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Abstract: Recently, many researchers are working on semantics preserving model
transformation. In the field of graph transformation one can think of tranglatin
graph grammars written in one approach to a behaviourally equivalgrit gram-

mar in another approach. In this paper we translate graph grammarspsyelith

the GROOVE tool to AGG graph grammars by first investigating the set of core
graph transformation concepts supported by both tools. Then, we défiakit
means for two graph grammars to be behaviourally equivalent, and foegheded
approaches we actually show how to handle different definitions of bagiplica-

tion conditions and graph structures. The translation itself is explained bysméan
intuitive examples.

Keywords: graph transformation, bridging languages, preserving semantics, tools

1 Introduction

Models in general are representations of certain structures, fulfillimg swoperties, which may
be given by a specification. Transforming those models can be definedhyways, e.g. by
XSLT style sheets\W3C] developed by the W3C to keep the format but possibly change the
internal structure or semantics. Furthermore the finalization of OMG’s Eyg@QVT RVT]
is underway; there are also implementations, e.g. for Eclipse: GBAI.[ Besides, there is
also graph transformation, putting model transformation on a formal bakestransformation
is defined by rules, which are defined by pure mathematical construttssibg a very intuitive
visual notation. During the last three decades there has been muchtiimeateseloping suit-
able approaches and analysing their properties in means of correcimgssrrency, termination
and confluence. Most of them consider categorical constructs likerthke sdouble, and triple
pushout approach, single and double pullback, but also triple graphrgars $ch94 being
especially suitable for specifying the connections between a source rged taodel. Trans-
forming UML models by graph transformation rules is especially supportékedtool VIATRA
[CHM™02], which is part of the mentioned GMT project.

Again graph transformation systems are models itself, so they can be trdrislateer mod-
els. And there are several tools supporting the definition of a graphfdramegtion system as
well as their simulation and analysis. Some of them also support an expolitei¢o XML
formats like the Graph eXchange Language (or GXL for sh&@§HW, but the problem is to
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import such a model in a tool, which uses a different approach. Eveniihpart is possible,
then the behaviour of the system is not necessarily equal.

Two existing graph transformation tools are GROOVWE[H04, which is mainly developed
for state space generation and model checking, and AGERP9 supporting simulation and
analysis of graph transformation systems. The translation between thers shdhe one hand,
how to bridge gaps between their differences in the formal approaahésn the other hand it
facilitates the elaboration of core concepts of graph transformation irrgefiée main goal of
the translation is the possibility to combine the features of both tools.

There are already special file formats to exchange graphs and wlagh gansformation
systems between tools. GXL supports the exchange of graphs, whiclkedseug. between
FUJABA [NNz00] and PROGRESSch9]. However, its extension GTXLTae0] for graph
transformation systems stores graph transformation systems syntacticatlye laehaviour in
other tools is often far from equivalent. Special attention is asked to entdek in a different
approach, as the tools base on different approaches in general.

In this paper we describe the translation between the mentioned tools GROQWVEGG
and define what it means for graph grammars in both approaches todédghlly equivalent.
Despite the fact that these tools look quite similar when comparing the appsadboth use
SPO - there have been interesting challenges. As GROOVE handles singgis,gre. graphs
with simple edges only, we had to ensure that AGG will not create parallekssddnich it allows
in general. Additionally, the definitions of (negative) application conditioagléferent, slightly
when looking at the mathematical definitions, but complex when trying to trartbiate while
preserving the semantics.

The paper is structured as follows. Setgives a short introduction to the basics of graph
transformation. In SecB8 we introduce the two approaches playing a central role in this paper,
discuss their differences and define an equivalence relation. In&actl Sect5 we elaborate
on the translation from one approach to the other and vice versa, illustthéngecessary steps
using simple examples. We will conclude with a short discussion and someksatenut further
work.

2 Prdiminaries

The foundations of graph transformation were developed in the eaytes, e.g. iInEPS73,
to extend the common formalisms of one-dimensional textual rewriting to a mordeotapel.
In the following years various approaches were defined keepingigragisantage in common —
they automatically preserve the specified graph structure.

In general, a grapts = (N, E,src, tgt) consists of a sétl of nodesand a seE of edgeswith
sourceandtargetfunctionssrc,tgt: E — N. The global set of graphs is denot&dand ranged
over byG, H.

Modelling system states as graphs facilitates the specification of systenmi@vol@Graph
transformation rules are used to intuitively define in what sense the sysirchanges. Such
arulep: L — Rconsists of a graph, (the left-hand-side, or LHS) and a grapy (the right-
hand-side, or RHS) together with a graph morphigmmapping nodes and edgeslgfto those
of Ry, and a set of so-calleapplication condition§AC,, which are supergraphs &f,). The
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application of a graph transformation rydeéransforms a grap®, thesource graphinto a graph
H, thetarget graph by looking for an occurrence dfy, in G (specified by a graph matching
mthat satisfies the extension conditions of/A,) and then replacing that occurrence Wi,
resulting inH. Such a rule application is denoted@s>= H. Here we present the most general
definitions using the SPO approach, which can be restricted to the DP Gaapryy adding two
conditions to the application of a rule: (1) identification and (2) dangling itimmd The former
requires that every element that should be deleted in the source grammlgeone pre-image
in the LHS of the rule; the latter requires that if a nadis deleted, the rule must specify the
deletion of all edges incident to In both approaches transformation rules can be equipped with
appropriate application conditions, which is describedHrT96]. For formal analysis and a
concurrent semantics definition by processes we refdRta97.

Definition1 (Graph Production System)A graph production systel= (#,G) consists of a
set# = {p:L—R|L,Re ¥} of graph transformation rules and a grdphG is said to be the
initial graph

As rules of a graph production system (or GPS for short) may deletesrentik edges of a
graph, the defining morphism consists of two partial functions, which is atelicby a halved
arrow head.

Each graph production systaédspecifies a (possibly infinite) state space which can be gener-
ated by repeatedly applying the graph transformation rules on the gsdpfisg from the initial
graphGp. This results in a@raph transition system

Definition 2 (Graph Transition System)The graph transition system = (S —,|) generated
by a graph production systeh= (#,G) consists of a s of states which are actually graphs
(SC 9); a transition relationr~C Sx Z x |4 — ¥] x S, such thatG, p,m H) €¢— iff there is a
rule applicatiorG 2™ H’ with H' isomorphic taH ; and an initial staté.

3 Approaches

The two approaches for which we define a semantics preserving transla¢idiscussed in this
section. We will mention the formalisms used for representing models anddoifypg their
transformations.

3.1 TheGROOQOVE Approach

The main goal of the GROOVE tooREen04 is to use graphs as a formalism to model system
states and graph transformation rules to specify system behaviour godpenodel check-
ing on state spaces that can be generated by repeatedly applying therrules states. The
main advantage of using graphs for modelling system states, instead ottutsjeas used by
many other model checking approaches, is the possibility to cope with thenitynharacter of
systems more naturall)KRO06].

3/14 Volume 4 (2006)



Translating Graph Transformation Approaches Eﬁ

The Formalism. In GROOVE we support the use of non-typed attributed graphs, where
graphs are set-based models consisting of three distinct sets:Naasetodes a global sel

of labels and a seE C N x L x N of edges Nodes are non-structured elements having a unique
identity; edges, on the other hand, are identified by means of their ents@oid their label,

i.e. for an edge = (ny,l,ny) € E we distinguish itsource label, andtarget denoted byrc(e),
lab(e), andtgt(e). As a consequence, it is not possible to hpaeallel edgesi.e.

Ver, e € E isrc(er) =src(ex) Alab(ey) = lab(ex) Atgt(e)) =tgt(e) = e =&

Currently, GROOVE supports the use of negative application conditiandA€ for short)
in conjunctive form, but on&AC cannot contain more than one connected component. The rule
morphism may be non-injective as well as the matchings to the host grapl3O8R does not
support typing, but uses the edge-labelling as a typing-mechanism instead

For performing graph transformations, GROOVE applies the SPO-agiproa

Input/Output. A GROOVE graph grammar is saved in the GA§HW XML-format. Rules
are saved as single graphs, in which the rule-roles (preserve, ,cletgte, and NAC) are en-
coded in edge-labels by adding structure to the labels. A graph prodsgstem consists of all
the rules in a single directory (as well as its subdirectories). In the futarglan to support the
special-purpose format GTXL.

Special features. The main feature of the GROOVE engine is its ability to generate state
spaces from graph grammars. During state space generation, it doedke occurrence of
isomorphic states. Furthermore, a CTLH87 model checking algorithm has been implemented
checking temporal properties in which graph structures can be usezhais aropositions. In the
future we plan to implement partial order reduction techniques based dlu@oce properties

of transformation rules as well as abstraction techniques which enablerifieation of larger

(or possibly infinite) system models.

3.2 The AGG Approach

According to the complete formalization of the SPO approach by MichaeleL[Low9( in

1990 the AGG tool TER99 was developed to support an editor for graph grammars, which also
offers simulation and analysis capabilities by certain criteria including terminatidnconflu-
ence as the most important ones. Further developments integrated higfeéguets being for
instance attribution and typing. Therefore, AGG builds a basis for vafields, e.g. formal
model transformation controlled by graph transformation, but also theititgfiof visual mod-
elling languages with the possibility of an automatic editor generation, using [Eg4T09.

The Formalism. Similar to GROOVE the AGG tool uses the SPO approach to perform
graph transformations, but the fundamental description of graphsdiftan that in GROOVE.
Graphs with multiple edges between nodes are allowed as long as the multiplictyaiots in
the type graph are fulfilled. The typing itself is handled by a type gfBpWwhich includes all
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node and edge types and for each gr&ahere is a graph morphism G — T to this type graph.

In this way, the type graph defines the general structure of all instaRe#ss are visualized by
separate graphs for the left and right hand side as well as for the ajp@liconditions. The
morphisms of a rule, which define the deletion, preservation, creationcabididlen parts, are
indicated by a unique naming of the nodes. Additionally, negative applicatinditions are

handled differently in comparison to GROOVE.

N<"— | -~ n

N L
=) , N

31 lm n J{ PO l
G N/ m(L) =
(a) Simplified definition oNAGs (=) )

Bi /
G
(b) Complete definition oNACs
Figure 1:NACsin AGG

Fig. 2(a) explains a simplified view ttNACs in AGG. The LHSL is embedded in th&lAC
N, where identifications of parts in LHS are possible. Given a matébr the rule, a negative
application conditiorN is satisfied, if there is no morphishwith additional restrictions from
N to the G making the triangle commutative. This means that the condition forbids a certain
structure around the image bfin G. The morphismi has to be injective on the part of,
which is not reached by and of course identifies the same thingsradoes. In other words,
i is m extended injectively by the remaining elements. Fi) shows the complete formal
version, wheré\’ is created at runtime, if it exists. It represeNtafter identifying the elements
in N according to the identifications iy for the corresponding elements lin Now the rule
is applicable atn, if there is no injective morphismmaking the outer arrows commutinge
non=m. Itis sufficient that the bottom left triangle commutes, becduse m(L) is justm
restricted to its image and therefore surjective. In comparison to GROONé&gthe morphism
i is not necessary injective, this definition NACs is a restriction, but also an extension as
multiple forbidden identifications of elementslircannot be handled in one GROO\NAC.

Input/Output. AGG features several XML-based file formats to exchange graphsranst
formation systems. Internally, AGG uses the GGX format. It can import apdregraphs in
GXL, also used by GROOVE. AGG can also export graph grammars usengpecial format
GTXL which is an extension of GXL for storing entire graph transformatigsteams. Finally,
models generated by Eclipse modelling plug-in Omondo (in OMONDO XMI) caimiperted
by AGG.

Special features. One main advantage of AGG in comparison to other tools is its possibility
to specify the desired graph transformation approach. The DPO abpcaa be used by acti-
vating the dangling and the identification condition. Possible extensions abeitin, typing,
node type inheritance, and multiplicities for the structure part and rule amdiganaa well as
application levels for the control part. Those extensions are also of Hedp wsing the second
advantage of AGG: its analysis capabilities. Critical pairs between rulebeaomputed and
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help to show confluence, while termination can be checked, which carppersed by the us-
age of levels. Finally the simulation part allows applying formal model transition with the
certainty to reach a valid result in means of typing in the target language.

3.3 Behavioural Equivalence

In this paper, graph production systems in the different approackesekted to each other
by defining a bi-directional equivalence (or simulation) relation betweergtaph transition
systems generated by them.

Definition3 (Behavioural Equivalence) Given two graph production systefs= (%1,G1) and
P, = (%#»,G,), their generated graph transition systéms- (S, —1,l1) andT, = (S, —2,12),

respectively, and the translation function we say thaP, is behaviourally equivalento (or
simulateg P, if:

s 20 5.1 iff 3sequencep,...,pp) € tr(p):tr(sy) 2 P s g)

wheres 221 5.1 & ti = (S, p,M,S 1) €=

Restrictions.  In the translation from graph production systems in GROOVE to behaviourally
equivalent ones in AGG, and vice versa, we restrict to those GPSssimgf node or edge-
attribution. Typing in AGG is flattened to labelled-edges in GROOVE. For bofhagehes

we require injective rule-morphisms, while non-injective rule matchings bowed. When
translating GPSs from AGG to GROOVE we requireL — N (see Fig2(b)) to be an inclusion,
because in GROOVE it is only possible to express so catletye-embargogzair-wise.

Trandation Issues. When translating between GROOVE and AGG, we need to pay special
attention to: (1) parallel edges and (2) application conditions. In the GRB&pproach parallel
edges are not supported. For rules it is allowed to specify the creatgpeoific edges without
requiring their absence. The application of such rules identifies the frestdyed edges with
the already existing ones.

On the other hand, when translating AGG rules to GROOVE we need to ine@loecha-
nism which enables the creation of parallel edges. Therefore, we witer 'structured edge’
in GROOVE to reflect the original AGG edges (see FEn Sect.5).

As mentioned in Sect3, both approaches use a slightly different definition of application
conditions. Where GROOVE only allows negative application conditions sontpa single
connected component, AGG supports both positive and negative applicatiditions contain-
ing multiple components. Additionally, in AGG the matchings frorto G via theNACs must be
injective on the elements that are only in th&C, where GROOVE allows any matching. There-
fore, the translation dNACs from GROOVE to AGG is more involved than simply copying. In
the translation from AGG to GROOVE we need to hardACs with multiple components and
make sure that thlAC elements are matched injectively by merge embargoes.
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4 GROOVE to AGG

When translating GROOVE rules to AGG, the basic idea is to keep track ofdxjjeg created
by rules not having a negative application condition which forbids this &mge present already
between the incident nodes. In general, we have to create a number GfrAlBs together
describing the same behaviour as the original rule. This number is (in tist @&se) exponential
in the number of edges created by the GROOVE rule.

The Algorithm. Given a GROOVE rulep, we first take the nodes @f, andR, and create
counterparts iy andRy for each node and build up the rule-morphism. When translating the
edges we have to deal with preserved, deleted, and created edgeéirsTtwo types can be
translated easily. Before taking care of the created edges we firdateatieeNACs. EveryNAC
in a GROOVE rule, in general, results in a seN#Cs in the AGG rule, in such a way that the
AGG NAGs are all possible identifications of tiNAC-only elements with otheNAC elements
from the GROOVE rule.

For the edges that are created we need to perform some additionaschieakleast one of
the incident nodes of the created edge is also created, we can do thetioarsraightforward.
The same holds for the case when the rule contains a NAC prohibiting this éugdl other
situations, we have to copy the AGG rule created so far. The rules willeceesubset of those
edges, contain a correspondiNéC prohibiting them and the rest of those edges are preserved,
instead of creating parallel edges.

Exampled Consider thasROOVE rules depicted in Fig2, modelling a person who can get
a driving licence by attending driving school, but possibly lose it agaime first rule applied
to a person object creates the e@geDLicence at it. As in real life, applying this rule to a
person who already has a driving licence will not create another egtgmibe 0GROOVE not
supporting parallel edges, i.e. one can not gather several driviny:b'se
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o [}
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[®]
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____/ e ———

\________/

attend_driving_school get caught

Figure 2: Rules specifying a person getting and losing a driving licence.

The second rule states that a police officer can catch a person withregdidence breaking
some law. The person will lose his licence in this case. The negative appiicatialition pro-
hibits the rule to be applied when the person is a good friend of the policerfitGROOVE
NACs can be non-injectively matched. In this example, the officer himself coulbebériving
person and assuming most people like themselves, the officer would noirfiselfyi.e. the rule
would not be applicable.

The resulting rules created by the algorithm for the left rule of Eigre shown in Fig3. The
left rule of Fig. 3 shows the rule creating thg@tDLicence-edge with a correspondingAC; the
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right rule represents the case in whible G must preserve the edge when it is already there,
instead of creating a parallel edge.

—_————— e ————— - e m—————— e —————— e ——————

/LHS ‘ |RHS otDLicence‘ NAGC gotDLicence, (LHS gotDLicence, I/RHS gotDLicence,
| I| | | | =1 |
| _Person I | | I
\ \ |1 Person J\ |1 Person ' \ Person V \ Person ‘

attend_driving_school[1] attend_driving_school[2]

Figure 3: AGG rules created for the ridtenddriving_school

Fig. 4 shows the two rules together behaving equivalent to the right rule oPFighe upper
rule creates thea ught-edge the lower rule preserves it.

get _caughtf2]

Figure 4: AGG rules created for the rudet caught

Simulation. In order to prove the correctness of the translation we show behaviequia-
lence as defined in Definitiody i.e. a derivation can be performed in AGG if and only if there is
a corresponding derivation in GROOVE. The next theorem also shaw#hik simulation starts
with the same graph, consists of one step, and ends with the same resultihg gra

Theorenb  Given a derivatiors =™ G’ of a grammar irGROOVE there is exactly one cor-
responding derivation starting @t which can be performed iINGG. Furthermore, the resulting
graph inAGG is againG' and if the rule is not applicable BROOVEit is not in AGG via the
corresponding match.

Nfi] «— L~ R N <% TR
GROOVE: mi PO i" — AGG: w| PO \Lo
Gl p GZ G]_>?G2

Proof. (Sketch). LelG; == G, be a derivation in GROOVE as depicted above. The type graph
in AGG is just the initial graph. When translating one rule to a set of new rukesight hand
side is preserved and also the nodek ahd the nodes of the differeNACs NJi] are translated
identically. NewNACs and additional edges may be added.
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L%R N[l] N )L
P Nipps ™o

(a) Construction ofrf (b) Construction oNACs N

Figure 5: Creation o andNACs

A NAC Ni] is transformed to a set MACs for each possible overlapping NAC only el-
ements with elements iN[i], which are allowed to be identified. This is shown in Figb),
whereN(i] is one of the newNACs with i : L — N[i]. Additionally, for each merge embargo
NAC between two nodes ib, one separat’lAC is created, forbidding this identification. In the
following, the newNACs are denoted bM|j].

Additional edges have to be created when preserving edges founddplaigstead of creating
parallel ones. Therefore, we consider the edgesvhich are created by the rutebetween two
existing nodes, and which are not forbidden by &AC.

Ec={e€ Er\r(EL) | src(e) e r(VL), tgt(e) e r(VL), YN[j] : e Egy}

For each subsdf, C E; containing the edges to be preserved, a new rule is created, which
extends the identical rule by the following regulations.

e E, =E WE,, s.t. this rule can be applied if the new edges occ@,in
e Enjj) =Ey; ¢ E., therefore, thdNACs are extended by the new edges,

e Vec E:\E;: create an extrlAC N, V. =W, En. = EL W {e}, so adding an extrlAC
to prevent the application of the rule, if more edge&gétre present i, and

e ' =rUidg, N = A Uidg, this way the rule morphisif and the morphisms thlfi] are
extended by the new edges.

e If edges are added, the functiosre andtgt for L’ and theNACs are extended according
to the morphisms, n; for the nodes anskc, tgt of R.

The partial morphisnm. will be used to extend the originah and it is defined for all edges
of the biggest’ C E; and their source and target nodes, s.t. the triangle inGf&) commutes:
m¢or = m. All rule instances, which contain an edge E’ in a newNAC are not applicable
and cannot produce a parallel edge. Only the rule ®itas an extension df in L is applicable
and as theses edges are preserved, no parallel edge is produtedhd this holds also, ih
is not injective. The matching is extended by the new edgés: muU (mgor). When applying
this rule viam' the result is the same as in GROOVE, because the rule deletes and produces

the same, except that the preserved edgé&s are not created. The transformati@n% G
can be executed in AGG and because of the transh#ez$, only if the corresponding rule was
applicable in GROOVE via its match. Ol
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5 AGG to GROOVE

In the translation from AGG to GROOVE we need to introduce a mechanism in @ROt0
simulate the parallel edges that are possible in AGG. Next to that, we needdz ltlae injec-
tivity of NAC-only elements antlACs consisting of several components. Since the latter cannot
be simulated in GROOVE by one rule with sepafdf&Cs, we have to create a set of GROOVE
rules, which together behaving equivalent (see DefiniBpnThe number of GROOVE rules
together describing the equivalent behaviour is exponential in the nushb&Cs.

The Algorithm. From an AGG rulep, we can first simply iterate over the noded gfandR,
just as we described in the above algorithm. When iterating over the edgexed to create
the structure shown in Fig for every edge we encounter. For evépC Nin the AGG rule
we have to perform some computations. First of all, theGeebf connected components of
N needs to be determined, since for everg Cy (with 0 <i < n andn being the number of
connected componentsiN) we have to create a separate rplesuch that. , =L, andRp = Rp
andNAC,, = ¢i. Furthermore, we have to ensure that every elemeNA®,, \ Ly, is mapped
injectively. This is achieved by creatifdACs for all possible identifications ™AC-only nodes
with all other nodes in thallAC. Finally, we have to add an extNAC for each original node,
forbidding it to match to a proxy node.

Figure 6: Graph structure in GROOVE to represent parallel edges

We have to admit that representing parallel edges as shown if k&g one serious drawback.
Since we use the SPO approach to perform graph transformations, géfietisource (or target)
node of the original edge in AGG, will not result in the deletion of the entirgeestructure
in GROOVE. This means that in such cases, the resulting graph in GROOV Eastthins
somegarbage However, since these ‘dead-edges’ will never be involved in déosivaithey can
actually be ignored or collected and removed by special rules.

Examples The rule in Fig.7 creates a nod®R with antrue-edge for two formula& and?2. It
can only be applied, if not both of the matched formulas hafeése-edge. Logically, this could
be expressed as(—1 A —2) which is equivalent ta.\ 2.

’ \ ’

/LHS . (RHS [Zom 5

| : I I false false |
create_true_OR | |1:Formulal | = sub, sub I

|
\ | '\ |1 :Formula| |22 Formula] | '\ |1 :Formula| (22 Formula| :
/ N / ~_ /

N ——

true A\
|
|
|
|

/

: NAC
|

|

—_——— e e — —_———— e —

Figure 7: AGG rule for disjunctive formulae

The algorithm creates the two rules shown in Fdg.The main focus of this conversion is
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on solving theNAC with two components and possibilities of creating parallel edges.NR@
is split meaning that a disjunction of two formuladeand?2 is evaluated tarue, if one of them
is true. Naturally, if both are, both generated rules are applicable, but lead &athe result:
—(=1A=2) == (=1) V(-2).

—_——————— —_—— e = _—— - —

/ \ / src \
i HHS i i RS |Src:/TO\E\3rcl%| = |E i TA(?false | :
create_true_OR[1] | | :>i [ sub |[ _sub | i i src |tgt i
:\\ /;: :\|1 :Fo‘r%T:itIa| |2t£:n|§olrmula| ) ,: l\ | -Formula| /I:
:’/LHS \‘: :/RHS [_OR % - true |\} ://TA(.;” | \\:
create_true_OR[2] i i :}i | Jﬂl‘l\sms_ub | i i sr-cﬂ tgt i
:l\ /;: :\|1 :Folﬁz:a| |2t?t|§o|rmula| ,: :\ [2:Eormual /;:

—_——_—————t | N T T T T T T T T = N~ —

Figure 8: GROOVE rules created for the raleatetrue OR

Simulation. Analogue to the previous section the next theorem shows the behaeouigh-
lence of a system in AGG and its translation in GROOVE, according to Defiriitidimerefore,
a derivation can be performed in AGG if and only if there is a corresporgigmiyation in the
translated system in GROOVE. Again this simulation is stronger as it starts asdath the
same graph (up to the different edge-structure) and it consists of nalgtep.

Theoren? Given a derivatiofs =2 G’ of a grammar ifAGG there are corresponding deriva-
tions starting at the translated graptG), which can be performed BROOVE Furthermore,
all resulting graphs il ROOVE are againr(G') and if the rule is not applicable iRGG it is
not in GROOVE via the corresponding match.

/

N/[k] Nk )L/ r’ R N[l] n )L r R
AGG: | Po |0 — GROOVE: m, ro o
G, G, G5 G

p/

Proof. (Sketch). LetG; =™ G, be a derivation in AGG with type graphG. The set of labels
L =VrecWErcW{p,src,tgt} contains all node and edge types and a specialfiadicating that
a node in GROOVE is a proxy for modelling parallel edges as visualized ir6Figet G’ be
one ofN'[k], L', R andG] from AGG, its corresponding graph in GROOVE is constructed
as follows:

¢ Vg = Vg WEg, nodes are all original nodes and edges,

e Ec CVexLxVg,Ec={(n1,n)|neVe, | =typegn)}U{(e p,e)|ecEg}U{(esrcsrc(e)) | ec
Ec } U{(etgt,tgt(e)) | ec Eg }, new naming edges and new edges with source and target
distinction,
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Translating Graph Transformation Approaches Eﬁ

The rule morphisnm = (ry,rg) is constructed as followsi, (v) =r1'(v),veV,,

{ (r'(e),l,r'(e)) , e=(el,e),l ¢ {srctgt}

(re(e),srer,(n)) , e=(esrcn)
(re(e).tat,ry(n) , e=(etgt,n)

The morphisms; andm are created analogously. For each nodg ira NAC is generated,
which forbids a proxy edgée, p,e) on such a node ih. To prevent identification oRAC only
elements, neWNACs are created by putting merge embargo edges betweBiA@lbnly nodes.
Finally theNACs of AGG containing several components are divided and distributed tbdden
rules using each combination of components of the diffekgx@s. Therefore, several new rules
may be applicable alonm, but all lead toG, = tr(G5). If a NACin AGG forbids the application
there is no rule applicable via the corresponding match in GROOVE, betlaeB\Cs of a
specific rule imply that alNACs in AGG are satisfied. Ol

I’E(E) =

6 Discussion and Conclusion

Discussion. In this paper we have shown that rules cannot be translated one-toetmeen
GROOVE and AGG rules behaving equivalent. In particular cases,\lwywhe semantic do-
main may not allow to create parallel edges of a particular kind. Take fangebeaa file access
protocol, where processes can have different rights for acceadileg In such systems it does
not make sense to store an access right twice. GROOVE automatically tisgreonstraint,
while in AGG one can include a type graph in a graph production system tdnahigraphs and
rules must have a typing morphism. In this setting, the type graph could dohst@number
of specific edges. Then, applying a rule could make the graph invaliéh buth cases that rule
is not applicable.

Conclusion. By comparing two graph transformation approaches, one comes to theofoots
both approaches. In this paper we have shown how to transform partgnaph production
systems specified in GROOVE to behaviourally equivalent ones in AGG medversa, by
transforming their building blocks: the transformation rules. We have exgaldiow to deal with
two concepts on which both approaches differ essentially, being pagdiyels and application
conditions. Furthermore, we have illustrated how to apply the mentioned algsrith simple
and intuitive examples. The major part of the translation has already beenmisied.

Further Work. The given particular translation considered on the one hand diffeaedaries
of graphs: graphs with simple or parallel edges, and on the other hdeckdifdefinitions for the
used control structures for the transformation: negative applicaticditoams with partly differ-
ent interpretation and expressiveness. It should be possible to ekenebrk on both, more
differences in the graph and the control structure of transformaticdersgs For example the
concepts of attribution and typing with inheritance seem to be a straightridmexéension and
they are already available in AGG. Furthermore, the generalization to aylitla-morphisms
instead of injective morphisms only is worth to investigate. Generalizing be@#@OVE and
AGG is difficult, since every other approach brings its own underlyinghdism. The main
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motivation for this work was, eventually, to be able to make optimal use of tierésaprovided
by both approaches, i.e. the analysis techniques implemented in AGG and tbeatnecking
algorithm(s) implemented in GROOVE. In order to reach this, both tools needdaxtéreded to
support export and import to GXL, or better GTXL.
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