
Electronic Communications of the EASST
Volume 4 (2006)

Proceedings of the
Second International Workshop on
Graph and Model Transformation

(GraMoT 2006)

Search Trees for Distributed Graph Transformation Systems

Ulrike Ranger and Mathias L̈ustraeten

13 pages

Guest Editors: Gabor Karsai, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Search Trees for Distributed Graph Transformation Systems

Ulrike Ranger and Mathias Lüstraeten

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University

Ahornstrasse 55, 52074 Aachen, Germany
[ranger|matlue]@i3.informatik.rwth-aachen.de

Abstract: Graph transformation systems, like PROGRES and Fujaba, can be used
for modeling software systems of various domains, and support the automatic gener-
ation of executable code. A graph transformation rule is executed only if the pattern
of the transformation’s left-hand side is found in the graph. The search for the pat-
tern has an exponential worst-case complexity. In many cases, the average complex-
ity can be reduced using search tree algorithms in the code generation phase. When
modeling distributed graph transformations, the communication overhead between
the coupled applications largely affects the pattern matching performance. There-
fore, we present an approach for adapting existing search tree algorithms for the
efficient search of distributed graph patterns. Our algorithm divides the distributed
graph pattern into several sub-patterns such that every sub-pattern affects solely the
graph of exactly one coupled application. The results of these sub-patterns are used
to determine the match for the entire graph pattern.

Keywords: Graph Transformations, Search Trees, Distributed Systems

1 Introduction

Graph transformation systems (GTS), like PROGRES [Sch91] and Fujaba [FNTZ00], can be
used to model software systems in a visual way. Additionally, they facilitate the generation of
executable code, like C or Java, for the modeled software system. Several large projects of var-
ious domains have been developed using GTS, but they lack support for specifying distributed
systems. In our project, we extend GTS for appropriate concepts including the visual specifica-
tion of distributed graph transformations, which affect several applications simultaneously.

To support distributed graph transformations, we have to consider three aspects: First, the
syntax and semantics of distributed graph transformations have to be defined (specification level).
Second, a concept for the generation of efficient code has to be developed considering special
requirements like communication costs (code generation level). Third, a runtime environment
must be designed and implemented, which supports the execution of the generated applications
(runtime level). This paper focuses on the code generation level. The specification level is
described in [RSM06].

Our code generation approach for distributed graph transformations is based on the existing
search tree algorithmsof PROGRES and Fujaba. Search trees allow to reduce the complex-
ity for searching graph patterns specified within a graph transformation, as this search has an
exponential worst-case complexity.

1 / 13 Volume 4 (2006)

mailto:[ranger$|$matlue]@i3.informatik.rwth-aachen.de

Search Trees for Distributed Graph Transformation Systems

Regarding distributed graph transformations, also the high communication costs within a dis-
tributed system have to be considered within the search trees. Therefore, we adapt the code
generation algorithm by the following approach: The distributed graph pattern specified within
a graph transformation is divided into several sub-patterns, such that every sub-pattern affects
solely the graph of exactly one coupled application. These sub-patterns are sent to the coupled
applications, thus reducing the communication costs in comparison of querying the applications
for every single remote element of the pattern. As sub-patterns may depend on formerly queried
pattern elements, the dependencies to other sub-patterns have to be analyzed. Thus, the sub-
patterns are executed parameterized with former results, and their results determine the match of
the entire distributed graph pattern.

The paper is structured as follows: InSection 2we shortly introduce distributed graph trans-
formations considering a simple Publishing Trade as an example. Search trees, which are used
to generate efficient executable code for local graph transformations, are described inSection 3.
Section 4presents our approach for adapting the presented search tree algorithm to distributed
graph transformations. A summary and an outlook on future work are given inSection 5.

2 Specifying Distributed Graph Transformation Systems

In this section, we shortly introduce the visual modeling of distributed graph transformation
systems at specification level [RSM06]. This comprises the graph schema of the distributed
system, which will be described inSubsection 2.1, and the visual specification of the dynamic
behavior presented inSubsection 2.2.

In our approach, a distributed system is modeled by different specifications, each modeling
one module of the software system. At runtime, each specification is executed separately in an
application storing the according host graph1. These applications are coupled at runtime by ex-
ecuting distributed graph transformations, which affect several applications simultaneously. The
specificator only has to develop appropriate distributed transformations, as the GTS generates
adequate source code, and the runtime environment automatically performs their execution.

2.1 Graph Schema of a Distributed Graph Transformation Systems

To illustrate our concepts, we use a simplePublishing Tradeas example, whose static structure
is depicted inFigure 1. Here, we assume that a book publisher already has an existing module
Publisher, managing allBooks and theirAuthors2. As thePublisher has decided to sell hisBooks
in an online shop, a new modulePublisher Shop for this purpose shall be developed, using the
existing specification of thePublisher module. The newPublisher Shop manages the necessary data
for selling theBooks of thePublisher includingCustomers and their accordingOrders. Additionally,
a Customer can have a wish list for desiredBooks, which is modeled by thewishes-edge. For
advertisingBooks, thePublisher Shop memorizes theAuthors liked by theCustomers (likes-edge)
when aCustomer has bought aBook.

1 Until now, our approach has the restriction that every specification is executed exactly once within a distributed
system. We are developing appropriate concepts to fill this gap including the introduction ofroles for executed
applications and the usage of adequaterole restrictionswithin graph transformations.
2 For the sake of simplicity, everyBook is written by exactly oneAuthor.

Proc. GraMoT 2006 2 / 13

ECEASST

uses

Publisher

<e> hasWritten

1

n

Publisher Shop

has

n

1

contains
nn

wishes

n

n

likes nn

Customer
+ Name
+ Account

Author
+ Name
- Address

<e>

Book
+ Name
+ Price
+ Sellings

<e>

Order
+ Amount

hasWritten

1

Author
+ Name

Book
+ Name
+ Price
+ Sellings

n

Specification Specification

Legend:

Self-defined edge type
Used edge type

Self-defined node class
Used node class

<e> Export stereotype

Graph Schema Graph Schema

Figure 1: Graph schema for the distributed Publishing Trade

ThePublisher and thePublisher Shop are modeled by different specifications shown inFigure 1.
As the Publisher manages all information about theBooks and theAuthors, thePublisher Shop

needs access to these data. Therefore, thePublisher defines anexport interfaceby using the
stereotype<e>. Each graph schema element marked with this stereotype forms the interface of
the specification. An exported node class consists of the class name and the public attributes and
methods defined within the node class.

The exported specification interface can beusedby other specifications. To distinguish be-
tween used and self-defined schema elements, the used elements are depicted as striped rectan-
gles resp. dashed arrows within the specification. Although the used graph schema elements
areread-only, they can be applied within the specification in nearly the same way as local, self-
defined schema elements. E.g. edges can be defined between self-defined and used node classes
or just between used node classes. With this mechanism, thePublisher Shop of our example inte-
grates thePublisher interface by defining new edges, e.g. thewishes-edge between the self-defined
Customer node class and the usedBook node class realizing the wish list.

2.2 Distributed Graph Transformations

The dynamic behavior of a distributed system has to be specified withindistributed graph trans-
formations. In distributed transformations, edges and nodes of used types can be applied in the
same way as of self-defined types but they address remote objects instead of local objects. At
runtime, every node and edge only exists once within a distributed system, i.e. in the host graph
of the application, which is based on the specification defining its type. Coupled applications
only storereference nodeson remote nodes instead of copying remote nodes with their data into
the local host graph. They are explicitly inserted into the runtime graphs storing the location of
their according remote nodes. As reference nodes are only helper structures for accessing remote
nodes, they are implicitly managed by the runtime level and are not regarded in the graph trans-
formations. Their usage supports the realization of self-defined edges incident to remote nodes.
In contrast to reference nodes, we do not store reference edges.

A remote node (and thus an appropriate reference node in the local host graph) can be created

3 / 13 Volume 4 (2006)

Search Trees for Distributed Graph Transformation Systems

Publisher Shop

Specification

::=

A : Author

B

C

O : Order
hasWritten wishes has

O
Amount +=

B.price ;

A C

hasWritten

contains

has

likes

transformation buyBook (C:Customer, B:Book) =

Host Graph

B1 O1

C1

Host Graph

B1

A1 C1

O1
a +=

Legend:

Edge of a s.-d. edge type
Edge of an used edge t.

Specification: Host Graph:
Node of a self-
defined node class

Node of an
used node class

Local edge

Local node

Reference node

B1.p;

B

Sellings ++ ;

Figure 2: Graph transformationBuyBook

within a distributed graph transformation by using the according node only in the transforma-
tion’s right-hand side. This concept corresponds to creating a local node of a self-defined type.
Analogously, the deletion of a remote node (and thus of the corresponding reference node) is
triggered by using the according node only on the left-hand side of the transformation.

Furthermore, a reference node is automatically created in the local host graph if an appropriate
node is used in the left-hand side of the transformation, and no adequate reference node is locally
available, although an according remote node exists. In this case, the remote application defining
the node’s type is searched for an adequate node, and an according reference node is created.
Additionally, all reference nodes are automatically deleted if the actual remote node is deleted.
Operations specified on remote objects, like the deletion of a node or an attribute assignment, are
propagated transparently to the corresponding remote application3. To ensure the consistency of
the host graphs by remote graph transformations, we will introduce arule engine(cf. Section 5).

Figure 2shows an example of the distributed graph transformationbuyBook of the Publisher

Shop. In this transformation, aCustomer buys aBook (given as input parameters), which has
been on theCustomer’s wish list. This leads to the deletion of thewishes-edge as it is not longer
needed. Furthermore, the two edgeslikes andcontains are created. The attributeSellings counting
the number of sales ofB is incremented. Below the transformation, two example host graphs
of the Publisher Shop are depicted showing the host graph before and after the execution of the
transformation. According to the transformation edges are created and deleted and a new refer-
ence nodeA1 for theAuthor A is inserted. In thePublisher’s host graph only the attributeSellings

of nodeB1 is modified, which is not shown inFigure 2.

3 For propagating remote operations and the management of references, we develop an appropriate plug-in for the
database DRAGOS [Böh04], which is used by PROGRES (and soon by Fujaba) prototypes for storing the graphs.

Proc. GraMoT 2006 4 / 13

ECEASST

3 Search Trees

After modeling a software system with a GTS, appropriate code has to be generated. As the
matching of the left-hand side of a graph transformation has an exponential worst-case complex-
ity, PROGRES and Fujaba usesearch trees[Zün96] for their code generation. In this section, we
will describe these search trees using the code generation plug-in CodeGen2 [GSR05] of Fujaba
as an example. As we present the current mechanism, we ignore the remote nature of operations
concerning a coupled application.

3.1 General Structure of Search Trees

To generate executable and efficient code for graph transformations, every transformation is
translated into a search tree. A search tree is a tree, havingoperationsas nodes andprecondition-
relations between an operation and its child operations. The search tree contains all operations,
which have to be performed for the modeled graph transformation in an appropriate execution
order. In this paper, we use a more general notion of a search tree, since not only search op-
erations are used. CodeGen2 uses over 20 different operations, covering constraint checks and
operations for creating and deleting nodes.

In general, the operations describe the runtime semantics of modeling elements of a transfor-
mation. There is no1-to-1-mapping between operations and modeling elements. One modeling
element may result in several different operations in the search tree, because its runtime seman-
tics is precisely defined in the code generation phase. On the other hand, one operation may also
cover several modeling elements, as the semantics of one modeling element may be determined
only in combination with other elements.

For translating the graph transformation into a search tree, every node of the transformation’s
left-hand side (graph pattern) has to be identified in the host graph. As a first step, a search tree
covering all bound nodes4 is created. The second step regards all unbound nodes calculating a
spanning forestfor the graph pattern. For every bound node, the forest contains a tree having the
bound node as root node. Every unbound node has to be searched in the host graph by traversing
an edge of the pattern incident to a bound node. The unbound node together with its edge is
inserted into the tree of the corresponding bound node. After building the complete spanning
forest, for all unbound nodes of the spanning forest asearch operationrepresenting the unbound
node and the traversed edge is inserted into the search tree. This operation is placed as child of
the operation, which binds the edge’s source node.

Note that Fujaba does not allow isolated unbound nodes in graph patterns, because it uses the
heap of the JAVA runtime environment instead of a graph database. Other graph transformation
systems like PROGRES support this feature by querying the underlying database for nodes of
a specific type. For the sake of simplicity, we do not regard the search of isolated nodes and
patterns although this is covered by our approach using DRAGOS [Böh04].

After inserting the search operations into the search tree, the remaining modeling elements of
the graph transformation (like edges and attribute assertions) have to be inserted. The position of

4 A bound nodeis a node, which already has been uniquely identified in the host graph, for example nodes given
as input parameters of a transformation. In contrast,unbound nodesare nodes, which have to be searched in the host
graph. If an appropriate node for the unbound node is found, this node becomes a bound node.

5 / 13 Volume 4 (2006)

Search Trees for Distributed Graph Transformation Systems

Publisher Shop

Specification

A : Author

B O : Order
hasWritten wishes has

contains

likes

query checkConsistency
(B:Book, C:Customer) =

C

(a) Graph query

CheckBound
"B"

CheckBound
"C"

Search
"A", "hasWritten"

Search
"O", "has"

CheckEdge
"wishes"

CheckEdge
"contains"

CheckEdge
"likes"

RootNode

(b) Search tree

Figure 3: Graph querycheckConsistency

such an operation is determined by the following overall invariant of the tree: All preconditions
of an operation must be fulfilled by preceding operations. To satisfy this invariant, the search tree
may have to be reorganized according to the invariant. The complete algorithm for the search
tree generation is shown in [GSR05].

To illustrate the generation of search trees, we introduce the querycheckConsistency depicted
in Figure 3(a). This query may be used for consistency checks, e.g. to test if thewishes-edge has
been deleted when theBook has been bought by theCustomer and is thus part of anOrder.

Figure 3(b)shows a possible search tree forcheckConsistency. The tree generation starts with
two CheckBound-operations forB andC, which are inserted as children of theRootNode. A Check-

Bound-operation checks the validity of a bound node, i.e. that the node is not equal tonull .
To determine all search operations needed to cover the unbound pattern nodes, a spanning

forest is computed consisting of two trees: One tree withB as root node and the other tree with
C as root node. For our example, we assume that the spanning forest is given by all nodes with
thehasWritten- and thehas-edge. According to this assumption, the search operations forA and
O using thehasWritten- resp. thehas-edge are inserted into the search tree.

To cover the remaining edges, namelycontains, wishes andlikes, CheckEdge-operations have to
be inserted. ACheckEdge-operation must have at least those operations in their parent hierarchy,
which cover the source and the target node of the edge. To fulfill this invariant, the tree may have
to be reorganized before theCheckEdge-operations can be inserted.

In our example, theCheckBound-operation of nodeC (CheckC) is moved below theCheck-

Bound-operation of nodeB (CheckB) and all children of CheckB are moved below CheckC5.
This reorganization is needed for the correct insertion of theCheckEdge-operation of thewishes-
edge into the tree. All otherCheckEdge-operations can be inserted without any reorganization.

3.2 Cost Model

A graph transformation may have several different valid search trees, because there are several
ways to cover all modeling elements by operations. To evaluate the different search trees, the

5 These reorganizations are possible, because siblings in the search tree are independent of each other.

Proc. GraMoT 2006 6 / 13

ECEASST

Table 1: Cost table for search operations of querycheckConsistency

index source edge target cost

1 C has O 25
2 B contains O 25
3 B hasWritten A 1
4 C likes A 25

code generation uses acost modelpresented in the following.
Search operations may have different runtime costs, which can be estimated by exploiting

e.g. the cardinalities of the graph schema. Search operations using ato-n-edge for matching an
unbound node are very costly compared to those using ato-1-edge. Using ato-1-edge, the exact
candidate node can be directly determined, whereas a search operation using ato-n-edge leads
to n possible candidate nodes.

However, the costs for search operations can only be estimated, since the exact cardinality for a
to-n-edge in the host graph is not known during the code generation phase. Therefore, CodeGen2
and the PROGRES code generation use default values for the expected costs. [VVF05] presents
an approach for adapting the edge cardinalities by analysis of sample instance graphs leading to
very precise cost estimations. So far, this approach is not considered by CodeGen2 and thus not
regarded in this paper.

Even by considering only the static graph schema, the runtime behavior can be greatly im-
proved. Before generating the search tree, the costs for each operation of the transformation are
estimated. Afterwards, a minimum spanning forest for the graph pattern is computed, which
determines the preliminary search tree. This preliminary tree is incrementally extended by oper-
ations until all modeling elements are covered choosing the cheapest operation in each step.

Considering our examplecheckConsistency (cf. Figure 3(a), Figure 3(b)), there are four possi-
ble search operations (cf.Table 1), which have to be considered for the search tree generation.
According to the target cardinalities of the edges, the costs for the search operations are either 1
or n. Note that this cost model is highly simplified and n has to be a real value greater than 1.
For this purpose, CodeGen2 contains differentcost strategiesfor assigning concrete cost values.
The default cost strategy for search operations based onto-n-edges assumes a cardinality of 50.
As result, it computes a cost of 25, since this is the value having 1 as lower and 50 as upper
cardinality.

To minimize the costs of the search tree and thus get the best runtime efficiency of the gen-
erated code, the algorithm chooses the cheapest search operations until all unbound nodes are
covered. In our example, search operation 3 is chosen first due to the smallest costs. Since
node O can be covered by two operations with the same costs, the algorithm chooses non-
deterministically between the search operation 1 and 2. Given that operation 1 is chosen, the
search tree depicted inFigure 3(b)is computed.

7 / 13 Volume 4 (2006)

Search Trees for Distributed Graph Transformation Systems

Table 2: Modified cost table for search operations of querycheckConsistency

index source edge target cost

1 C has O 25
2 B contains O 25
3 B hasWritten A 51
4 C likes A 25

4 Search Trees for Distributed Graph Transformations

In Section 2we presented our syntax and semantics for modeling distributed graph transforma-
tions. To execute such a transformation, it has to be translated into executable code. Therefore,
we extend the CodeGen2-approach presented inSection 3.

In the following, only the code generation for queries is shown, because queries have the
greatest impact on the runtime efficiency. A distributed query requiresremote operations, like
remote check operations and remote search operations. Each remote operation affects exactly
one application which is calledhome application. After searching the distributed pattern, the
transforming operations are performed, which require no modifications of CodeGen2.

4.1 Remote Offset

Remote operations have additional costs compared to their local correspondents, which results
from the communication delay between the participating applications. The additional cost is
calledremote offsetand depends on the network infrastructure. The remote offset is configurable
for each pair of applications within a distributed system. By using a different cost strategy for
remote operations, the offset is integrated into CodeGen2.

Revisit the queryconsistencyCheck introduced inSection 3. Every search tree that is computed
without regarding a remote offset uses thehasWritten-edge as first search operation. Thus, a
remote operation is performed even it is not necessary, sinceA can be found locally vialikes.

In many cases, a remote operation is more costly than every local operation. Considering this
in our cost model, we introduce a remote offset for remote operations, which is larger than the
maximal cardinality of any local edge. Thus, assuming a cost of 25 for a search operation using
a to-n-edge, we set the remote offset to 50. The modified costs are depicted inTable 2.

Figure 4shows the search tree for the querycheckConsistency, which is computed according
to the modified cost table (cf.Table 2). Search operation 4 is chosen first instead of search
operation 3 due to the remote offset. The only remote operation in the modified search tree is the
CheckEdge-operation oflikes, which is depicted striped in the search tree.

4.2 Boundary Nodes

In many cases, there exists a number of operations, which have the same home application.
Instead of formulating queries for every operation, operations may be processeden blocleading
to one single query. Thus, the number of communication steps can be heavily reduced.

The crucial question is how to cut the graph pattern into separate sub-patterns (remote blocks),

Proc. GraMoT 2006 8 / 13

ECEASST

CheckBound
"B"

CheckBound
"C"

Search
"A", "likes"

Search
"O", "has"

CheckEdge
"wishes"

CheckEdge
"contains"

CheckEdge
"hasWritten"

RootNode

Figure 4: Modified search tree for querycheckConsistency

such that every sub-pattern concerns solely one application. Additionally, several blocks for
the same application may be needed, if contained elements are dependent on non-contained
elements.

To illustrate this fact, the graph queryAdvertiseAuthor is depicted inFigure 5. The query can
be used to advertise anAuthor to a givenCustomer C, using thelikes-relation of anotherCustomer

with the same interests. Starting at the only bound nodeC, the unbound nodes are searched in
the following order:B, A1, C1 andA2. This is the only possible order, as every search for an
unbound node needs at least an edge incident to a bound node. Because of these dependencies,
two different remote blocks are necessary for the same application, i.e. thePublisher.

To define the boundary of a block, we introduce the notion ofboundary nodes. A boundary
node is a node which needs at least one remote operation for its identification, and is incident to a
local edge. InFigure 5, B andA2 are boundary nodes due to the remote attribute check. Without
the attribute check, the nodesB andA2 can be covered locally. A block is defined as the largest
connected graph pattern, which is limited by boundary nodes and covers only remote operations
concerning the same application. E.g. two blocks exist in the queryAdvertiseAuthor: Block 1
contains the attribute check of nodeB, the nodeA1 and thehasWritten-edge. Block 2 contains the
attribute check ofA2. These blocks are sent to their home application separately preserving this
order. They areparameterizedwith the results of local searches, in the example byB resp.A2.

Publisher Shop
Specification

B : Book

A2 : Author
wishes

likes

likeshasWritten

query AdvertiseAuthor
(C:Customer, n:String, m:String, out A2:Author) =

A1 : Author C1 : Cust.
Name=n;

C
Name!=m;

Figure 5: Graph queryAdvertiseAuthor

9 / 13 Volume 4 (2006)

Search Trees for Distributed Graph Transformation Systems

linearize(Node RN, TreeSet LO){
RO := all direct subtrees of RN rooted by remote operations concerning one HA
LO := LO + all remaining subtrees of RN
if (RO != /0){

for (i=2 to |RO|) move ROi below RO1
RN := root node of RO 1
linearize(RN, LO)

} else{
for (each l ∈ LO){

insert l below RN
RN := root node of l
linearize(RN, /0)

}
}

}

Listing 1: Pseudocode oflinearize

4.3 Realization of Remote Blocks

In the following, we describe how the creation of remote blocks can be computed after generating
the search tree with CodeGen2 (cf.Section 3) considering the remote offset. We developed an
algorithm for creating remote blocks using the generated search tree as input. This algorithm
uses the following two propositions: LetR be the set of all remote operations concerning the
same home application forming one remote block. Then

1. every element ofR is contained in a common subtree with rootRN6,
2. every element ofR is reachable byRN by only traversing other elements ofR.

We do not provide a formal proof of these propositions, but want to discuss their plausibility.
To 1: Since a remote block is connected, all elements ofR are somehow dependent on each

other. Due to the tree structure of the search tree, these operations must have a common root op-
eration. This root operation must cover a boundary node. Then, the elements ofR are contained
in the subtrees having a child ofRN as their root.

To 2: This is valid, because all remote operations inside the remote block are dependent on
each other.

In the following, we present the algorithm depicted inListing 1, which calculates the remote
blocks. It rearranges all remote operations of the search tree in a chain, from which the blocks
for the remote applications and their parameterization can be directly derived. The algorithm
needs two sets, which are defined as follows: LetRObe the set of direct subtrees ofRN, which
are rooted by a remote operation concerning the same home application asRN. If RO is empty,
RO is recomputed containing all direct subtrees ofRN, which are rooted by a remote operation
concerning the home application of one direct child ofRN. Let LO be a set of subtrees within
the search tree, which aggregates all direct subtrees ofRN not contained inRO.

The algorithmlinearize (cf. Listing 1) starts with the root node of the search tree asRN
andLO = /0. If RO 6= /0, all subtrees contained inROexcept ofRO1 are moved below the root
node ofRO1. Then the algorithm is called with the root node ofRO1 as new parameterRN and

6 The following abbreviations are used:RN for root node, andRO for remote operations havingRN as direct
predecessor.

Proc. GraMoT 2006 10 / 13

ECEASST

Op3 : CheckAttr
"name==n"

RootNode

Op1 : CheckBound
"C"

Op5 : Search
"C1", "likes"

Op7 : CheckAttr
"name!=m"

Op6 : Search
"A2", „likes"

RootNode

Op1 : CheckBound
"C"

Op3 : CheckAttr
"name==n"

Op4 : Search
"A1", "hasWritten"

Op2 : Search
"B", "wishes"

Op2 : Search
"B", "wishes"

Op4 : Search
"A1", "hasWritten"

Op5 : Search
"C1", "likes"

Op6 : Search
"A2", „likes"

Op7 : CheckAttr
"name!=m"

Figure 6: Search tree for queryAdvertiseAuthor

LO. If RO= /0, all subtrees contained inLO are inserted belowRN and the algorithm is called
recursively for all of their root nodes asRN andLO := /0.

Due to proposition 1, every subtree containing a remote operation of blockR is considered.
According to proposition 2, every remote operation is considered by the algorithm. All needed
rearrangements are possible, because siblings – and hence disjoint subtrees – in the search tree
are independent of each other. The algorithm terminates, as every node of the search tree is used
exactly once as parameterRN.

linearize does not improve the worst-case complexity of a distributed pattern matching. A
worst-case scenario consists of many remote blocks each covering only one remote operation. On
the other hand, a best-case scenario consists of a chain ofm remote nodes, which are connected
by to-n-edges, and the chain is connected by ato-1-edge to a local node. Without optimization,
at mostn(m−1) communication steps are necessary to determine the match of the remote block,
sincem−1 links have to be traversed and there existn possible candidates for each node in the
pattern. With the block creation, the whole query can be done within one communication step.

We will now illustrate the behavior oflinearize considering the queryblockExample, whose
search tree is shown inFigure 6. The algorithm starts withRN= RootNode andLO = /0. Since
all subtrees ofRN start with a local operation,RO= /0 andLO = {ST(Op1)}7. Due toRO= /0,
linearize is called withRN= {Op1} andLO= /0. Now,ROandLO are recomputed, resulting
in RO= /0 andLO = {ST(Op2)}. linearize is called again withRN = Op2 and LO = /0.
RO is recomputed as{ST(Op3),ST(Op4)} andLO remains /0. The search tree is rearranged,
i.e. ST(Op4) is moved belowOp3. Afterwards, linearize is called withRN = Op3 and
LO = /0. The algorithm has already computed the desired chain, and thus performs no further
rearrangements of the search tree. Now it contains two chains of remote operations representing
two remote blocks (cf.Subsection 4.2).

7 ST(Op1) stands for subtree with root nodeOp1.

11 / 13 Volume 4 (2006)

Search Trees for Distributed Graph Transformation Systems

5 Conclusion

In this paper, we presented our approach for generating efficient code for distributed graph trans-
formations. Our approach is based on existing search tree algorithms used by the code gener-
ations of PROGRES and Fujaba. The usage of search trees is advantageous for reducing the
average complexity of searching graph patterns, as this search has an exponential worst-case
complexity. To reduce also the communication costs arising in distributed systems, we extended
the existing code generations: We have integrated a remote offset for remote operations in the
cost heuristics giving priority to the execution of local operations. Additionally, we extract sub-
patterns from the generated search tree, which are sent to the appropriate remote applications.
Thus, the remote applications are not queried for every single element of the graph pattern, de-
creasing the communication overhead.

As the coupled specifications export only schema parts, distributed graph transformations may
be modeled, which violate certain local constraints. Thus, the execution of distributed graph
transformations may lead to inconsistent host graphs within the distributed system. Therefore,
we will introduce arule engineas next step, which will facilitate the execution ofrepair actions
[Win00]. Furthermore, this engine will be able to prevent the creation or deletion of a certain
node as described in [HEET99].

Bibliography

[Böh04] Boris Böhlen. Specific graph models and their mappings to a common model. In
John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, 2nd International Workshop
on Applications of Graph Transformations with Industrial Relevance, AGTIVE’03,
volume 3062 ofLNCS, pages 45–60. Springer-Verlag, Heidelberg, Germany, 2004.

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story diagrams:
A new graph rewrite language based on the Unified Modelling Language and Java.
In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors, 6th International Workshop on Theory and Application of Graph Transfor-
mations, TAGT’98, volume 1764 ofLNCS, pages 296–309. Springer-Verlag, Heidel-
berg, Germany, 2000.

[GSR05] Leif Geiger, Christian Schneider, and Carsten Reckord. Template- and modelbased
code generation for MDA-tools. In Holger Giese and Albert Zündorf, editors, 3rd

International Fujaba Days, volume tr-ri-05-259 ofTechnical Report. University of
Paderborn, Germany, 2005.

[HEET99] Reiko Heckel, Hartmut Ehrig, Gregor Engels, and Gabrielle Taentzer. A view-based
approach to system modeling based on open graph transformation systems. In Hart-
mut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors,
Handbook on Graph Grammars and Computing by Graph Transformation: Applica-
tions, Languages, and Tools, volume 2, pages 639–668. World Scientific, Singapore,
1999.

Proc. GraMoT 2006 12 / 13

ECEASST

[RSM06] Ulrike Ranger, Erhard Schultchen, and Christof Mosler. Specifying distributed graph
transformation systems. 2006. Presented at the 3rd International Workshop on Graph-
Based Tools, GraBaTs’06, in Natal, Brazil.

[Sch91] Andy Scḧurr. Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen. PhD-Thesis, RWTH Aachen University, 1991.

[VVF05] Gergely Varŕo, Dániel Varŕo, and Katalin Friedl. Adaptive graph pattern matching
for model transformations using model-sensitive search plans. In Gabor Karsai and
Gabriele Taentzer, editors, 1st International Workshop on Graph and Model Trans-
formation, GraMoT’05, volume 125 ofENTCS. Elsevier Science, 2005.

[Win00] Andreas Winter.Visuelles Programmieren mit Graphtransformationen. PhD-Thesis,
RWTH Aachen University, 2000.

[Zün96] Albert Zündorf. Graph pattern matching in PROGRES. In Janice E. Cuny, Hartmut
Ehrig, Gregor Engels, and Grzegorz Rozenberg, editors, 5th International Workshop
on Graph Grammars and Their Application to Computer Science, volume 1073 of
LNCS, pages 454–468. Springer-Verlag, Heidelberg, Germany, 1996.

13 / 13 Volume 4 (2006)

	Introduction
	Specifying Distributed Graph Transformation Systems
	Graph Schema of a Distributed Graph Transformation Systems
	Distributed Graph Transformations

	Search Trees
	General Structure of Search Trees
	Cost Model

	Search Trees for Distributed Graph Transformations
	Remote Offset
	Boundary Nodes
	Realization of Remote Blocks

	Conclusion

