Electronic Communications of the EASST

Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools
(GraBaT's 2006)

Generating Meta-Model-Based Freehand Editors
Mark Minas

13 pages

Guest Editors: Albert Ziindorf, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Generating Meta-Model-Based Freehand Editors

Mark Minas'

'Mark.Minas @unibw.de, http://www.unibw.de/Mark.Minas/
Institut fiir Softwaretechnologie
Universitdt der Bundeswehr Miinchen, Germany

Abstract: Most visual languages as of today (e.g., UML) are specified using a
model in a meta-model-based approach. Editors for such languages have supported
structured editing as the only editing mode so far. Free-hand editing that leaves the
user more freedom during editing was not supported by any editor or editor frame-
work since parsing has not yet been considered for meta-model-based specifications.
This paper describes the diagram editor generator framework DIAMETA that makes
use of meta-model-based language specifications and supports free-hand as well as
structured editing. For analyzing freely drawn diagrams, DIAMETA parses a graph
representation of the diagram by solving a constraint satisfaction problem.

Keywords: Diagram editors, meta-modelling

1 Introduction

Each visual editor, i.e., tool for editing data structures visually, implements a certain visual lan-
guage. Several approaches and tools have been proposed to specify visual languages and to
generate editors from such specifications. These approaches and tools can be distinguished by
the way (1) the diagram language is specified, and by the way (2) the user interacts with the editor
and creates resp. edits diagrams. These distinguishing features are considered in the following:

1. Traditionally, some kind of grammar has been used to specify visual languages for editors
providing free-hand as well as structured editors. Some examples are extended positional
grammars in VLDESK [CDPOS5] and constraint multiset grammars in PENGUINS [CM95]
for free-hand editing, and hypergraph grammars in DIAGEN [Min(02, Min04] for free-
hand as well as structured editing. Grammars describe a language syntax by rules that
are applied, starting at a certain starting symbol, to derive valid sentences of the language.
Syntactically analyzing diagrams means trying to find a sequence of rule applications that
derive the diagram or some representation of it. Communication between diagram editor
and application requires building an abstract representation of the diagram by attribute
evaluation, i.e., additional specification and evaluation efforts are necessary.

However, most current graph-like languages, i.e., the majority of visual languages, at
least in computer science, have a model as (abstract) syntax specification. Models are
essentially class diagrams of the data structures that are visualized by diagrams. This
approach is generally called meta-model-based since the syntax of models is specified
by models, too. Some examples for meta-model-based approaches are AToM> [LVA04],
Pounamu [ZGHO04], and MetaEdit+ [MetO5]. There are several reasons for the success

1/13 Volume 1 (2006)

mailto:Mark.Minas@unibw.de
http://www.unibw.de/Mark.Minas/

Generating Meta-Model-Based Freehand Editors E}

of this approach. One of them is the training of users in specifying data structure with
class diagrams. On the contrary, writing grammars appears to be much more complicated.
Moreover, the visual modeling languages of the Unified Modelling Language (UML) are
specified by models, too. Extending such visual languages then requires to use and extend
their models instead of writing grammars.

2. When considering user interaction and the way how the user can create and edit dia-
grams, structured editing is usually distinguished from free-hand editing. Structured ed-
itors offer the user some operations that transform correct diagrams into (other) correct
diagrams. Free-hand editors, on the other hand, allow to arrange diagram components
from a language-specific set on the screen without any restrictions. The editor has to find
out whether the drawing is correct and what is its meaning. Therefore, structured editors
offer more guidance to the user which may make editing easy. However, free-hand edi-
tors leave more freedom to the user when she edits diagrams. Allowing for (temporarily)
incorrect diagrams may make the editing process even easier.

There are many examples of grammar-based tools supporting structured editing and free-hand
editing. However, all of the meta-model-based approaches offer structured editing only. We
are not aware of any tool supporting free-hand editing although that editing mode would offer
more freedom to the user. A recent paper has shown that analyzing the correctness of a diagram
and determining its meaning based on a meta-model-based approach can be efficiently solved by
transforming this task into a constraint satisfaction problem [Min06]. Based on this approach, the
tool DIAMETA is described in the following. Diagram languages must be specified by models,
and DIAMETA generates visual editors offering structured editing as well as free-hand editing
from such specifications. Generated editors, therefore, allow for easy free-hand editing and, at
the same time, easy meta-model-based language specifications.

The next section describes the syntax specification with models that are class diagrams of the
edited object structure. Moreover, the basic concepts of syntax analysis as described in [Min06]
are outlined. Section 3 introduces the common editor architecture of each editor built using
DIAMETA and the diagram analysis when editing a diagram in free-hand mode based on the
concepts presented in section 2. Section 4 presents details of the DIAMETA environment, in
particular on specification and code generation. Section 5 concludes the paper.

2 Syntax Specification and Analysis Based on Class Diagrams

Class diagrams are primarily used for specification of object structures that are created by in-
stantiation of classes and associations between them. Subclassing is used to create subtypes that
inherit all features of their superclasses. Additional constraints on the object structures may be
used to restrict the set of all valid object structures even more. The Unified Modeling Language
UML allows for expressing such constraints using the Object Constraint Language OCL. In this
paper, we are considering diagram editors that allow visually creating and modifying such ob-
ject structures. Hence, class diagrams together with additional constraints are the specification
of the corresponding diagram language. However, we will ignore additional constraints in the
following in order to simplify discussions.

Proc. GraBaTs 2006 2/13

Eg ECEASST

avcomponents
==yrepresenis=» H Circle
H AbstractNode | reducec nodePararr
- = tadius: EDouble
= text EString 0.1 0.1 | o xPas: EDauble
= yPos: EDouhble
s¥Components
| | <=yassigneds» H Arrow
. parent child ’—‘—‘ reducec edgePararr .
\ B SingleNode | \ E Parent | H Child | = xPosT: EDoubh
1 1.7 0.1 0.1 | = ¥Pos2 EDoubh
= yPos1: EDoubh
= yPos?: EDoubl
‘ H Reot | | H InnerNode | | H Leaf |

Figure 1: Model (i.e., class diagram) of trees

Class diagrams specify object structures, but they do not specify a diagram language syntax
directly. Syntax specification by class diagrams is limited to those diagram languages that pro-
vide a reasonably simple mapping between a diagram and its underlying object structure. This
is particularly true for graph-like diagram languages that have an almost one-to-one relation be-
tween diagram components and objects. DTIAMETA requires that a diagram is easily and uniquely
mapped to a graph that resembles its object structure.! When drawing a diagram in free-hand
mode, its representing graph is created by the editor.

We use simple trees as an example in the paper. The class diagram in Fig. 1 contains class
AbstractNode as the abstract base class of a tree’s nodes. Each node has a member attribute zext”.
Concrete classes are Root, InnerNode, Leaf, and SingleNode. Abstract superclasses Parent and
Child represent nodes that act as parents resp. children. Please note that InnerNode is a subclass
of both classes. Parent-child-relations are represented by the association between Parent and
Child with the roles child resp. parent. Please note the cardinalities; they specify that a parent
must have at least one child, and a child must have exactly one parent. The classes Circle and
Arrow represent aspects of the concrete syntax aspect of the visual components as described in
section 3.2.

The class diagram does not completely specify trees. It does not prevent object structures from
being circular, and data structures may be disconnected. The first problem could be solved by
turning the association into a composite association which, by definition, prohibits circles. The
second problem, however, can be described by additional constraints only. We omit them and,
therefore, specify sets of trees instead of trees.

Fig. 2 shows a valid tree and the UML object diagram of its object structure. The node names
are also used as object identifiers. Checking the represented tree for syntactic correctness means
checking whether the object structure can be created by instantiation as described by the class
diagram.? That is obviously true here, i.e., the object structure and the represented diagram are

U This process of mapping a diagram to an object structure is performed by the reducer as described in section 3.4.

Since the reducer is rather powerful, DIAMETA is not restricted to graph-like diagrams, only. For instance, hierarchi-
cal diagrams like statecharts are supported as well as Nassi-Shneiderman diagrams.

2 Fig. 1 is a screenshot of the EMF model as used in DIAMETA based on the Eclipse Modeling Framework
(EMF) [EMFO06]. EMF type ESt ring corresponds to the Java type St ring.

3 The classes Circle and Arrow are ignored until section 3.2.

3/13 Volume 1 (2006)

Generating Meta-Model-Based Freehand Editors Eﬁ

() o (=) —C=)
Node
text=a
parent
child Abstract

b:InnerNode
text=b
parent parent
child child

° o c:Leaf d:Leaf
text=c text=d

Figure 2: Sample tree, its object diagram with respect to Fig. 1, and its instance graph.

Abstract Abstract
Node Node

Circle

syntactically correct. However, root node, inner node and leaves of a tree cannot be distinguished
visually. Actually, each leaf node may be turned into an inner node by adding an outgoing edge to
another node. Free-hand editors, therefore, cannot unchangeably bind an internal representation
to the visual component. The editor rather has to reconsider this binding after each diagram
modification. In the example of Fig. 2, an editor can deduce from context information that a is a
root node, b an inner node, and ¢ as well as d are leaves. The editor has to perform this task by
first binding the common type of all possible internal representations, i.e., class AbstractNode in
the example, to each visual component. The obtained data structure (called instance graph in the
following) is similar to object diagrams with the exception of the not yet determined concrete
component types.

Correctness of the instance graph and, hence, of the diagram is checked by deducing the con-
crete types and examining whether the resulting object structure fits to the class diagram. In the
predecessor paper [Min06], this problem is expressed as the problem of finding a special kind of
graph morphism from the instance graph to the graph schema that represents the class diagram.
Searching for the concrete types of the instance graph nodes is actually a constraint satisfaction
problem (CSP). Preprocessing of this CSP requires linear time in the size of the analyzed dia-
gram. Experiments had shown that backtracking was never required after preprocessing the CSP,
i.e., syntax analysis is efficient when using meta-model-based syntax specifications.

3 DIAMETA editors

DIAMETA provides an environment for rapidly developing diagram editors based on meta-
modelling. Diagram editors developed using DIAMETA (such editors are called “DIAMETA
editors” in the following) always support free-hand editing. Each DIAMETA editor is based on
the same editor architecture and contains code that is specific for this editor and its diagram
language. The editor architecture is described in the following whereas section 4 outlines how
DIAMETA'’s specification and code generation tool, the DIAMETA DESIGNER, is used to gener-
ate the specific code of an editor.

3.1 DIAMETA editor architecture

Since DIAMETA is actually an extension of the diagram editor generator DIAGEN [Min02,
Min04], DIAMETA editors have a structure similar to that of DIAGEN editors. Fig. 3 shows

Proc. GraBaTs 2006 4/13

E} ECEASST

Layouter
(optional)

Highlights syntactically correct sub-diagrams

Diagram Modeler Instance Model
graph checker
X modifies reads
N L,
0y
Drawing) Graph
tool transformer
(optional) Teads

selects selects
operation operation

Editor user

Figure 3: Architecture of a diagram editor based on DIAMETA.

the structure which is common to all DIAMETA editors and which is described in the following
paragraphs. Ovals are data structures, and rectangles represent functional components. Flow
of information is represented by arrows. If not labeled, information flow means reading resp.
creating the corresponding data structures. The structure of DIAMETA editors is very similar to
DIAGEN editors; they most prominently differ in the method of abstract syntax specification and,
hence, syntax analysis. Moreover, DTAGEN requires a specification of attribute evaluation for
creating abstract diagram representations. Since class diagrams as abstract syntax specification
are also a specification of abstract diagram representations, DTAMETA does not require such an
additional specification.

The editor supports free-hand editing by means of the included drawing tool which is part
of the editor framework, but which has been adjusted by the DIAMETA DESIGNER. With this
drawing tool, the editor user can create, arrange and modify diagram components which are spe-
cific to the diagram language. Editor specific program code which has been generated by the
DIAMETA DESIGNER from the language specification is responsible for the visual representa-
tion of these language specific components. The drawing tool creates the data structure of the
diagram as a set of diagram components together with their attributes (position, size, etc.).

The sequence of processing steps necessary for free-hand editing starts with the modeler and
ends with model checker (cf. Fig. 3): The modeler first transforms the diagram into an internal
model, the graph model. The reducer then creates the diagram’s instance graph that is analyzed
by the model checker (cf. section 2). This last processing step identifies the maximal subdia-
gram which is (syntactically) correct and provides visual feedback to the user by drawing those
diagram components with a certain color; errors are indicated by missing colors. However, the
model checker not only checks the diagram’s abstract syntax, but also creates the object structure
of the diagram’s syntactically correct subdiagram.

The results of this step are not always uniquely defined, depending on the specification. The
model checker cannot always uniquely deduce the concrete object types. However, this is consid-
ered a specification error. Moreover, there is not always a unique maximal syntactically correct
subdiagram. DIAMETA then selects an arbitrary one. This behavior is sufficient in most cases

5/13 Volume 1 (2006)

Generating Meta-Model-Based Freehand Editors E}

since wrong parts of the diagram are emphasized anyway.

The layouter modifies attributes of diagram components and thus the diagram layout based on
the (syntactically correct subdiagram’s) object structure. The layouter is necessary for realizing
syntax-directed editing: Structured editing operations modify the graph model by means of the
graph transformer and add or remove components to resp. from the diagram. The visual repre-
sentation of the diagram and its layout is then computed by the layouter. However, layouters and
structured editing are not considered in this paper.

The processing steps necessary for free-hand editing are described in more detail in the fol-
lowing.

3.2 Diagram components

Each diagram consists of a finite set of diagram components, each of which is determined by
its attributes. For the diagram language of trees, there are nodes and arrows. Each node is a
circle whose position is defined by its xPos and yPos coordinates, its size by a radius attribute,
and its inscribed text by a text attribute. Each edge is an arrow whose position is defined by
its two end points, i.e., by two coordinate pairs xPosl and yPosl resp. xPos2 and yPos2. All
of these attributes are necessary for completely determining a diagram component, e.g., when
storing it to a file or retrieving it again. However, only some of these attributes are essential for
a diagram’s abstract syntax, too. In the tree example, only the inscribed text of a node is part of
the abstract syntax. Position and size attributes are solely member of the concrete syntax. This
fact is modelled in the tree model in Fig. 1, too: Attribute fext is a member of AbstractNode; the
other attributes do not belong to any class of the abstract syntax. However, they are attributes
of the two additional classes Circle resp. Arrow which describe the diagram components and,
therefore, belong to the concrete syntax, indicated by the stereotype ((vcomponent)).* These
concrete syntax classes belong to the diagram language’s model for two reasons:

1. In order to specify all attributes in a single model, not only attributes from the abstract syn-
tax are modelled in the diagram language model, but also the attributes from the concrete
syntax.

2. The object structure as result of model checking is an instance of the diagram language
model in terms of its class diagram. In order to contain all the information about the
diagram, its concrete syntax attributes have to be represented, too. This is necessary for
computing the layout based on the object structure, but also to store an object structure
and to be able to retrieve the complete diagram again.

Note that a node’s attributes are spread over two classes: Circle and AbstractNode. The con-
nection between both classes is indicated by an association annotated with stereotype ((vrepresents)).
The code generator of the DIAMETA DESIGNER, when generating code for visual components,
uses attributes of classes annotated with ((vcomponent)) stereotypes and those which are con-
nected by associations annotated with ((vrepresents)) stereotypes to store a visual component’s
attributes.

4 DIAMETA uses the three stereotypes ((vcomponent)), {(vrepresents)), and ((vassigned)) to annotate class dia-

grams and to control DIAMETA’s code generator. The meaning of these stereotypes are outlined in the following.

Proc. GraBaTs 2006 6/13

Eg ECEASST

o]

border

.t
border at to - from from - to at border -

Figure 4: Graph model of the tree in Fig. 2.

Note also that there is an association between classes Arrow and Child that is not annotated
with ((vrepresents)). Arrow instances do not have a direct representative in the abstract syntax
like Circle instances that are represented by instances of AbstractNode subclasses. An Arrow
instance is best assigned to a Child object as it has an incoming arrow. Since Arrow instances
do not have a text attribute, stereotype ((vrepresents)) does not make sense for the association
between classes Arrow and Child either. Instead, stereotype ((vassigned)) is used as annotation
for this kind of associations.

Diagrams are checked for their correctness in terms of their instance graphs. The main differ-
ence between instance graph and object diagram of a diagram are the not yet determined concrete
classes of the object diagram. However, instance graphs are the result of a translation process
from the diagram’s concrete syntax, i.e., mainly the arrangement of is diagram components. This
process is described in the following, and it requires an intermediate, uniform representation of
the analyzed diagram, its graph model.

3.3 Graph model

Arrangements of diagram components can always be described by spatial relationships between
them. For that purpose, each diagram component typically has several distinct attachment areas
at which it can be connected to other diagram components. An arrow representing an edge of a
tree, e.g., has its two end points as attachment areas. Connections can be established by spatially
related (e.g., overlapping) attachment areas as with trees where an arrow has to end at the border
of a node’s circle in order to be connected to the node.

DIAMETA uses directed graphs to describe a diagram as a set of diagram components and the
relationships between attachment areas of “connected” components. Each diagram component
is modeled by a node (called component node) whose type is determined by the kind of rep-
resented diagram component. Attachment areas are also modeled by nodes (called attachment
nodes). Edges (called attachment edges) connect component nodes with attachment nodes for
all attachment areas that belong to a component. Edge labels are used to distinguish different
attachment areas. Relationships between attachment areas are modeled by edges (called rela-
tionship edges) connecting the corresponding attachment nodes. Relationship edges carry the
kind of relationship as edge type.

Fig. 4 shows the graph model of the tree in Fig. 2. Attachment nodes are depicted by black
dots, component nodes by rectangles. Thin arrows show attachment edges, thick arrows relation-

7/13 Volume 1 (2006)

Generating Meta-Model-Based Freehand Editors Eﬁ

fff

,,

fff

circle |<i ------ Oi ---------- »| Circle

:
' nodeParam
i border H

reduced

P — 0 ,| Abstract

Node

Figure 5: Reducer rules for trees.

ship edges. The only relationship type at indicates that the end point of the corresponding arrow
is at the border of the connected circle.

3.4 Instance graph

The reducer is responsible for translating the graph model to the corresponding instance graph.
The translation process has to be specified in the DIAMETA DESIGNER in terms of triple graph
grammar rules [Sch94], called reducer rules here. The rules specify the simultaneous construc-
tion of the graph model as well as the instance graph. Additionally, it builds up a third graph
which contains the information on correspondence of nodes of the graph model to nodes of the
instance graph. Fig. 5 shows the two rules specifying the reducer for the diagram language of
trees. Reducer rules operate on triple graphs: the graph model, the correspondence graph, and
the instance graph, from left to right.

The left rule indicates that whenever a circle component node together with its attachment
node and their attachment edge is added to the graph model, corresponding nodes are added
to the instance graph. The added nodes represent an AbstractNode instance for the attachment
node of the tree node, and a Circle instance for its component node. The latter models the set
of those attributes of a tree node that do not belong to the abstract syntax (cf. section 3.2). The
added edge represents the link as an instance of the association between classes AbstractNode
and Circle in Fig. 1. The right rule adds an Arrow node representing the arrow attributes to the
instance graph if an arrow component is added to the graph model. Right-hand side nodes e and
f are the AbstractNode nodes that have been added by the other reducer rule already. Moreover,
two edges are added to the instance graph that correspond to the two associations of the Child in
Fig. 1.

3.5 Model checking

Finally, the instance graph is checked against the diagram language’s model, its class diagram,
as described in [Min06] and briefly outlined in section 2. By solving a constraint satisfaction
problem, the model checker tries to identify a maximal subgraph of the instance graph that cor-
responds to the class diagram. This subgraph is used to instantiate the class diagram; the obtained

Proc. GraBaTs 2006 8/13

Eg ECEASST

Editor developer

operates [EmF
" | Modeller
Editor EMF
90@ Specification Model
7
%,
- |
et - P‘\/
. DiaMeta 1 EMF
DiaMeta Designer ’ Compiler

7’

1
1 P

1 _r---

h ’

1

1

1

1

DiaMeta ,’ Generated Generated
editor 1 program program
framework 1 code code
\ i /I i 2,
\ " " "

------- Diagram editor

Figure 6: Generating diagram editors with DIAMETA.

structure of Java objects is an abstract representation of the diagram that can be used when inte-
grating the editor in a larger environment. The subgraph, moreover, corresponds to a subgraph
of the graph model and, hence, a subset of diagram components that form a syntactically cor-
rect subdiagram. Based on this information, feedback to the user is provided as described in
section 3.1.

4 DIAMETA Environment

This section completes the description of DIAMETA and outlines its environment supporting
specification and code generation of diagram editors that are tailored to specific diagram lan-
guages. The DIAMETA environment shown in Fig. 6 consists of an editor framework and the
DIAMETA DESIGNER. The framework is an extension of the DIAGEN framework and, as a col-
lection of Java classes, provides the generic editor functionality which is necessary for editing
and analyzing diagrams. In order to create an editor for a specific diagram language, the editor
developer has to provide two specifications: First, the abstract syntax of the diagram language
in terms of its model, and second, the visual appearance of diagram components, the concrete
diagram language syntax, the reducer rules and the interaction specification.

DIAMETA uses the Eclipse Modelling Framework EMF [EMFO06] for specifying language
models and generating their implementations. A language’s class diagram is specified as an
EMF model that the editor developer creates by using the EMF modeller. Several tools are
available as EMF modeller, e.g., the built-in EMF model editor in the EMF plugin for Eclipse, or
EclipseUML by Omondo [Ecl05]. The EMF compiler, being part of the EMF plugin for Eclipse,
is used to create Java code that implements the model. Fig. 1 shows the tree class diagram as an
EMF model. The EMF compiler creates Java classes (resp. interfaces) for the specified classes.

The editor developer uses the DIAMETA DESIGNER for specifying the concrete syntax and
the visual appearance of diagram components, e.g., that tree nodes are drawn as circles with

9/13 Volume 1 (2006)

Generating Meta-Model-Based Freehand Editors Eﬁ

. DiaMeta Designer
EMF Compiler

ecore model editor

clztshseers I Arrow I I Arrow |
J - other
other : : classes..
classes.. | Circle |—| Circle |
EClass |

Figure 7: Generated Java classes from the specification.

View & Control

inscribed name and tree edges as arrows. The DIAMETA DESIGNER generates Java code from
this specification. This code, together with Java code created by the EMF compiler and the editor
framework, implement an editor for the specified diagram language.

Fig. 7 shows Java classes and packages that are taken from the framework resp. that are
generated by the EMF compiler and the DTAMETA DESIGNER for our example of tree diagrams.
The EMF compiler creates the package model’ that contains all classes corresponding to the
language’s EMF model. The DIAMETA DESIGNER generates the package edifor (or an other
chosen name) together with the classes that are responsible for visualizing diagram components,
interacting with them in the editor, and language specific classes for diagram analysis.

Note that two classes Circle resp. Arrow are created — one in package model and one in pack-
age editor each. Together, they establish a Model-View-Controller pattern of the diagram com-
ponents and the diagram: The classes in package model created by the EMF compiler represent
the model aspect whereas the classes in editor created by the DTAMETA DESIGNER represent
the view and controller aspects.

The classes in package model implement the EMF model and, hence, the abstract syntax of the
specified diagram language. However, the EMF compiler does not only generate these classes,
but also code that sets up a reflective model representation at start-up time as shown in Fig. 8.
The reflective model representation represents the EMF model using Ecore, EMF’s counterpart
of the OMG MOF [Obj06]. This Ecore model allows to inspect the EMF model, i.e., the abstract
diagram at editor runtime. In terms of the meta-modelling hierarchy, the abstract syntax of a
specific diagram is on the My level. Its EMF model, i.e., the class diagram, is on the M; level.
Ecore is the model of all EMF models and, hence, on the M, level. These Ecore classes of
the M, level are instantiated at start-up time such that these instances provide a runtime data
structure representing the specified EMF model. The model checker makes use of this runtime

5 The EMF compiler actually creates several packages. To avoid cluttering of the figure, only a single package is

shown here.

Proc. GraBaTs 2006 10/13

EE ECEASST

ecore model editor

other

I Arrow I I Arrow |

lasses., other other
EClass classes..] | [Gircle —— Circle | Lclasses..,

| | | | Model
lat start-up 1editing 1editing Instances
Reflective quel Editor State
Representation
reducing

CSP
solver

Instance Graph
uses

Abstract Diagram
(Java object structure)

Figure 8: Using the reflective model representation for checking the diagram’s syntax by con-
straint satisfaction.

data structure in order to inspect the EMF model and to find all possible concrete classes for each
node of the instance graph and all possible associations for each edge in the instance graph.

5 Conclusions

The paper has described DIAMETA, a tool for generating visual editors that support free-hand
and — at the same time — structured editing. However, structured editing has not been considered
in this paper. The new contribution of DIAMETA and this paper consists of the combination
of free-hand editing and a diagram language specification based on a meta-modelling approach.
Earlier to this paper, meta-model-based editors had been restricted to structured editing.

The paper has described the architecture of visual editors generated by DIAMETA, and dia-
gram analysis that checks the correctness of freely drawn diagrams and translates them — if they
are correct — into some object structure. However, there are still unsolved questions. The pre-
decessor of DIAMETA, DIAGEN, that used a grammar-based syntax specification, could easily
identify maximal subdiagrams that are syntactically correct; DIAMETA with its model-based
syntax specification and its syntax analysis based on a constraint satisfaction problem does not
yet provide as satisfying results as DTAGEN.

Moreover, DIAMETA does not yet support additional constraints on the object structures. Such
constraints are required if the diagram language is not fully specified by a class diagram. It is
planned to allow for constraint specification using OMG’s OCL and to add an OCL interpreter
to DIAMETA.

The current DIAMETA implementation makes use of EMF for modelling diagram languages
and for providing an implementation. The language of EMF models is specified by an EMF
model, too. An apparent application of DIAMETA, hence, is generating an editor for EMF
models; only the specification by the DIAMETA DESIGNER is yet missing. Such an editor would

11/13 Volume 1 (2006)

Generating Meta-Model-Based Freehand Editors E}

automatically create Ecore instances when creating EMF models. The EMF compiler could be
used without any further efforts for immediately generating code from such models.

Since EMF is a rather restricted meta-modelling framework, current work investigates OMG’s
MOF 2.0 as an alternative and the MOFLON plugin [Ame04] for the Fujaba tool [NZ00]. Using
MOF instead of EMF has the further benefit that the visual languages of the UML are already
specified by a MOF model. Hence, generating editors for those languages will become easier.
Essentially, only the concrete syntax and the reducer rules have to be specified.

Bibliography

[Ame04] C. Amelunxen. A MOF 2.0 Editor as Plugin for FUJIABA. In Giese et al. (eds.), Proc.
2nd International Fujaba Days. Volume tr-ri-04-253, pp. 43-48. 2004.

[CDPO5] G. Costagliola, V. Deufemia, G. Polese. Towards Syntax-Aware Editors for Visual
Languages. Electronic Notes in Theoretical Computer Science 127(4):107-125, Apr.
2005. Proc. Workshop on Visual Languages and Formal Methods (VLEM 2004).

[CM95] S. S. Chok, K. Marriott. Automatic Construction of User Interfaces from Constraint
Multiset Grammars. In Proc. 1995 IEEE Symp. on Visual Languages, Darmstadt, Ger-
many. Pp. 242-249. IEEE Computer Society Press, Sept. 1995.

[Ecl05] EclipseUML on the Omondo web site. http://www.omondo.com/, 2005.
[EMF06] EMF, Eclipse Modeling Framework web page. http://www.eclipse.org/emt/, 2006.

[LVAO4] J. de Lara, H. Vangheluwe, M. Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in AToM?3. Software and Systems Modelling 3(3):194-209,
Aug. 2004.

[Met05] MetaEdit+ documentation on the MetaCase web site. http://www.metacase.com/,
2005.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on Hyper-
graph Transformation. Science of Computer Programming 44(2):157-180, 2002.

[Min04] M. Minas. VisualDiaGen — A Tool for Visually Specifying and Generating Visual
Editors. In Pfaltz et al. (eds.), Applications of Graph Transformation with Industrial
Relevance, Proc. 2nd Intl. Workshop AGTIVE’03, Charlottesville, USA, 2003, Revised
and Invited Papers. Lecture Notes in Computer Science 3062, pp. 398—412. Springer-
Verlag, 2004.

[Min0O6] M. Minas. Syntax Analysis for Diagram Editors: A Constraint Satisfaction Problem.
In Celentano and Mussio (eds.), Proc. of the Working Conference on Advanced Vi-
sual Interfaces (AVI’2006), May 23-26, 2006, Venice, Italy. Pp. 167-170. ACM Press,
2006.

Proc. GraBaTs 2006 12/13

E

ECEASST

[NZ00]

[Obj06]

[Sch94]

[ZGHO04]

J. Niere, A. Ziindorf. Using Fujaba for the Development of Production Control Sys-
tems. In Nagl and Schiirr (eds.), Int. Workshop on Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE’99), Selected Papers. Lecture Notes in
Computer Science 1779, pp. 181-191. Springer, Mar. 2000.

Object Management Group. Meta Object Facility (MOF) Core Specification. Version
2.0 edition, Jan. 2006. Document - formal/06-01-01.

A. Schiirr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science.
Lecture Notes in Computer Science 903, pp. 151-163. Springer Verlag, Heidelberg,
1994.

N. Zhu, J. Grundy, J. Hosking. Pounamu: A Meta-Tool for Multi-View Visual Lan-
guage Environment Construction. In Proc. 2004 IEEE Symposium on Visual Lan-
guages - Human Centric Computing (VL/HCC’04). Pp. 254-256. 2004.

13/13

Volume 1 (2006)

	Introduction
	Syntax Specification and Analysis Based on Class Diagrams
	DiaMeta editors
	DiaMeta editor architecture
	Diagram components
	Graph model
	Instance graph
	Model checking

	DiaMeta Environment
	Conclusions

