Electronic Communications of the EASST

Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools
(GraBaT's 2006)

Object Oriented and Rule-based Design of Visual Languages
using Tiger

Claudia Ermel, Karsten Ehrig, Gabriele Taentzer, and Eduard Weiss

12 pages

Guest Editors: Albert Ziindorf, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Object Oriented and Rule-based Design of Visual Languages
using Tiger

Claudia Ermel’, Karsten Ehrig’, Gabriele Taentzer’, and Eduard Weiss'

! Institut fiir Softwaretechnik und Theoretische Informatik,
Technische Universitit Berlin, Germany
lieske @cs.tu-berlin.de, weiss @cs.tu-berlin.de

2 Department of Computer Science,
University of Leicester, United Kingdom
karsten@mcs.le.ac.uk

3 Fachbereich Mathematik und Informatik,
Universitdt Marburg, Germany
taentzer @mathematik.uni-marburg.de

Abstract: In this paper we present the state-of-the-art of the TIGER environment
for the generation of visual editor plug-ins in Eclipse, with the focus on its Designer
component, a visual environment for object oriented and rule-based design of vi-
sual languages. Based on an alphabet for finite automata we show how a visual
language can be designed by defining the abstract and concrete syntax of the visual
language and syntax directed editing operations in the generated editor plug-in. For
the graphical layout we use the Graphical Editing Framework (GEF) of ECLIPSE
which offers an efficient and standardized way for graphical layouting.

Keywords: visual languages, editor generation, visual editor, graph transformation,
Eclipse

1 Introduction

Domain specific modeling languages are of growing importance for software and system de-
velopment. Meta tools are needed to support the rapid development of domain-specific tool
environments. The basic component of such environments is a domain-specific visual editor. A
visual language (VL) definition based on a meta model in combination with syntax rules defin-
ing syntax-directed editor commands is used in TIGER (Transformation-based Generation of
Environments) to generate a corresponding visual editor. On the one hand, a visual language
definition captures the visual symbols, links and relations of the domain specific modeling lan-
guage (the alphabet); on the other hand, a syntax graph grammar defines precisely which editor
operations are allowed and restrict the visual sentences of the VL to correct diagrams.

TIGER combines the advantages of precise VL specification techniques using graph transfor-
mation concepts with sophisticated graphical editor development features offered by the Eclipse
Graphical Editing Framework (GEF) [GEF06]. Using graph transformation at the abstract syn-
tax level, an editor command is modeled in a rule-based way by just specifying the pre- and

1/12 Volume 1 (2006)

mailto:lieske@cs.tu-berlin.de
mailto:weiss@cs.tu-berlin.de
mailto:karsten@mcs.le.ac.uk
mailto:taentzer@mathematik.uni-marburg.de

Visual Language Design using Tiger E}

post-conditions of each command. The application of such syntax rules to the underlying syn-
tax graph of a diagram is performed by the graph transformation engine AGG [Tae04]. TIGER
extends AGG by a concrete visual syntax definition for flexible means for visual model repre-
sentation. From the definition of the VL, the TIGER Generator generates Java source code. The
generated Java code implements an ECLIPSE visual editor plug-in based on GEF which makes
use of a variety of GEF’s predefined editor functionalities. Thus, graphical layout constraints are
defined and solved with efficient Java methods without using complex constraint solving algo-
rithms like in GENGED [BEWO03] or DIAGEN [Min02], and the generated editors appear in a
timely fashion, conforming to the ECLIPSE standard for graphical tool environments.

Note that graph transformation-based editors, in contrast to related meta-model-based editors
like GMF [GMF05], AToM? [dLVA04] or Pounamou [NLGOS5], do not only offer basic editor
commands, the so-called CRUD operations (Create, Read, Update, Delete), but they can also
offer complex editing commands which insert or manipulate larger model parts consisting of
a number of elements. With complex editing commands, model optimizations, such as model
refactoring, as well as model simulation can be performed.

TIGER [EEHTOS5, Tig05] is the successor project of GENGED [BEWO03, Bar(2], with the
objective to make extensive use of today’s modern functionalities for visual model-driven devel-
opment and integration offered by the Eclipse platform and its plug-in mechanism. Hence, both
the TIGER Designer component for visual VL definition and the TIGER-generated visual edi-
tors are ECLIPSE plug-ins, based on the common paradigm for visual creation, management and
navigation of resources. The features of domain-specific editors generated by GENGED, DI1A-
GEN and ATOM? (e.g. for layouting diagrams, undo/redo, zooming, etc.) partly differ heavily
from modern standards. Moreover, the generated environments are not meant to be integrated
into other existing tool environments. As stand-alone applications they do not always offer the
standard look-and-feel of common editor features.

In this paper we focus on the TIGER Designer for visual editing of visual language specifi-
cations as part of the TIGER environment [Tig05]. The second main component of TIGER is
the TIGER Generator for generating rule-based editor plug-ins in ECLIPSE. The generator has
already been presented in [EEHTO5].

The paper is organized as follows: Section 2 reviews the basic concepts for visual language
specification based on graph transformation, and introduces the TIGER perspective for VL design
in ECLIPSE. Section 3 goes into the details and describes how a VL is specified using the TIGER
Designer, by defining on the one hand the abstract and concrete syntax of the VL alphabet,
using the visual abstract syntax editor and layout view, and on the other hand, by defining the
editing operations using the visual rule editor. Section 4 shows how a visual editor is generated
as ECLIPSE plug-in from the VL specification. In Section 5, we discuss ongoing and future work
concerning the TIGER environment.

2 Visual Language Design based on Graph Transformation

Nowadays two main approaches to VL definition can be distinguished: grammar-based ap-
proaches or meta-modeling. Using graph grammars, multi-dimensional representations are de-
scribed by graphs and allows not only a visual notation of the concrete syntax, but also a visual-

Proc. GraBaTs 2006 2/12

Eg ECEASST

ization of the abstract syntax. While the concrete syntax contains the concrete layout of a visual
notation, the abstract syntax shows the underlying structure, i.e. it provides a condense repre-
sentation to be used for further processing. Similarly to textual language definition, grammar
rules define the language, but for visual languages, graph rules are used to manipulate the graph
representation of a language element.

2.1 VL Design Concepts based on Graph Transformation

For the application of graph transformation techniques to VL design, typed attributed graph
transformation systems [EEPT06] have proven to be an adequate formalism. Roughly spoken
a typed attributed graph transformation rule p = (L — R) consists of a pair of typed attributed
graphs L and R (its left-hand and right-hand sides) and a mapping from L to R. Symbols and
links appearing in L are matched with the elements of the current editor diagram and deleted or
preserved according to their mapping to R. New symbols and links are created if they appear in
R only. A direct graph transformation written G L2 H, means that diagram G is transformed
into diagram H by applying rule p at the occurrence o of L in G.

A VL is modeled basically by an alphabet, an attributed type graph which captures the defini-
tion of the underlying symbols and relations which are available. Sentences or diagrams of the
VL are given by attributed graphs typed over the type graph. The abstract alphabet is extended by
defining the concrete layout of diagrams. At the concrete syntax level, the VL alphabet defines
the figures and their properties which are used to visualize the underlying abstract symbols.

Usually, the set of visual diagrams (sentences) over an alphabet should be further restricted
to the meaningful ones. By defining this restriction via graph rules, the constructive way is
followed (as opposed to the declarative MOF approach [MOFO05], where OCL constraints are
used). The application of abstract syntax graph rules builds up abstract syntax graphs of valid
diagrams. Together with a suitable start graph, the set of syntax rules forms the syntax graph
grammar which defines the models belonging to a VL in a well-defined and constructive way.

2.2 The TI1GER Perspective for VL Design in ECLIPSE

The main difference between the TIGER Designer and related stand-alone environments for
graph transformation-based VL design such as GENGED, DIAGEN and AToOM?, is the use
of the ECLIPSE platform. TIGER makes extensive use of the standard elements provided by the
ECLIPSE workbench paradigm, such as perspectives, editors and views. The TIGER perspec-
tive comprises a designated group of views and editors in the ECLIPSE workbench window (the
modeling desktop). A view is a visual component, typically used to navigate a hierarchy of in-
formation, open an editor, or display properties for elements in the active editor. An edifor is
also a visual component, typically used to edit or browse a resource. Views and editors can be
active or inactive. The active component is the target for common operations such as cut, copy
or paste. The TIGER perspective can be configured and customized in a flexible way (as usual
for Eclipse perspectives). The user determines for instance which components are shown and
how they are ordered on the desktop. Figure 1 shows an example of views and editors arranged
in the Tiger perspective: the tree view (in Figure 1) shows the hierarchical structure of a VL

alphabet. A visual editor (in Figure 1) is used to define the layout for a symbol type, and a

3/12 Volume 1 (2006)

Visual Language Design using Tiger Eﬁ

properties view (in Figure 1) allows to change values for graphical layout properties of the
ellipse figure selected in the visual editor.

03~ & F-O-Q v - ¥ B &Java %1 Tiger
77 activity.vls %7 *automata.vls layout container = InnerStartEllipse 7
= 5 Automata m 4 layout for StartState
- 4 Alphabet @ Palette >
= (5 Nodes I} Select
+ X State £, Marquee
+ 7{' FinalState (> shapes »
* 7[NormalState
+ 7 StaState j rectangle
A Bendpoint)
+ 7/ StarFinalState @ elipse
= 1) Eds
5 Edges rounded
+ & Transition an retangle
betweenBendpoints
i é " hd \ / X polygon
£ Properties - 3 EXnchor >
Zioperty) Yalle 3 - [x] chopbox anchor
- ﬁgu;ef it Di (50, 50)) ellipse anchor
+ default size imension
. anchol
fill color RGE {251, 254, 188} *xy ’
kind of shape ellipse
layout manager BorderLayout
+ maximum size Dimension(59, 50)
name InnerStartEllipse
opaque true v
41 >

Figure 1: The TIGER Perspective in ECLIPSE

In the following, we describe how the diverse views and editors of the TIGER Designer are
used to define a VL specification consisting of a VL alphabet and a VL syntax grammar.

3 Designing Visual Languages using Tiger

As discussed in the previous section, a VL specification (VLSpec) consists of an Alphabet con-
taining the available symbols and links of the VL and their layout, a RuleSet containing syntax
rules which define possible editing operations to construct diagrams, and a StartGraph, defining
the initial diagram the syntax rules are applied to. In alphabets, rules and diagrams we distinguish
the abstract syntax (the internal representation of diagrams as graphs without layout information)
from the concrete syntax (describing additionally the layout properties and constraints).

3.1 The VL Alphabet

A VL alphabet consists of SymbolTypes and LinkTypes. In our approach, graph-like languages
consist of node symbol types (e.g. states in automata) and edge symbol types (e.g. transitions
in automata). Edge symbol types are connected to node symbol types by LinkTypes. Symbol
types may be attributed by an ordered list of AttributeTypes e.g. to model the state names in
automata. Classes AttributeType, SymbolType and LinkType have directly corresponding node
and edge types in AGG forming the abstract syntax representation. Figure 2 shows package
abstractsyntax, where the abstract syntax of alphabets is defined. This abstract alphabet syntax
definition corresponds roughly to the M3 level of the MOF meta-model hierarchy, where also the
syntax of meta-models (specifically UML meta-models) is defined.

Proc. GraBaTs 2006 4/12

ECEASST

abstractsyntax

ModelElement

-name : EString

JANIVAN

SymbelRole

-NODE
-EDGE

Alphabet
begin
* 1 .
AttributeType |* SymbolType LinkType
-type : EString -role : SymbolRole n

1/ ‘4\ =/ }1
b
super sub Lo

Figure 2: VL Specification: Abstract Syntax of an Alphabet

The graphical layout (the concrete syntax) is given by additional classes extending the class
diagram shown in Figure 2. The TIGER Designer stores the concrete layout information for
symbols and links in the designer model based on the meta model shown in Figure 3 which is
closely connected to the layout relations of Eclipse GEF [GEF06].

[abstractsyntax::AttributeType] [abstractsyntax::SymbolType \ | abstractsyntax::LinkType

layout | ¢ ¢ .
Figure \
-borderStyle CompoundFigure
-borderWidth -state : CompoundFigureState
ropaque parent *
~visible -
filColor Constraint
-borderColor
1| child
TexF. 1| constraintToParent (ionstraintTOChild
-;iﬁttPosmon ContainmentConstraint
-align
-fontColor a i
-referencePoint Connection
-color
Shape -router
kind -strokeStyle
— -strokeWidth Anchor
-anchorKind
-relativeX
- « |-relativeY
BorderLayout| | [StackLayout| CompoundFigureState
-PRIMARY
[FlowLayout| [XYLayout| -SECONDARY

Figure 3: VL Specification: Concrete Syntax

Symbol types (for both nodes and edges) are layouted as CompoundFigures which may con-
tain Figures again. The figure layout is defined by Shapes which kind could be a Rectangle,
Ellipse, Polyline, ... For the automata VL, we have e.g. two Shapes of kind Ellipse nested into
each other in for layouting a final state, and we have a Text figure (the arc inscription) as child
figure of a Connection figure for layouting a transition. The figure arrangement is done by GEF

5/12 Volume 1 (2006)

Visual Language Design using Tiger Eﬁ

standard layout styles such as StackLayout, BorderLayout, XYLayout, and FlowLayout. Connec-
tion Anchors describe the relation between Shapes and Connections. GEF layout Constraints are
handling the layout positions inside of Figures via ContainmentConstraints, for example a Text
Figure is located inside an Ellipse figure.

Figure 4 shows the TIGER Perspective for designing a visual language for finite automata.

- Tiger - automata.vis - Eclipse SDK 0606
File Edt View Navigate Search Project Run Editor Menu Window Help
r9-& F-0-Q- | 6 & B | %sTiger >
% *automata vis O abstract syntax
- & auomata @ Eslotts L4
- & Alphabet [y Select
- @ Nodes BPoint2BPoirtBegin D. Marquee
© W state I - types *
+ W FinalState State2BPointEnd ﬁnode symbol type
& 7{ NormaiState g edge symbol type
StartStat
57 Stetstate BPoint2StateBegin @ sttribute type
+ 7/ Bendpoint ' .
- W StetFinaistate FvomBendEoimToState | romStateToBendpoint At
@ Links
5D attrioutes ‘State2BPointBegin
- @ Edges
+ g Transttion

+ S betweenBendpoints BPoint2StateEnd

+ S fromBendpointToState
+ g fromStateToBendpoint
+ @ rule set
e Startgraph

SttezstateEnd T

nscr.java lang String
State: i

S —

Fnalstate F lormalState Eartstate | artFinalState
al [o

Navigator layout container £ Properties O OuterRectangle

»,
= s layout for StartFinalState
3
3 Palette »
Property Value A LT 1
CENTER (= shapes e

constraint to parent

= figure
fill color RGB {255, 255, 255} L=y i rectangle
font Tahoma |height=8 |style=1 |RGB={0,0,255} hamel v
name TextFigure —/ (= anchor £

hhhhhhh faloa) [x] chopbox anchor

M= B) ¥

Tt

Figure 4: VL Design of the Automata VL with the TIGER Designer

While the tree view on the left-hand side (in Figure 4) shows the symbol types of the
automata alphabet, the syntax rules and the start graph of the automata syntax grammar, the
abstract syntax can be defined in the abstract syntax panel to the right (in Figure 4), where
the abstract syntax of the automata alphabet is shown. The concrete layout of a symbol type
is defined via a graphical editor shown at the bottom of the right-hand side (in Figure 4).
The layout for the StartFinalState symbol (a start state which is a final state as well) is given
by an invisible rectangle, containing the start marker (a polygon), and an outer and inner ellipse
selected from the shapes menu of the editor Palette. Moreover, an attribute name is represented
by a text figure, connected via an anchor to the inner ellipse figure. The Properties View on the
left side of the bottom (in Figure 4) shows the layout properties like text width and style of
the figure selected in the editor, here the text figure of the StartFinalState symbol. In the same
way NormalState, StartState, FinalState and State are defined where the last one represents the
other states via an inheritance relation defined in the abstract syntax.

Edges are created in a quite similar way. For a Transition two Links are defined in the tree

Proc. GraBaTs 2006 6/12

Eg ECEASST

view for connecting the Transition with a State. The concrete layout is given by Transition
Connection defining a line connection with a closed arrow decoration from the editor Palette.
For better orientation, the begin and end points of a connection are visualized by small block
arrows (see Figure 5). An inscription attribute inscr is located close to the end point of the
transition line via a layout constraint. The Properties View shows the layout properties of the
TransitionConnection with black color, solid line style, and normal width.

- Tiger - automsta.vls - Eclipse SO O G 6
File Edit “iew MNavigate Search Project Run Editor Menu Window Help
ti-E #F-0-Q- & & B &ldava | o Tiger
& [22CVS Reposita ..
% "automata vls g abstract syntax. & TransitionConnection
5 @ Modes . layout for Transition
o ?f State Palette 3
w F Finalstate Q S
+#f Normaistate £, Marguee
+ '?f" StartState == connections *
+ ?f Bendpairt)
+ H StartFinsistste / ST
- @ Edges iy |
= g Transition @.——/-;I-S:
+- [0 Links
= (5D ftrioutes
£ inzcrjavalang String v
5 layout container P E Properties B 3p
- latout of Transtion 4 Propery “alue i
-1 TransttionConnection = stroke
.X A m color RGB {0, 0, 0} m
router Mull
uzu] Inzcr TextFigure \ style =olid
+ layout of StartState ¥ width 1 v

Figure 5: Creating a Transition connection in the TIGER Designer

3.2 The VL Syntax Grammar

Language constraints restricting the set of valid diagrams over an alphabet are modeled by re-
stricting the set of editing commands, i.e. graph transformation-based editors are usually syntax-
directed. An editor command is modeled as a graph rule (typed over the language’s alphabet)
being applied to the abstract syntax graph of the current diagram. The graph transformation ap-
proach to language definition is a constructive one, since syntax rules are used to build up all
language instances from an initial state (the start graph). The start graph together with the set of
syntax rules and the underlying VL alphabet, are called VL syntax grammar because it defines
the complete syntax of the visual language.

Figure 6 shows package rules, where the start graph and the syntax rules are defined. The
left- and right-hand sides of a rule are graphs. Additionally, a rule may contain a set of nega-
tive application conditions (NACs), which model situations in which the rule is not applicable.
Moreover, a rule may have a set of input parameters defined by the user when the rule is applied,
and variables for performing attribute computations. For each rule, the rule morphisms from the

7/12 Volume 1 (2006)

Visual Language Design using Tiger Eﬁ

left-hand side L to the right-hand side R and from L to the NACs are given by sets of mappings
for symbols and links.

begin
abstractsyntax::SymbolType | |abstractsyntax::LinkType
| abstractsyntax::vispec 1

1

’ ’ | abstractsyntax::AttributeType | end
rules | 1
. begin
symbol | [lmk |
| —
Variable | n . Parameter
- . Rule -
-type : EString -type : EString
1 . 1 4
| startGraph | [NACc |[LHs | | Rus |
| | [|
\/
T

Figure 6: VL Specification: Syntax Grammar

In the TIGER rule editor in Figure 7, the editor operations for syntax directed editing of au-
tomata are defined. The rule addTransition inserts a Transition between two arbitrary States
represented by solid rectangles. In fact, the abstract node State preserves the user from defining
different rules for each possible pair of concrete state figures, for example to connect a Start-
State with a NormalState. The left-hand side of the rule defines the States to be selected by the
user as input parameters in=0 and in=1 of the rule. After rule application, a Transition with the
inscription transinscr is inserted between the previous States, where the mapping between the
left- and right-hand side is indicated with m=0 and m=1. The NAC uniqueTrans ensures that no
Transition in the same direction exists before the rule application. Instead, we allow inscriptions
consisting of more than one character for one transition. The transition name transinscr is listed
as input parameter in the view parameters in rule of type java.lang.String. For such attribute
parameters, a dialog window pops up when performing the corresponding editor operation in the
generated environment, asking the user to specify the transition inscription.

In the Properties View the kind attribute specifies the rule behavior:

e The name of a create operation will appear as entry in the editor palette of the generated
editor for inserting a new symbol or a larger structure consisting of several symbols (a
sub-diagram) in the editor panel.

o A delete operation appears as an entry in the context menu of a symbol for deletion of the
symbol or an associated sub-diagram.

e A move operation is associated with a symbol to change the layout position in the editor
view by mouse dragging.

Proc. GraBaTs 2006 8/12

@ ECEASST

- Tiger - automata.vis - Eclipse SDK 006
File Edit ‘“iew Mavigate Search Project Run Editor Menu Window Help
F-BEE #-0-Q- |4 |©) o B % Tiger 2
% *automata vls abstract syntax = addTransition
= S Automata 4 definition of addTransition
£ ,,.!? Alphabet uniqueTrans LHS RHS h Select
- (57 rule set e I, Marcuee
- 7 mapoiy
“5. LHS m=0 unmapp
7 RHS 77 node sym... #

kransinscr

- [nacs
%5 uniqueTrans ﬂ State
m=1

¥ EF addStart
+ £5 addFinal in=1 m=1 m=1 ‘, FinalState
+ 45 moveState
¥ #5 addMormal = NE-'rrnaISt,..
+ t,i editTransinscr gedge sym.. #
+ - editStateName 7 =
o . Transition
+Ea deleteState ’
e ., betweenBen...
+Ea deleteTransition . .
o X + fromBendpoi...
+ e addStartFinal - . fromStateTo
52 B oottt o LY [[[HE Y A% -] |
E parameters in rule i E Properties B 3P -
Property Value |
rame type = s)
7 : 3 kind create
par transinscr javalang. String e addTranstion
newy
. — ;] LSRR — : | >

Figure 7: Editing of the syntax rule addTransition in the Tiger Designer

e An edit operation appears as another context menu entry which allows to change the prop-
erties of the associated symbol.

4 Generation of Eclipse Editor Plug-ins

After the specification of a visual language has been completed, the TIGER Generator can be
invoked for generating the Java code of the envisaged editor plug-in. The Tiger Generator uses
Java Emitter Templates (JET) as part of the Eclipse Modeling Framework (EMF) [EMF06] for
code generation. In code templates, place holders are filled with values given from the vi-
sual language specification. The generated Java code may be executed directly in the Eclipse
Runtime-Workbench. Figure 8 shows the generated editor plug-in for automata. In this editor, an
automaton is shown generating the language L = {w € {0,1}* | w is ending with 010 or 101}.
The editor palette shows icons for the GEF standard features select (select a single symbol) and
marquee (select a set of symbols). VL-specific creation operations are grouped into categories
Symbols (for creating symbols), Connections (for creating connections between two symbols)
and Patterns (for creating patterns consisting of more than one symbol). After a creation oper-

9/12 Volume 1 (2006)

Visual Language Design using Tiger Eﬁ

= Java - lastBits.autom - Eclipse SDK O 6 6
File Edit Navigate Search Project Run Window Help
Ci~E F-O0-Qy BEHCGY ®F 28 B % Tiger &Java

*lastBits.autom

lastBits.autom: Automata

I3 Select

£, Marquee » "

(> Connections # o1 — —

addTransition

(= Symbols » 7 Undo moveState

addStart :

st 1

addNormal . @ Run As 4

addStartFinal 0 \ Debug As »

= Patterns » Team 4

addLoop Compare With »
Replace With 4

Automata Save

Figure 8: Generated Automata Editor Plug-in in ECLIPSE

ation (e.g. addTransition) has been selected in the palette, the required match symbols must be
selected in the editor panel (the source and target state for the transition have to be clicked on). If
an input parameter is defined for the syntax rule, a dialog pops up and asks for an attribute value
(e.g. the transition inscription has to be given). Now, the underlying creation rule is applied, i.e.
the transition is inserted between the two states. Note that addLoop is a creation pattern, because
internally, a loop consists of three connections and two bendpoints (see the loop at the start state
in Figure 8). Thus, the bendpoints can be moved by the user to readjust the loop. Move rules
are applied simply when a symbol (or a set of symbols marked by Marquee) is dragged by the
mouse. A move rule may also be defined for a symbol pattern. For example, in the automata
VL, we defined a move rule moving a state node together with a loop. Deletion rules and editing
rules appear in the context menu which is evoked by the right mouse button after a symbol has
been selected. Figure 8 shows the context menu for final state g010, where it is possible to evoke
the operation editStateName.

5 Conclusion

In this paper we have described the state-of-the-art of the TIGER environment (http://tfs.cs.tu-berlin.
de/tigerprj) with focus on the Designer for specifying visual languages in ECLIPSE.

In the development of TIGER, our aim has been to bring together graph transformation-based
editor generation with the Eclipse technology based on GEF which has resulted in the generation
of syntax-directed GEF-editors with graphs as underlying structures. Practical experience with
TIGER so far includes the VL design and visual editor plug-in generation for activity diagrams,
Petri nets, automata and sequence diagrams. The TIGER Designer proved to be a flexible and
intuitive tool for VL design. Following the pure graph transformation-based approach to visual
language definition, all editor commands are defined via graph rules. Since the definition of
simple editor commands might be tedious work, rules might be partly generated from the type
graph as done in GenGED [BEWO03]. In this way, the editor definition could be simplified, but

Proc. GraBaTs 2006 10/12

http://tfs.cs.tu-berlin.de/tigerprj
http://tfs.cs.tu-berlin.de/tigerprj

Eg ECEASST

the result would still be a syntax-directed editor. Since both the meta-model-based approach
(generating visual free-hand editors) and the graph-transformation-based approach (generating
syntax-directed editors), have their advantages and disadvantages (see [Tac06]), we propose as
future work to combine both approaches. This means that starting with a meta model only, a
simple editor would be generated offering the basic editor operations for each symbol. A syntax
check can be added by defining well-formed-ness rules or graph constraints (comparable to an
OCL checker in addition to a meta model). For the generation of complex editor commands, an
additional specification is needed using syntax rules.

In order to further customize the generated editors, work is in progress to replace the under-
lying AGG graph transformation engine by a transformation engine based on Eclipse EMF. In
this way, genereated editors can be based on already existing domain models. Currently, if the
generated editors have to be further adapted to specific needs, the Java code may be extended by
hand. So far, changing the generated code is not specifically supported by TIGER, so the user
must take into account that a regeneration by TIGER might overwrite hand-written code changes.

As a further improvement at the concrete syntax level we plan to extend TIGER to allow the
nesting of figures belonging to different symbol types. With this extension, a TIGER user would
be able to specify not only graph-like visual languages, but also more complex ones, like e.g.
hierarchical Statecharts.

Furthermore, the TIGER environment has recently been extended by a model transformation
graph grammar which defines the model transformation between models of either two differ-
ent VL specifications (exogenous), or between models belonging to the same VL specification
(endogenous). An exogenous model transformation between two generated editor plug-ins in
TIGER is described in [EEEPO6], where activity diagrams are transformed into Petri nets. Con-
sidering our automata example, we might define an endogenous model transformation based on
the automata VL specification to transform non-deterministic automata into deterministic ones
in our generated automata editor plug-in. An example for a related model transformation envi-
ronment in ECLIPSE based on graph transformations is VIATRA2,which is part of the ECLIPSE
Generative Modeling Tools [GMTO06]. Work is in progress to support the definition of model
transformations directly in the TIGER Designer, using the concrete layout of the visual modeling
languages.

These extensions can be considered as a starting point for the generation of comprehensive
domain-specific visual modeling environments.

Bibliography

[Bar02] R. Bardohl. A Visual Environment for Visual Languages. Science of Computer
Programming (SCP), 44(2):181-203, 2002.

[BEWO03] R. Bardohl, C. Ermel, and I. Weinhold. GenGED - A Visual Definition Tool for
Visual Modeling Environments. In J. Pfaltz and M. Nagl, editors, Proc. Application
of Graph Transformations with Industrial Relevance (AGTIVE’03), 2003.

[dLVAO4] J.de Lara, H. Vangheluwe, and M. Alfonseca. Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM?. Software and System Modeling: Special

11/12 Volume 1 (2006)

Visual Language Design using Tiger Eﬁ

[EEEPO6]

[EEHTOS]

[EEPTO6]

[EMF06]

[GEF06]

[GMFO05]

[GMTO06]

[Min02]

[MOFO05]

[NLGO5]

[Tae04]

[Tae06]

[Tig05]

Section on Graph Transformations and Visual Modeling Techniques, 3(3):194-209,
2004.

H. Ehrig, K. Ehrig, C. Ermel, and J. Padberg. Construction and Correctness Anal-
ysis of a Model Transformation from Activity Diagrams to Petri Nets. In I. Troch
and F. Breitenecker, editors, Proc. Intern. IMCAS Symposium on Mathematical Mod-
elling (MathMod). ARGESIM-Reports, 2006.

K. Ehrig, C. Ermel, S. Héinsgen, and G. Taentzer. Generation of Visual Editors as
Eclipse Plug-ins. In Proc. 20th IEEE/ACM International Conference on Automated
Software Engineering, IEEE Computer Society, Long Beach, California, USA, 2005.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

Eclipse Consortium. Eclipse Modeling Framework (EMF) — Version 2.2.0, 2006.
http://www.eclipse.org/emf.

Eclipse Consortium. Eclipse Graphical Editing Framework (GEF) — Version 3.2,
2006. http://www.eclipse.org/gef.

Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF) — Version 2.0,
2005. http://www.eclipse.org/gmf.

Eclipse Generative Modeling Tools (GMT) http://www.eclipse.org/ gmt, 2006.

M. Minas. Specifying Graph-like Diagrams with Diagen. Electronic Notes in Theo-
retical Computer Science, 72(2), 2002.

Object Management Group. Meta-Object Facility (MOF), Version 1.4, 2005. http:
/Iwww.omg.org/technology/documents/formal/mof.htm.

J. Hosking N. Liu and J. Grundy. A Visual Language and Environment for Specifying
Design Tool Event Handling. In M. Erwig and A. Schiirr, editors, Proc. IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC’05), IEEE
Computer Society, 2005.

G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Application
of Graph Transformations with Industrial Relevance (AGTIVE’03), volume 3062 of
LNCS, pages 446 — 456. Springer, 2004.

G. Taentzer. Towards Generating Domain-Specific Model Editors with Complex
Editing Commands. In Proc. Workshop Eclipse Technology eXchange(eTX), 2006.

Tiger Project Team, Technical University of Berlin. Tiger: Generating Visual Envi-
ronments in Eclipse, 2005. http://www.tfs.cs.tu-berlin.de/tigerprj.

Proc. GraBaTs 2006 12/12

http://www.eclipse.org/emf
http://www.eclipse.org/gef
http://www.eclipse.org/gmf
http://www.eclipse.org/gmt
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.tfs.cs.tu-berlin.de/tigerprj

	Introduction
	Visual Language Design based on Graph Transformation
	VL Design Concepts based on Graph Transformation
	The Tiger Perspective for VL Design in Eclipse

	Designing Visual Languages using Tiger
	The VL Alphabet
	The VL Syntax Grammar

	Generation of Eclipse Editor Plug-ins
	Conclusion

