Electronic Communications of the EASST

Volume 4 (2006)

Proceedings of the
Second International Workshop on
Graph and Model Transformation
(GraMoT 2006)

Realizing QVT with Graph Rewriting-Based Model Transformation
Laszb Lengyel, Tihangér Levendovszky, Taas Vajk and Hassan Charaf

12 pages

Guest Editors: Gabor Karsai, Gabriele Taentzer

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: |http://www.easst.org/eceasst ISSN 1863-2122

http://www.easst.org/eceasst/�

Eg ECEASST

Realizing QVT with Graph Rewriting-Based Model Transformation

L aszb Lengyel, Tihamér Levendovszky, Tamas Vajk® and Hassan Charaf'

Llengyel@aut.bme.hu
2[fthamer@aut.bme.hu
8tamas.vajk@aut.bome.hu
3lhassan@aut.bmelhu
Budapest University of Technology and Economics
Goldmann G¥rgy ter 3., Hungary 1111, Budapest

Abstract: Model-based development is an increasingly applied method in produc-
ing software artifacts that is driven by model transformation. For instance, OMG'’s
Model-Driven Architecture as a model-based approach to software development
facilitates the synthesis of application programs from models created using cus-
tomized, domain-specific model processors. Meta Object Facility 2.0 Query/ Views/
Transformation (QVT) is the OMG's standard for specifying model queries, views,
and transformations. Extensive research of graph transformation provides a strong
formal background for model transformation. The main contribution of this paper
is to show how high-level constraint constructs facilitate to realize transformations
specified in QVT with metamodel-based model transformation. As a result we can
reuse the graph transformation constructs, and its formal background, which facili-
tates to make QVT transformations validated.

Keywords: Graph Rewriting, Model Transformation, QVT Realization, High-Level
Constraints

1 Introduction

OMG's Model-Driven Architecture (MDA)DMGd emphasizes the use of models at all stages

of system development. It has placed model-based approaches to software development into
focus. MDA offers a standardized framework to separate the essential, platform-independent
information from the platform-dependent constructs and assumptions. A complete MDA appli-
cation consists of a definitive platform-independent model (PIM), one or more platform-specific
models (PSM) including complete implementations, one on each platform that the application
developer decides to support. The platform-independent artifacts are mainly written in UML
and other software models containing enough specification to generate the platform-dependent
artifacts automatically by model compilers.

Transformations appear in many different situations in a model-based development process.
A few representative examples are as follows. (i) Refining the design to implementation; this is
a basic case of PIM/PSM mapping. (ii) Aspect weaving; the integration of aspect models/code
into functional artifacts is a transformation on the design. (iii) Analysis and verification; analysis
algorithms can be expressed as transformations on the design.

1/12 Volume 4 (2006)

mailto:lengyel@aut.bme.hu�
mailto:tihamer@aut.bme.hu�
mailto:tamas.vajk@aut.bme.hu�
mailto:hassan@aut.bme.hu�

Realizing QVT with Graph Rewriting-Based Model Transformation Eﬁ

One may conclude that transformations in general play an essential role in model-based de-
velopment, thus, there is a need for highly configurable model transformation tools. These tools
must make the model transformation flexible and expressive. Furthermore, they should support
control flow, constraints, parameter passing between sequential rules, and conditional branching.

The Model-Driven Architecture offers a standard interface to implement model transforma-
tion tools. The transformation related part of MDA is the Query/View/Transformation (QVT)
for MOF 2.0 [OMGKH]. Three types of operations are provided: queries on models, views on
metamodels and transformations on models. In model transformation area QVT is one possible
solution for defining transformations. But there are several different approaches and languages
that offer similar constructs with minor/major differences in features.

With the hope that QVT become a wide-spread standard for model transformation, the goal
of the current work is to introduce the realization of QVT Relations with graph rewriting-based
model transformation, namely, with the Visual Modeling and Transformation System (VMTS)
approachVMT]. VMTS supports validated online transformation, therefore, using the results
presented in the current paper we can transform model transformations defined in QVT to VMTS
constructs, which means that they can also be validated. Furthermore, the results can be applied
to transformations that are specified using a language whose artifacts can be transformed to
QVT language. This means that there exists an implemented transformation, which maps the
transformation specifications to QVT transformations.

There are several graph rewriting-based model transformation tool (e.g. GR&SISDY,
PROGRESRS97, FUJABA [KNNZ00], VIATRA [VP03, AGG [Tae03, and AToM® [LVAO4]),
therefore, the mapping presented in this paper facilitates the reuse of the transformations that
supports QVT as a common platform.

If QVT can be realized by graph rewriting-based model transformation, there is a hope that
the results originating from the strong background of graph transformation can be reused on the
QVT level. Furthermore, high-level constraint constructs provided by VMILED5] facilitates
the online validated model transformation that also can be applied in QVT domain.

The rest of this paper is organized as follows. Sec@pnovides the background information
including a graph rewriting-based model transformation system (Visual Modeling and Transfor-
mation System, VMTS). Using the features of this system, the principles of metamodel-based
model transformation are presented. Secfogives an overview on OMG’s QVT language.
Sectior4 discusses the relation between QVT and VMTS constructs. Ségpoasents the re-
alization of the QVT constructs with VMTS approach, thus, with a graph rewriting-based model
transformation framework. Finally, conclusions are provided.

2 Backgrounds

Graph rewriting [Roz97 [EEKR99 is a powerful technique for graph transformation with a
strong mathematical background. The atoms of graph transformations are rewriting rules, each
rule consists of a left-hand side graph (LHS) and right-hand side graph (RHS). Applying a graph
rewriting rule means finding an isomorphic occurrence (match) of LHS in the graph to witch the
rule being applied, and replacing this subgraph with RHS.

VMTS supports editing models according to their metamodels, and allows specifying Object

Proc. GraMoT 2006 2112

Eg ECEASST

Constraint Language (OCL) constraints. Models are formalized as directed, labeled graphs.
VMTS uses a simplified class diagram for its root metamodel ("visual vocabulary”).

Also, VMTS is a model transformation system, which transforms models using graph rewrit-
ing techniques. Moreover, the tool facilitates the verification of the constraints specified in the
transformation rule during the model transformation process.

In VMTS, LHS and RHS of the transformation rules are built from metamodel elements. This
means that an instantiation of LHS must be found in the input graph instead of the isomorphic
subgraph of LHS.

Rewriting rules can be made more relevant to software engineering models if the metamodel-
based specification of the transformations allows assigning OCL constraints to the individual
transformation rules. This technique facilitates a natural representation for multiplicities, multi-
objects and assignments of OCL constraints to the rules with a syntax close to the UML notation.

VMTS facilitates a refined description of the transformation rules. When the transformation
is performed, the changes are specified by the RHSraathal causalityrelationships defined
between the LHS and the RHS elements of a transformation rule. Internal causalities can express
the modification or removal of an LHS element, and the creation of an RHS element. XSLT or
Imperative OCLIDMGH] scripts can access to the attributes of the objects matched to the LHS
elements, and produce a set of attributes for the RHS element to which the causality points.

Classical graph grammars apply any production that is feasible. This technique is appropriate
for generating and matching languages but model-to-model transformations often need to follow
an algorithm that requires a stricter control over the execution sequence of the rules, with the
additional benefit of making the implementation more efficient.

The VMTS approach is a visual approach, thus, it also uses graphical notation for control
flow: stereotyped UML activity diagrams. VMTS Visual Control Flow Language (VCFL) is a
visual language for controlled graph rewriting and transformation, which supports the following
constructs: sequencing transformation rules, branching with OCL constraints, hierarchical rules,
parallel execution of the rules, and iteration.

The VMTS transformation rules have two specific propertieshaustiveandMultipleMatch
Applying a model transformation rule means finding a match of LHS in the input model and
replacing this subgraph with RHS. Aaxhaustivaransformation rule is executed repeatedly, as
long as LHS of the rule can be matched to the input model. NibkipleMatchproperty of a
rule allows that the matching process finds not only one but all occurrence of LHS in the input
model, and the replacement is executed on all the found places.

The interface of the transformation rules allows the output of one rule to be the input of another
rule (parameter passing), in a dataflow-like manner. In VCFL, this construction is referred to as
external causality An external causality creates a linkage between a node contained by RHS of
the rulei and a node contained by LHS of the rule 1. Since rule provides partial match to
rulei+ 1 this feature accelerates the matching and reduces the complexity.

VMTS has state-of-the-art mechanisms for validated model transformation, constraint man-
agement and control flow definition. The environment has several standalone algorithms and
other solutions that make them efficient. Moreover, VMTS has a unique, aspect-oriented technique-
based constraint managemewit/ T]. The constraint-driven branching mechanism of the VMTS
is unique in the sense that the decision is made not only based on the actual state of the input
model but using system variableSystemLastRuleSuccéeas well. If a transformation rule

3/12 Volume 4 (2006)

Realizing QVT with Graph Rewriting-Based Model Transformation Ea

a b.
.'-'
bottom domain (L) bottom middle bottom domain (R _
pattern ol pattern —d = pattern -
| | |
| 1 | =
v v v
guard domain (L) guard middle guard domain (R) =
pattert <= pattern _— pattern
Left-Hand Side Right-Hand Side

Figure 1: (a) QVT Core domain and pattern dependencies, (b) VMTS metamodel-based trans-
formation rule with input and output models

fails, and the next element in the control flow is a decision object, then it could provide the next
branch based on the constraints. This VMTS construct accelerates and makes the transformation
more efficient, and the control flow model simpler, because, for example, there is no need to
define test rules as in GReAT or PROGRES.

3 MOF 2.0 Query/Views/Transformation Overview

The QVT specification has a both declarative and imperative nature, with the declarative part
split into a two-level architecture that forms the framework for the execution semantics of the
imperative partOMGHh].

The layers of the declarative part are the following: (i) The user-frieRaéllationanetamodel
and language which supports complex object pattern matching and object template creation. (ii)
A Core metamodel and language is defined using minimal extensions to EMO®FKSE] and
OCL |[OMGd].

The Relations language supports complex object pattern matching, and implicitly creates trace
classes and their instances to record what occurred during the execution of the transformation.
Relations can assert that other relations also hold between particular model elements matched by
their patterns.

The Core language supports pattern matching over a flat set of variables by checking condi-
tions over those variables against a set of models. It treats all of the model elements of source,
target and trace models symmetrically (Figlgg. It is equally powerful to the Relations lan-
guage, and, because of its relative simplicity, its semantics can be defined more simply, although
transformation descriptions provided using the Core are therefore more verbose. In Core, trans-
formation classes and patterns over them are an essential part of the mapping specifications.

The semantics of the Core language and the Relations language allow the following execution
scenarios: (i) check-only transformations to verify that models are related in a specified way,
(i) single direction transformations, (iii) bi-directional transformations, (iv) the ability to estab-
lish relationships between pre-existing models, (v) incremental updates when a related model

Proc. GraMoT 2006 4112

@ ECEASST

Transformation Steps

Input Metamodel Qutput Metamodel
, N Control Flow (VCFL) Sl
Instantiation f” Instantiaton
v ~ b v
Input Model VMTS Maodel Output Model
— 7 7 72 Transformation [~

Figure 2: Principles of VMTS metamodel-based validated model transformation

is changed after an initial execution, and finally, (vi) the ability to create or delete objects and
values, while also being able to specify which objects and values must not be modified.

4 Relation between QVT and VMTS Constructs

This section summarizes the relation between the QVT and metamodel-based model transfor-
mation. Tablél compares the model transformation related basic constructs of the QVT and the
VMTS .

‘ H QVT Construct ‘ VMTS Construct ‘

Type information || MOF metamodels metamodels - instantiation relation is based [on
the relation between MOF layers 0 and 1

Instances MOF models (instance) models
Preconditions OCL, patterns OCL, LHS
Postconditions OCL, patterns OCL, RHS
Actions Patterns of enforced domains Internal causalities based on LHS RHS
Control Context (when) and post-effect (where) clauseStereotyped activity diagrams (VCFL)
Correctness Patterns of checked domains Preservation of OCL constraints

Table 1: Comparison of QVT and VMTS constructs

Figure1lb introduces the principle of the metamodel-based model transformation rules. The
constructs that form a metamodel-based LHS specification are inheritance and multiplicity sup-
port (Figurelb). Inheritance support is analogous to the natural type compatibility of object-
oriented languages: the derived class can always be passed where the ancestor class is expected.
This means that a class element in LHS always matches its descendant types in the input model.
That facilitates generalization in the rules as well as abstract types. Multiplicity support is ac-
complished by allowing multiplicity values on the association ends. In VMTS, the match found
for LHS is maximal in a sense that the actual matched multiplicity is the greatest possible value
from the specified multiplicity interval, which does not contradict any other part of the match.

The execution of metamodel-based model transformation in VMTS is depicted in Zgure
The figure describes that the transformation is specified by the VCFL control flow model that
defines the exact execution order of the transformation rules. The input model is described by
the input metamodel, and the output model by the output metamodel. Both input and output

5/12 Volume 4 (2006)

Realizing QVT with Graph Rewriting-Based Model Transformation Eﬁ

metamodels have an effect on the transformation.

LHS and RHS can use different metamodels. Transformation rules contain OCL constraints.
The transformation uses matches found by the matching process and the compiled binary gen-
erated by the OCL compiler to check the constraints on the matched parts of the input model.
The transformation produces the transformation result if and only if a match satisfies the pre-
conditions. Moreover, the rule is successful if and only if the transformation result satisfies the
postconditions.

Transformations, Model Types and Mappings.Figurel presents the correspondence between

QVT Core language transformation and VMTS metamodel-based transformation rules. To em-
phasize the similarity, we have swapped the Guard and Bottom rows in Higuda the Core
language, a transformation is specified as a set of mappings that declare constraints that must
hold between the model elements belonging to a set of candidate models and the trace model.
The candidate models are named, and the types of elements that they can contain are restricted by
a model type. Figuréa depicts the structure of a QVT mapping with two domains, where each
rectangle of a mapping represents a pattern. The columns are called areas. Each area consists of
two patterns, the guard pattern and the bottom pattern. A mapping consists of one area for the
trace (the middle area) and one area (a domain) for each model type. The domain areas consist
of patterns that match the candidate models, the middle area consists of patterns that match the
trace model.

A VMTS transformation is a VCFL model that is built from single metamodel-based model
transformation rules. Transformation rules match the input models based on the defined struc-
ture, metatypes, and other constraints. The constraints are expressed in OCL. The transformation
creates the output based on RHS and internal causalities.

Patterns and Binding. A QVT pattern is specified as a set of variables, predicates and assign-
ments. Patterns can be matched and enforced. Matching a pattern can result in value bindings
of the variables, and enforcing a pattern can result in model changes causing new value bindings
for the variables during matching. In a mapping, the bottom patterns depend on guard patterns
(in the same column) and middle patterns depend on domain patterns (in the same row).

In VMTS, the matched pattern corresponds to the match found for LHS of a rule, and the
enforced pattern is the resulted model that is an instance of RHS. VMTS provides a unique
constraint management mechanism that facilitates to reuse transformation rules with different
constraint sets\MT].

Guards and Checking. Guards of a mapping narrow the selection of model elements to be
considered for the mapping. Matching the bottom patterns takes place in the context of a valid
combination of valid bindings of all the guard patterns. In such a combination, for each depen-
dency between two guard patterns, there must be exactly one dependency between two valid
bindings of those two guard patterns.

Mappings can be checked, either as a part of a transformation execution in checking mode, or
in the first rule of a transformation execution in enforcement mode. A transformation execution
in checking mode will produce an error for each violation of a mapping constraint. A trans-
formation execution in enforcement mode will enforce a repair for each violation of a mapping
constraint.

Proc. GraMoT 2006 6/12

Eg ECEASST

c—-3|| vMTSQVT VMTS |
| Plug-in QVT Compiler VMTS VMP
s WWMTS
QT Graphical Syntax | Traversing Abstract | VMTS
| ij!fim Syntax Tree |:D Tra";rﬁlr;:'mio”
| 7 | a
WMTS VCFL
|| Generated QVT T | Trangformation
=—— ﬁ Textual Syntax |
OVT Textual Syntax L 3

Figure 3: Overview of the QVT realization with VMTS

In VMTS, guards are the metamodel-based model transformation rules. Checking can be
expressed with transformation rules that contain only LHS. LHS expresses the required structure
with metatypes and the necessary conditions defined by the propagated OCL constraints. If there
is no proper match in the input model, then the rule fails.

Enforcement and Trace.At execution time, one model type of the transformation can be chosen
as the enforcement direction. The target model and trace model may be changed to fulfil the
constraints of the mappings. The models are only changed when the constraints of a mapping
are not fulfilled. The changes will lead either to the creation of new valid bindings or the removal
of existing valid bindings of the target bottom patterns and the trace bottom patterns to enforce
the constraints of a mapping.

VMTS stores model elements (hodes and edges) in database tables. Each node is contained
in the table NODE and each edge by the table EDGE. Each model related operation uses these
tables to select, create or update elements. The VMTS database, among others, contains two
tables (TRACENODE and TRACEEDGE) in order to support tracing and to store the trace
information separately from model elements. This means that trace information is created and
used only by transformations and not by the presentation framework. Therefore, at modeling
time trace information is not visible and does not confuse the source and target models.

VMTS trace objects are created based on the internal causalities of the transformation rules.
Using the trace objects with the help of constraint management, VMTS supports model evolu-
tion. Once a relationship has been established between models by executing a transformation
and creating trace objects, changes to a source model may be propagated to a target model by
re-executing the transformation in the context of the trace, causing only the relevant target model
elements to be changed, without modifying the rest of the model. Constraints and trace objects
are used to ensure that the transformation rules generate the output only from those parts of the
input model that have no generated output model or that have been modified since the last ex-
ecution of the transformation. In the input model, each element Msdified property that
indicates whether it has been modified. It is updated and checked by the transformation process,
and it is also corrected during any model modification. The trace information facilitates to decide
if an input model element has generated target model elements or not.

7112 Volume 4 (2006)

Realizing QVT with Graph Rewriting-Based Model Transformation Eﬁ

A — PackageToSchema

B — ClassToTable

C — Attribute ToColumn

D — PrimitiveAttribute ToColumn
E — ComplexAttributeToColumn
F — SuperAttribute ToColumn

G - AssocToFKey

Top_ClassTaTable \ Top_AssocTaFKey

/ Top_AttributToColurnn \ AssocToFKey
AttributTaColumn F=——4 %
I — I
Top_CornplexAttr Tap_PrimitiveAtt
Top_SuperAttribut buteToColurmn ributeToColumn

eToColumn

PrimitiveAttrib
ComplexAttrib uteToCalumn

uteToCalurmn

SuperAttribute
ToCalumn

(M

Figure 4: (a) Control Flow (CF) graph of the transformatidlassTORDBMSreated by trans-
formationQVTConstructToVMTSConstrug¢b) Generated VCFL model of the VMTS version
of the transformatioilClassTORDBMS

It can be stated that design and dependency information must be preserved for software evo-
lution in order to be automated. The MDA-based approaches define design information in high-
level instances, while dependency information is provided in transformations. Therefore, the
software evolution support can be solved with metamodel-based model transformations and re-
fined with adequate constraint management.

Bi-directional transformations. The QVT operational mapping and black-box approaches re-
strict the scenarios by allowing specification of transformations in a single direction only. Bi-
directional transformations are only possible if an inverse operational implementation is provided
separately.

In an inverse transformation executed in VMTS, the modification, creation, and deletion of
the model structures can be achieved with swapping LHS and RHS graphs and inverting the
modifications described by internal causalities. But the attribute modification is hard in case of
QVT as well. In general, the generated target model does not contain all information covered by

Proc. GraMoT 2006 8/12

Eg ECEASST

the source model. Therefore, it is not possible to correctly produce the source model from the
target model with an inverse transformation. In summary, general inverse transformation should
contain totally new internal causalities that perform attribute modifications.

Bi-directional transformations form the basis of real roundtrip engineering. Forward engineer-
ing is the basic model-to-code transformation and reverse engineering is the inverse transforma-
tion (code-to-model). Bi-directional transformations support incremental software development,
where the changes achieved either in the models or in the code should be synchronized with the
other artifacts.

5 Transforming QVT Constructs to VMTS

The transformation that generates VMTS Visual Model Processor from QVT transformation
specification is illustrated on the "class model to relational database management system (RDBMS)
model” transformation (also referred to as object-relational mapping). The complete QVT solu-
tion for the basic version of the model transformation example can be four@Mi®h]. The
current section introduces the methods that we use to process QVT relations and examples are
provided based on thelassToRDBM&ansformation.

In Figure3, the overview of the QVT realization with VMTS is depicted. We use VMTS
Presentation Framework (VPFYIMT] as a basis for the QVT visualization. VPF provides a
flexible plug-in-based architecture and offers individual metamodel-dependent visualization and
editing features. This facilitates to edit QVT transformations visually in VMTS environment
using VMTS QVT plug-in. VMTS Traversing Processor (TP) makes it possible to process the
visual QVT transformation specification and produce its textual syntax. Finally, the VMTS QVT
compiler is used to generate a VMTS Visual Model Processor (VMP), including the transforma-
tion rules and the control flow model from a QVT transformation specification.

Based on thevhenandwhereclauses of the QVT relations, a Control Flow (CF) graph is built
to support the creation of the VMTS control flow model (VCFL model). Figlardepicts the CF
graph created from the relations of the QVT transforma@itessTORDBMSThe CF graph de-
scribes that model processing should start with the rel@®mkageToSchemtne secondly exe-
cuted relation must be the relati@assToTablgfurthermore, the relationsttributeToColumn -
ComplexAttributeToColumandAttributeToColumn - SuperAttributeToColurcan be executed
in loop.

QVT transformations differentiate top-level and non-top-level relations. The execution of a
transformation requires all its top-level relations to hold, whereas non-top-level relations are re-
quired to hold only when they are invoked from tivbereclause of another relation. In the
transformationClassToRDBMSrelationsPackageToSchem&lassToTableand AssocToFKey
are top-level relations. In Figuréb, the generated VMTS VCFL model is depicted, where
we utilized the hierarchical rule construct of the VMTS approach.

Figureba introduces the graphical version of QVT relatiOlassToTableedited with VMTS
QVT plug-in. In VMTS QVT plug-in,whenandwhereclauses are properties of the transforma-
tion rules, they are not shown below LHS and RHS of the rule, because it is not required by the
QVT specification, they can be edited separately via a property control (Fagure

The VMTS transformation rules are created from the QVT relations by the VMTS QVT com-

9/12 Volume 4 (2006)

Realizing QVT with Graph Rewriting-Based Model Transformation Eﬁ

a. ClassTaoTable with WMTS QWT Plug-in b. ClassTaoTahle with WMTS Rule Editar

—<<domain»>—— —=<domainss—
c:Class 1:Table cl:Column

Left-Hand Side Right-Hand Side

Class Tabla Codumm

name = cn name = cn name=cn+"_tid"
kind="Persistent’ type=TUMBER' lhs_c_Class ths_t_Table ths_cl_Column

uml : GWT db: QYT
[E

p:Package

Fackage Schema PrimarpEzgy
s:5chema kikey

lhs_p_Package ths_s_Schema ths_k_Primary
name=cn+'_pk' Key

c. d. lhs_c_c'lass.MatchedNode—>F0r‘each('I hsp:Ths_c_cClass.MetaType)

when var t_:‘Tab]le:=new rhsﬁt_T:‘aMe_.lMetaType;

wvar cl:column:=new rhs_cl_column.MetaType;
PackageToSchema(p,s) var t_cl:table_column:=new rhs_t_c'_taﬁEI]e_cu'\ umn. MetaType;
where war s:schema:=new rhs_s_Schema.MetaTﬁpe;

B wvar t_s:schema_table:=new rhs_t_s_schema_table.mataType;

AttributeToColumn(c,t,") var k:iPrimarykey:=new rhs_k_Primarykey. MetaType;
var t_k:table_primarykey:=new rhs_t_k_tahle_primarykey.metaType;
t.name=ThsD. name;
cl.name:=1hsD.name + '_tid";
<l.type:="NUMBER " ;
t_cl.Left:=t;
t_cl.right:=cl;
t_s.Left:=t;
t_s.Right:=5;
k.namei=ThsD.name + '_pk';
t_k.rLefr:=tr;
t_k.right:=k;
rhs_t_Tahle.Creatednode+=t;
rhs_cl_Column.Createduode+=cl;
rhs_t_cl_table_column.Creatededge+=t_cl;
rhs_s_schema.Creatediode+=5;
rhs_t_s_schema_tahle.CreatedEdge+=1_s;
rhs_k_primarykey. creatednode+=k;
rhs_t_k_table_primarykey.Creatededge+=t_k

Figure 5: (a)ClassToTablewith VMTS QVT plug-in, (b) Generated VMTS rewriting rule
ClassToTablg (c) Whenand Whereclauses of the rul€lassToTableand (d) Generated Im-
perative OCL code

piler. The inputs are the VMTS QVT plug-in-based relations, and the outputs are the VMTS
metamodel-based model transformation rules with a control flow model. Both model elements
created with QVT plug-in and the VMTS transformation rule elements refer to the appropri-
ate UML Class(Package Class Attribute, PrimitiveDataType and Associatiof and RDBMS
metamodel elementS¢hemaTable Column Key, andForeignKey.

The main steps achieved by VMTS QVT compiler are as follows: (i) the compiler processes
the QVT graphical representation and generates QVT textual representation using the Relations
language. (ii) From the textual representation abstract syntax tree (AST) is generated, from
which the control flow (CF) graph is created. (iii) With the help of the AST and CF graph the
compiler generates the VCFL model. (iv) Using the AST the compiler produces VMTS rewriting
rules. The generated rules contains LHS and RHS graphs with metatype information @Bigure
internal causalities with Imperative OCL codes (Fighdg, and constraints.

Figure5b presents the VMTS rewriting rule generated from the QVT relafitassToTable
The rule expresses the same functionality as its corresponding QVT relation. The generated rule
contains one internal causality, which, using imperative OCL, describes the operation that should
be achieved during the rule execution (Figbd®. Furthermore, the following OCL constraint is

Proc. GraMoT 2006 10/12

Eg ECEASST

generated to require that LHS match only persistent classes:

context Class inv Class_constl:
kind = ’'Persistent’

For more details please refer taYIT].

6 Conclusions

This paper has demonstrated the realization of the OMG QVT with metamodel-based model
transformation constructs. Not all, but the main QVT constructs have been analyzed from the
point of metamodel-based model transformation, and the appropriate VMTS constructs have
been introduced that provide the same functionality. The relations between QVT and VMTS
constructs have been discussed. Furthermore, the method that we use to create VMTS transfor-
mation rules from QVT Relations and VMTS control flow (VCFL) model based on the QVT
whenandwhereclauses have been presented.

Unfortunately, QVT does not have a visual control flow support. Moreover, the branching
mechanism provided by thehen-whereclauses is a bit difficult to use. Often model-to-model
and model-to-code transformations need to follow an algorithm that requires a stricter control
over the execution sequence of the rules, therefore, VCFL models provide a more comfortable
way to build transformations from individual rules.

Several open questions remain related to the QVT that should be examined and discussed,
for example, the attribute maodification in bi-directional or in-place transformations. In general,
the inverse transformations cannot be automatically created from the original transformations.
Furthermore, a transformation may be considered in-place when its source and target models are
both bound to the same model at runtime. In this case the trace objects connect the actual model
element with itself, and this means that the original attribute values are lost, since they cannot be
queried with the help of the trace objects.

The transformatioQVTConstructToVMTSConstrusta QVT compiler implemented in VMTS.

We have placed emphasis on the processing of the QVT constructs of the presented approach.
The VMTS QVT plug-in can be used to define QVT relations with the necessary attributes and
whenandwhereclauses{YMT].

In summary, we can conclude that QVT can be realized by graph rewriting-based model
transformation; furthermore, transformations can be validated with VMTS high-level constructs.
Therefore, QVT can utilize the results originating from metamodel-based model transformation
and the formal background of graph rewriting.

Acknowledgements: The paper is established by the support of the National Office for Re-
search and Technology (Hungary).

11/12 Volume 4 (2006)

Realizing QVT with Graph Rewriting-Based Model Transformation Ea

Bibliography

[EEKR99]

[KASS03]

[KNNZ00]

[LLCO5]

[LVAO4]

[OMGa]

[OMGb]

[OMGc]

[OMGd]

[Roz97]

[RS97]

[Tae03]

[VMT]

[VPO3]

H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenbérfandbook on Graph Gram-
mars and Computing by Graph Transformation: Application, Languages and.Tools
Volume 2. World Scientific, Singapore, 1999.

G. Karsai, A. Agrawal, F. Shi, J. Sprinkle. On the Use of Graph Transformation in
the Formal Specification of Model Interpreters. 9(11):1296-1321, 2003.

H. J. Kéhler, U. Nickel, J. Niere, A. dndorf. Integrating UML diagrams for produc-
tion control systems. ICSE '00: 22nd int. conf. on SEPp. 241-251. ACM Press,
New York, NY, USA, 2000.

doi:http://dol.acm.org/10.1145/337180.337207

L. Lengyel, T. Levendovszky, H. Charaf. Constraint Validation Support in Visual
Model Transformation SystemActa Cyberneticd 7(2):339-357, 2005.

J. de Lara, H. Vangheluwe, M. Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in AToM. Journal of Software and Systems Modeling
3(3):194-209, May 2004.

OMG. Meta Object Facility.
WWW.OITIg.0rgy

OMG. Meta Object Facility 2.0 Query/Views/Transformation.
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf

OMG. Model-Driven Architecture.
http://www.omg.org/docs/omg/03-06-01.pdf

OMG. Object Constraint Language.
http://www.omg.org/docs/ptc/03-10-14. pdf

G. Rozenberg-Handbook on Graph Grammars and Computing by Graph Transfor-
mation: FoundationsVolume 1. World Scientific, Singapore, 1997.

J. Rekers, A. Sdirr. Defining and Parsing Visual Languages with Layered Graph
GrammarsJournal of Visual Languages and Computid):27-55, 1997.
citeseer.ist.psu.edu/rekers97defining.html

G. Taentzer. AGG: A Graph Transformation Environment for System Modeling and
Validation. InProc. Tool Exihibition at Formal Methods 2003eptember 2003.

VMTS. Visual Modeling and Transformation System.
http://www.vmts.aut.ome.hu/

D. Varrd, A. Pataricza. VPM: Mathematics of Metamodeling is Metamodeling
MathematicsJournal of Software and Systems Modellin@—24, 2003. In press.

Proc. GraMoT 2006 12/12

http://dx.doi.org/http://doi.acm.org/10.1145/337180.337207�
www.omg.org�
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf�
http://www.omg.org/docs/omg/03-06-01.pdf�
http://www.omg.org/docs/ptc/03-10-14.pdf�
citeseer.ist.psu.edu/rekers97defining.html�
http://www.vmts.aut.bme.hu/�

