the whole “slicing” process. We are also
working on the infrastructure to execute such federated WS-BPEL processes.

The results presented in this paper are an evolution of those presented in [BMMO04]. More
specifically, the novel contributions of this paper are: (1) an explicit meta-model for WS-BPEL
specifications, (2) partitioning rules that address the information exchange among cooperating
processes, (3) partitioning rules for fault, compensation, and event handlers, and (4) a more
complete example application.

The rest of the paper is organized as follows. Section 2 introduces the formal ingredients,
that is, the meta-model and partitioning rules. Section 3 discusses the approach on an example
application. Section 4 surveys related approaches, and Section 5 concludes the paper.
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2 Partitioning rules

This section introduces the approach to transform a WS-BPEL model into a set of federated
models. The first part of the section introduces the meta-model, specified to render the key
elements of WS-BPEL, and graph transformation systems. The second part presents partitioning
rules. It describes one rule thoroughly, and concentrates on the key aspects for the others. Lack of
space does not allow us to present all rules in detail, but interested readers can refer to [BMMO05]
for the whole graph transformation system.

2.1 Meta-model

Even if WS-BPEL is a complex workflow language for describing Web services compositions,
Figure 1 only comprises those elements that are used by our approach, that is, that are handled
within partitioning rules. The meta-model presented here borrows some concepts from the work
presented in [Ga03], but we explicitly decided to get rid of all those elements that, even if are
part of the WS-BPEL specification, and thus should be part of a complete meta-model, are not
considered by the partitioning process.

FlowLink

DataLink Flow BasicNode | (™ F,?;i';s

String erchestrator

begin end
Dependence

Structured
Node

i

Scope Handler

Figure 1: Dedicated WS-BPEL metamodel

Straightforwardly, a BPEL Process comprises several Basic Nodes. This class is the
key component of the whole meta-model. Basic Nodes correspond to the basic activities
that can be performed by a WS-BPEL process, like invoke and receive. Structured
Nodes, which are a specialization of the first ones, correspond to the typical constructs of
workflow languages supposed by WS-BPEL, like switch, flow, sequence, and pick. We
treat each Structured Node by means of two Basic Nodes to identify the first and the
last element of the composed statement. Scopes and Handlers are seen as special-purpose
Structured Nodes since they both embed a set of Basic Nodes. We do not use contain-
ment relations to render the embedding of some nodes into others, but we exploit associations
begin and end to identify the scope of each structured construct.

Nodes are characterized by the orchestrator that is in charge of their execution and are
connected through Flows. These, in turn, can be FlowLinks, to render order of execution
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among nodes, DataLinks, to define data dependencies among nodes, and Dependences, to
relate the pairs of invoke/receive Basic Nodes added to synchronize components that
have to be executed by two different executors (orchestrators).

This is not a "complete” and constrained meta-model. This means that we cannot be used to
probe the consistency of WS-BPEL specifications. The meta-model is simple and “unprecise”
since we assume that initial WS-BPEL models are correct and that the partitioning rules, that is,
the graph transformation rules, only produce correct models'.

2.2 Partitioning rules

Partitioning rules must be precise enough to allow for correct and automatic transformations
and are supposed to work on the graph structure (i.e., an instance of the meta-model) that is
behind any WS-BPEL process. These two requirements led us to consider graph transformation
systems [BH02], along with the tool support they offer, as the right means to specify them.

Partitioning rules are introduced here incrementally. We start introducing the rules to control
the execution flow, already presented in [BMMO4], then we move to those that oversee data
exchange and manage handlers. Since all rules are ”similar”, here we only describe one rule in
detail and we invite readers to refer to [BMMOS5] for the complete set. All the other rules are
presented by concentrating on the problems behind them, instead of showing how the different
instances of meta-model elements are created, deleted, and modified.

In this paper, we introduce partitioning rules for controlling the execution flow by means of
the example of Figure 2, which shows the meta-model of a simple WS-BPEL Switch statement
with a Basic Node in each branch. The figure also shows that different nodes are associated
with different orchestrators: this means that the designer has already decided how to split the
process, that is, how to allocate the different sub-processes on available executors.

To partition the simple example process of Figure 2, we start by setting links to state the
dependence, in terms of execution flow, between two WS-BPEL activities that are controlled by
different orchestrators. Figure 3 shows the rule. The left-hand side describes when the rule can
be applied, while the right-hand side shows the final result. The rule starts with two nodes that are
associated with different orchestrators and introduces two new Basic Nodes to synchronize
the execution of the first part with the execution of the second part. These two nodes are a pair
of invoke/receive activities to forbid the second activity to start before the completion of
the first one.

The partitioning process continues by identifying all the other pairs of nodes that must be
synchronized and by adding special-purpose Basic Nodes to notify the branch followed by
the Switch to all involved orchestrators.

The partitioning process also takes into account data distribution. According to the WS-BPEL
specification, the scope of variables can be global (all activities can use them) or local (e.g.,
constrained in a given handler or scope). After partitioning, the result is a set of variables (both
local and global) that are accessible by their local orchestrators, and a way to propagate their
values to the other orchestrators. To cope with this, we added data-dependence graphs to our
approach. As discussed in the literature for liveness analysis, in some configurations it is not

1" This is not explicitly demonstrated in this paper, but readers can refer to [BMMO04] for a first informal demon-

stration limited to the rules that deal with the execution flow.
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Figure 2: Example meta-model of a simple Switch construct

1: Basic Node 3: Basic Node
orchestrator = X »  2: FlowLink

A 4

orchestrator = X1

1: Basic Node 4: Basic Node
orchestrator = X » 2 FlowLink » orchestrator = X
type = invoke
5: Dependence
3: Basic Node 6: Basic Node
orchestrator = X1 4 7: FlowLink orchestrator = X1

type = receive

Figure 3: Rule AddDependence
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possible to detect, at design time, suitable data dependencies between producers and consumers-.

In such situations, the original WS-BPEL description, with that specific assignment of activities
to orchestrators, cannot be partitioned. Thus, we also added an analysis phase, before starting
the partitioning process, to understand if the approach is applicable.

Since execution and data flows are similar, it is possible to use the same rules defined for
partitioning functional dependencies also for building a distributed data dependence graph. Nev-
ertheless, in a data dependence graph, a node can be reached by several nodes if producers belong
to structured activities.

For example, if we considered a F1ow statement and we suppose that two nodes A and B are
executed in parallel and produce the same variable v for node C, in a centralized environment
the last activity executed would set the value for v. To preserve such a behavior, we need to
add before the consumer node a Pick Structured Node with two branches: the first to
receive the datum from B and the second from A. The first branch is followed after receiving
a message receiveA, while the second is triggered by a message receiveB. This means that the
branch followed is driven by the first node that produces data, but the value is received from the
second node.

If we considered While statements, producers and consumers can be organized in different
ways:

e The producer node is executed before the loop and the consumer is executed within the
loop. In this case, we add a Switch Structured Node before the consumer. If the
iteration is the first, the corresponding switch branch has a node to receive data from the
producer; otherwise no operations are performed.

e Producer and consumer are in the loop. The producer is executed before the consumer.
This simple case can be directly solved by using the rules already presented in [BMMO4].

e The producer is within the loop and the consumer is executed after the end of the loop. In
this case, we add a Basic Node after the end of the loop to send produced data.

e A producer is before the loop, but another producer is within the loop and after the con-
sumer. To cope with this situation, we add a Switch Structured Node before the
consumer to distinguish between the first iteration, when the data come from the external
producer, and the other iterations, when data come from the internal producer.

Even if our meta-model considers exception handlers as structured activities, they need some
specific considerations. First of all, we use the general term exception handler to identify fault,
event, and compensation handlers. They comprise two parts: a part that model the raising of
the exception, and a part that models the behavior of the handler by using “normal” WS-BPEL
activities. Thinking of distributed executions, the second part can be managed with the rules
already used for the “normal” behavior, while we need to address more thoroughly the raising of
the exception and its propagation to involved orchestrators.

2 Two WS-BPEL activities are interpreted as producer and consumer if the former sets the value of a given variable

that is then used by the latter, without any other activity that changes the value between the two activities.
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Each exception is associated with a scope and the relevant orchestrators are the same as those
involved in the corresponding scope. For this reason, we add a synchronization mechanism at
the end of each scope to ensure that if an exception is raised in a scope all orchestrators are
properly synchronized. The other operation we need to insert is the propagation of the fault to
all involved orchestrators. To cope with this, we propose a solution that is very similar to that
used for propagating the value of a variable in Switch statements (an orchestrator evaluates it
and then propagates the result to the others).

Figure 4 shows how to propagate the fault to all the orchestrators involved in a scope. The
Switch is necessary to distinguish if the controller is also the catcher of the exception (e.g., a
controlled activity failed) or if it is only involved in the scope.

exception_ _ >’

Exception Handler

Internal catch External catch
of exception of exception

M

Local view of
BPEL Code
managing exception
|

*

Figure 4: Distributed exception handling

This propagation mechanism, along with the synchronization required before the end of the
scope, ensures that each exception is properly forwarded to all interested orchestrators.

To create the local processes, we have a dedicated set of rules. Given the orchestrator for
which we want to produce the view, the rules are applied as follows. They: (1) remove all
the Basic Nodes whose execution is not controlled by the selected orchestrator; (2) translate
all the Structured Nodes, with the exception of Sequences, that do not include “local”
activities into Sequences with no nodes. The same process, applied iteratively, produces the
partial WS-BPEL models for the orchestrators that are part of the system.

3 Example

To explain the approach, we render as workflow a standard procedure defined and realized for
carrying out maintenance by the Italian railways. Specifically, we consider the situation in which
maintenance and testing of electrical lines and signals have to be performed. This process is par-
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tially automatic and involves a central management unit (CMU) and several teams that perform
required actions on site. CMU manages the activation/deactivation of railroad traffic on a given
track. There are also two teams, one for putting and checking signals and the other one for man-
aging electrical lines. The latter is further divided in the Electric Maintenance team (EMT) and
the Electric Test Team (ETT). There is also a control post (CP) that controls the power supply
on tracks. In this example, CP only exposes a Web service that allows to inhibit or reactivate
electricity on tracks.

ETT DCO Signal Team

Put Working in Progress Signal

Ask for disabling railroad traffic

Disable railroad traffic

(Get Railroad Electric Charactenstlc)

Get Railroad Signal Characteristic

2
1\ | |

SCOPE

Ask for disabling current
- - Signals Maintenance
Coastranerees)

While exit section n d

Test Signals

Update Railroad Electric Charac.

Ask for restoring current
Receive confirmation

Ask for testing signals

Update Railroad Signal Charac.

Ask for restoring railroad traffic

Restore railroad traffic

2
6em0ve "Working in Progress"” Signal>

Figure 5: Example workflow

Figure 5 shows the example WS-BPEL process rendered as activity diagram. Each swimlane
corresponds to a different controller (orchestrator). For our purposes, we consider each operation
as a single task that can be modelled as a WS-BPEL basic activity. A fault handler is associated
with the process. It models the possibility of stopping the maintenance activity, and thus resume
the availability of the track for the normal train traffic. Notice that the operative teams could be
oft-line and perform part of their tasks while disconnected.

The workflow starts with the Signal Team that raises a working in progress signal on a given
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track. Then, the EMT asks the CMU for disabling the railroad traffic. CMU disables the traffic
and gets from the database the information about the electric characteristics and signals of the
considered track. After this, the Electric Team and the Signal Team perform their activities in
parallel. Electric maintenance is carried out by asking for the inhibition of the track, by dividing
it in sections, and by starting maintenance and testing activities on each section. At the end, the
power supply is restored. The maintenance of signals is performed by the Signal Team and then
signals are tested by the CMU. At the end of their work, both EMT and Signal Team update the
corresponding parts of the database. All operations are enclosed in a scope with an associated
fault handler that allows the process to be interrupted to restore the normal traffic on the track.
After completing maintenance, the EMT asks for restoring the normal traffic and after the CMU
does this, the Signal Team removes the working in progress signal.

After explaining the problem, we are ready to apply our partitioning approach. Rules are
applied recursively to insert specific coordination activities in the original workflow.

Electric Test Team Electric Maintenance Team Dirigenza Centrale Operativa Signal Team

FAULT HANDLER FAULT HANDLER FAULT HANDLER FAULT HANDLER

lOn msg: Propagate Request | | [On msg: Propagate Reques| || On msg: Request for rapid railroad restore lOn msg: Propagate Request

Propagate request to Electr Maint. Team Propagate request to Signal Team

— ——{(Propagate request to Electr. Test. Team

Figure 6: Decentralized fault handler

In our example, we have one fault and it can only be caught by the CMU. With this assumption,
Figure 6 shows the fault handlers of the different controllers. After the CMU captures the request
for restoring the normal situation, it propagates a message to the other orchestrators to raise an
exception in each workflow. After this propagation, it asks the CP for restoring electricity. For
security reasons, the procedure would require double confirmation to stop the activities of the
operative teams (both CMU and CP would be involved), but this is not important for this example
since it would only require that the fault handler be more complex.

The local view of each orchestrator, that is, its sub-process, can then be extracted from the
modified workflow: Figure 7 shows the dedicated sub-process for the CMU orchestrator limited
to the execution flow.

As far as data are concerned, the example shows that variables railroad electric characteristic
and railroad signal characteristic are used by different roles (orchestrators). They store informa-
tion that will be updated during the process. In Figure 5, the activities that use these variables
are marked with x and +, respectively. In the centralized model, they are global variables, but in
the decentralized scenario they have to be propagated to the correct orchestrators. It is possible
to determine how these variables are used by building the data flow graph. Then, Figure 8 shows
the activities that must be added to the original workflow to manage their propagation.
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Electric Maintenance Team Dirigenza Centrale Operativa Signal Team

Receive Railroad Electric Caracteristic )< eend Railroad Electric Caraclerisuc) !
i
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*

Figure 8: Activities inserted for propagating variables

4 Related work

The problem of workflow partitioning has been well-studied in the field of business process
design for some ten years. The issue of workflow distribution still offers interesting aspects to
study because of mobile information systems and Web services with the problems that come
with them. In [JSH"01], the authors present a comparison among the different approaches to
distribution.

Cross-Flow [GAHLOO] aims at providing high-level support to workflows in dynamically-
created virtual organizations. High-level support is obtained by abstracting services and offer-
ing advanced cooperation support. Virtual organizations are created dynamically by contract-
based match-making between service providers and consumers. In Agent Enhanced Work-
flow [JOSC98], the agent oriented solution presents the interesting aspect of building execution
plans using a goal approach. Event-based Workflow Process Management [EP99] includes an
event-based workflow infrastructure and model constructs for addressing time aspects of process
management. The main feature of ADEPT [RDO98] is the possibility of modifying workflow
instances at run-time. MENTOR [MWW 98] provides an autonomous workflow engine. In
this approach the workflow management system is based on a client-server architecture. The
workflow itself is orchestrated by appropriately configured servers, while the applications that
invoke workflow activities are executed on the client sites. The METEOR (Managing End to
End OpeRations) [ASC" 03] system leverages Java, CORBA, and Web technologies to provide
support for the development of enterprise applications that require workflow management and
application integration. It enables the development of complex workflow applications which in-
volve legacy information systems and that have geographically distributed and heterogeneous
hardware and software environments, spanning multiple organizations. It also provides support
for dynamic workflow processes, error and exception handling, recovery, and QoS management.
Exotica [MAGKO95] is characterized by the possibility of disconnected operations. It does not
permit complete decentralization because it maintains a central unit and all operations obey a
client/server paradigm. WISE [AFH99] exploits the Web for its engine and offers an embed-
ded fault handler. WAWM [Rie98] focuses on the problems related to the workflow management
in wide area networks. Mobile [JB96] is developed to support inter-organizational workflows
and is strongly based on modularity. This characteristic alleviates change management and also
allows users to customize and extend aspects individually.
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The analysis of presented models suggests two different and dual approaches to the problem
of workflow coordination. The first approach supports the integration of autonomous and preex-
isting workflows and it aims mainly at the coordination of different and independent actors. The
second approach supports the decomposition of single workflows to support their autonomous
execution by means of different engines. Cross-Flow, Agent Enhanced Workflow, Event-based
Workflow process Management, Adept, WISE and WAWM belong to the first approach; Mentor,
Exotica and Mobile belong to the second one.

Described systems offer three different solutions for the definition of partitioning and alloca-
tion rules. The first solution proposes specific definition languages (Cross-Flow, Agent enhanced
workflow, Mentor, Exotica). The second approach proposes the extension of workflow languages
with distribution rules (Cross-Flow, ADEPT, WISE, WAWM, Mobile). The third approach does
not consider the language for distribution rules (Event-based, workflow Process Management).
Cross-Flow belongs to more than one class because the distribution rules are split into several
definition parts.

Our delegation model supports disconnected components like Exotica, the independence of
workflow engines like MENTOR, and the possibility of modifying the workflow instance at run-
time like ADEPT. Moreover, we argue that the mobile environment needs a language strongly
oriented to the automatic execution like WS-BPEL, but we do not forget the need for lightness
that is a mandatory feature if the system runs on portable devices in ad-hoc networks. As far as
the definition of rules is concerned, our approach defines partitioning rules, but does not define
allocation rules. It demands them to the specific business process and application domain.

Many of these cited approaches do not consider Web services as available instruments for
decentralizing business processes. A different comment is for [CCMNO4], which presents an
approach very similar to ours. The authors use BPEL as workflow model and use the term
Composite Web Service to refer to a standard workflow. However, they focus on the problem of
assigning workflow portions to specific orchestrators to minimize the traffic among nodes, but
they do not provide any specific information about the partitioning rules and/or any proof of their
validity. They introduce the concepts of Control Flow Graph and Program Dependence Graph
without providing how they refer to WS-BPEL constructs and activities.

5 Conclusions and future work

The paper has presented our approach towards distributed orchestrations. It is the continuation
of the results already presented in [BMMO4], and extends them with the partitioning rules for
handling data exchange among orchestrators and for dealing with handlers. Again, the first
results are encouraging and are motivating us to continue working on these ideas.

Besides refining the rules, and applying them on further and more complex examples, the key
element of our future work is the definition of the infrastructure to accommodate the execution
of our federated WS-BPEL processes. We are working on different solutions that allow us to
solve different problems. The first option is the use of standard WS-BPEL engines. This is the
simplest solution, but it requires that all synchronization and communication problems among
orchestrators be faced and solved in the process specifications. We are thinking of adopting
an infrastructure based on a tuplespace middleware (like JavaSpace [Sun(04]) to increase the
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reliability of the supporting infrastructure, cope with the problems that come from producer-
consumer analysis, and allow nomadic users to store and retrieve their data in/from dedicated
tuples. Finally, we are investigating how to move the synchronization among orchestrators from
the WS-BPEL models to the supporting infrastructure by adopting event-based architectures
(e.g., WS-Notification) as the means to make the orchestrators communicate.
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