
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

AGraphs: Definition, implementation and tools

David Déharbe, Anamaria Martins Moreira and Demóstenes Sena

13 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

AGraphs : Definition, implementation and tools

David Déharbe1, Anamaria Martins Moreira 1 and Demóstenes Sena1

1 Universidade Federal do Rio Grande do Norte — UFRN
Natal, RN, Brazil

david,anamaria,demost@dimap.ufrn.br

Abstract: AGraphs are a graph-based language representation, transformation and
exchange format. In the same vein as XML,AGraphs form a general data represen-
tation mechanism that needs to be instantiated in different specific applications. In
this paper, we present theAGraphs data structure, programming interface and related
tools, identify their main features with respect to exchange format characteristics,
and compare them to other existing exchange formats. These different features are
illustrated on an instance ofAGraphs for modular Petri nets.

Keywords: language representation, graph formats

1 Introduction

Tools that manipulate programs or specifications need some internal representation of the in-
formation being manipulated as well as means of exchanging this information with other tools
or among its own components. Some representation formats have been proposed and used in
different tools. Of course, different needs tend to direct researchers and developers into differ-
ent kinds of formats, usually terms or graphs [2, 19, 10]. In [14] a graph based representation
for the algebraic specification languageCASL [1] is proposed, but this representation format is
indeed much more general and can be used in the representation of different languages in dif-
ferent contexts. Graph nodes and vertices represent respectively program elements and relations
thereof. Moreover, nodes have attributes representing information specific to the corresponding
program elements. We call this generic representation data structureAGraphs; a language (be it
programming, specification or hardware description) is handled by a specificAGraph instance.

The firstAGraph instances were developed manually to represent hardware descriptions in a
VHDL-based model checker [6] and algebraic specifications in two instances of the development
tool FERUS [14, 15]. The common characteristics of these first three instances were then formal-
ized and led to the definition of anAGraph schema language, and to the development ofAGraph
instance generators forC andJAVA.

An AGraph schema as well as its API are language dependent, i.e., they are tailored to the
information being represented. One of the qualities of this approach is that it results in quite sim-
ple and intuitive APIs, making theAGraph representation very easy to program with.AGraphs
also provide textual and binary file formats for compressed or uncompressed archival and data
exchange. TheAGraph data files can be accessed by bothC andJAVA without compatibility
issues.

1 / 13 Volume 1 (2006)

mailto:david,anamaria,demost@dimap.ufrn.br

AGraphs: Definition, implementation and tools

Plan of the paper. The rest of the paper is organized as follows. Section2 presents an example
of an ad hoc language to describe modular Petri nets that will be used to illustrateAGraph
concepts throughout the paper. Section3 presentsAGraphs, their specification, design, interface,
implementation. Section4 describes the available tool support for developers wishing to employ
AGraphs. Related work is discussed in Section5, and conclusions and future work are presented
in Section6.

2 Example

We present an ad-hoc modular Petri net description language [12] that will be used as a running
example throughout the paper. For instance, consider the Petri net of Figure1. The main net is
N1; it has one place import (i1), three places (p1, p2, p3) and three transitions (t1, t2, t3). Places
p2 and p3 are exported. N1 instantiates a net N2, by instantiating N2’s import place with place
p1. The place o exported by N2 is an input place of transition t3. There is one token in place p1
and none elsewhere. The corresponding textual description in our description language would
be as in Figure2. The syntax of the language can be described in theSDF formalism [17], but
this description is omitted by lack of space.

p3p2

oi

t3t2

N1

N2
t1

p1

p2 p3i1

Figure 1: A simple Petri net N1 with an embedded net N2

3 AGraphs

The development of graph-based libraries to represent and manipulate structured texts (programs
and specifications) arose in the development of two different projects (a VHDL parser [6] and
an algebraic specification integrated development environment [14]) where they proved to be
adequate to implement modeling and transformation operations for program development tools.

Those libraries evolve around the same data structuring and interfacing concepts. These com-
mon concepts form theAGraph representation and manipulation framework and can be reused
for most, if not all, programming and specification languages.AGraphs are therefore a suit-
able framework to apply generic graph transformation techniques to, e.g., implement software
evolution rules. The concepts underlyingAGraphs are presented in the following sections.

Proc. GraBaTs 2006 2 / 13

ECEASST

net N1 =
places p1, p2, p3
subnets N2 (i:p1)
imports i1
exports p2, p3
transitions

t1 : i1 -> p1
t2 : p1 -> p2
t3 : N2.o, p2 -> p3

tokens p1:1, p2:0, p3:0

Figure 2: Textual description of the Petri net N1 pictured in Figure1

3.1 Design of the AGraph representation

All modern program or specification languages have a notion of compilation unit which can ref-
erence other units and can be compiled (or analyzed) independently from other units (although it
may rely on some other units being already compiled). Moreover, in some languages, collections
of related modules can be grouped into libraries. In general, a unit in a library may reference
entities defined in another unit stored in a different library.

In the AGraph format, each unit is represented by a set of interconnectednodes. Roughly,
each node is associated with a unit and represents an element of the abstract syntax of this unit.
There are therefore severalkindsof nodes, each corresponding to a non-terminal of the abstract
grammar of the represented language. For instance, for our Petri net example, places, transitions
and the net module itself, would be represented by three different kinds of nodes, sayplace ,
transition andnet .

Each kind of node has a different signature, composed of typed and labeledattributesand
(outgoing)edgesandhyperedgestargeting other nodes. Attributes are atomic unstructured val-
ues. For instance, a net node has an attribute labeledaIdentifier , storing its identifier, and
several outgoing hyperedges pointing towards the different components of the net, such as places
and transitions (hyperedges connect a node to a list of nodes).

The rationale of theAGraph format is then that the representation of units (e.g. Petri nets) and
libraries thereof are represented as a directed graph, where vertices correspond to entities in the
units, and edges to relationships between those entities.

3.2 Interface provided for an AGraph representation

An AGraph implementation is a library accessible through theAGraph application programming
interface (API). The interface provided byAGraphs exposes the directed graph metaphor to client
applications but hides all the implementation details. The functions provided by the API are: (1)
a library initialization routine; (2) a constructor for each kind of node; (3) two accessors that
respectively provide query (get) and assignment (set) functionalities for each possible type of
attribute and edge; (4) input (resp. output) functions to read (resp. write) a unit from (resp. to)
file; (5) a compression (resp. decompression) function to create a file in the binary (resp. textual)

3 / 13 Volume 1 (2006)

AGraphs: Definition, implementation and tools

format from a file in the textual (resp. binary) format.

3.3 Schema specification

As explained in Section3.1, AGraphs contain different kinds of nodes, node attributes and edges.
The general structure ofAGraphs, presented in Section3.1, has then to be instantiated for each
language to be represented. Such instantiations are actually implemented to represent language
units. An instantiation is defined by anAGraph schema, defining the available nodes, their struc-
ture (signature), their relations and, indirectly, the corresponding API functions. In this section,
we describe the specification ofAGraph schemas.

The node representing a unit in a given language is calledRootNodein an AGraph schema.
The specification of theAGraph schema defines which among the language specific nodes is
root. It also specifies a label that identifies the language being represented and is prepended to
theAGraph identifiers. This label should be unique in an environment, so that if differentAGraph
instantiations co-exist in the environment there won’t be name clashes.

The kinds of nodes of the instantiation described by the schema are then presented. Some of
them have specific descriptions, as is the case withroot nodes, list nodesandimport nodes, but
all node kinds are identified by a name and have specific basicnode components. There are three
types of node components:

� Attributesmaintain information of primitive (e.g., integer) or user defined enumerated
types. Each node attribute has its name and type defined in the schema.

� Edgeslink the node to another node. The schema description of an edge contains its name
and the set of identifiers of the kinds of nodes to which an instance of this edge can point
to.

� Hyperedgeslink the node to a sequence of nodes. The schema description of a hyperedge
contains its name and the name of a list kind of nodes through which the different values
will be linked to the edge.

The list nodes represent hyperedges. The schema description of a list kind of nodes identifies
three edges, pointing respectively to the information node, the next node, and the previous node.

The schema description of the root kind of node indicates the attribute that contains the identi-
fiers of the represented units and the hyperedge pointing to the root nodes of the imported units.

The import node kind contains information about imported units. These nodes contain com-
mon and specific components. The schema description defines the name of the node kind and an
edge to the root node of the imported unit.

3.4 Implementation of AGraph libraries

The implementation of the above concepts is based on register data structures and pointers in a
classical imperative language such asC and on objects and object references in an object oriented
language such asJAVA. In this section we provide some information on how anAGraph instance
is implemented.

Proc. GraBaTs 2006 4 / 13

ECEASST

3.4.1 Implementation of the graph nodes

An example of the definition of the structure of a node is given in Table1. This node corresponds
to a Petri net token specification (token), with the corresponding place (nPlace) and quantity (aQuan-

tity). The first four fields are mandatoryAGraph fields (i.e. they are present for all kinds of nodes
and for any language representation), whereas the remaining correspond to data specific to the
represented semantic domain (Petri nets in this example).

C implementation: JAVA implementation:
typedef structf pnRef position;

void * aToolInfo;

pnKind aKind;

pnRef nRoot;

pnRef nPlace;

int aQuantity;

g token;

public class tokenf// class variables

pnRef position;

Object aToolInfo;

pnKind aKind;

pnRef nRoot;

pnRef nPlace;

int aQuantity;

// class methods...g

Table 1: Examples of the definition of a node kind in C and Java

3.4.2 Unit dependencies

Our Petri net language is modular and supports hierarchical net composition. To reference ex-
ternal modules is common place in most languages. An efficient representation shall not fully
instantiate external modules in the representation, but provide instead mechanisms to refer to and
access the representation of these modules. To support such interdependency,AGraphs include
a mechanism to refer to external units, i.e. an edge (or a hyperedge) may point to a node outside
the current unit. As a consequence, when a unit is loaded into memory, the imported units are
recursively loaded. Note that the algorithm implementing this dynamic loading feature avoids
duplicate representation of units.

The internal state of anAGraph library contains the graph representing the nodes of the units
loaded into memory as well as additional data needed to handle cross references between units.
Each unit has a unique identifier (a natural number) and its representation is composed of two
tables: the first contains the identifiers of the imported units, while the second stores the subgraph
representing the unit. The file formats ofAGraphs are also based on those two tables.

3.4.3 AGraph API

The API of anAGraph library has the elements described in Section3.2.
The constructors for each kind of node create the node in memory using the values passed

in its parameters. Note that some of the parameters may be undefined at creation time. In this
case, they can be given a default value, and can be later assigned using accessors provided by the
library. For instance, the declarations of the constructors inC andJAVA for the node of Table1
are:

5 / 13 Volume 1 (2006)

AGraphs: Definition, implementation and tools

pnNode pnMakeToken (pnNode Place, int Quantity); , in C, and
public Token (pnNode Place, int Quantity); , in JAVA

Also, for each different attribute or edge label of each node, there are corresponding query and
assignment functions. InC, each query function has a unique parameter (the queried node) and,
as return type, that of the corresponding attribute or edge. InJAVA, the queried node is the object
that invokes the query function and does not need parameter. Each assignment routine, inC, has
two parameters: the node being modified, and the new value for the modified field. InJAVA, the
assignment routine has a single parameter: the new value for the modified field. Examples of
accessor declarations are:
pnNode pnGetPlace(pnNode n); , in C, and
public pnNode pnGetPlace(); , in JAVA.

3.4.4 Persistent formats forAGraphs

EachAGraph instance has corresponding binary and text-based formats used for file-based stor-
age and exchange. The binary format stores a custom compression of the textual format. The
textual format is composed of a header and structured elements. Each structured element stores
one node, and is a sequence of integers and strings, as in:

<0 1 2 N1 0 0 0 0 0 0 >

which represents an empty Petri Net with nameN1 in an AGraph derived from the schema
presented in the next section. The 6 positions to the right ofN1 serve to indicate the position in
the sequence of elements corresponding to the 6 hyperedges defined in the schema to represent
the different items of a Petri Net.

Additionally to thisAGraph specific format,AGraph libraries contain a function to generate a
GXL [19] output representantion of the graph. Through the GXL representation,AGraphs may
benefit from GXL tools, as for instance, graph visualization.

4 Automated generation ofAGraph libraries

The implementation ofAGraph libraries follows a certain number of conventions. This set of
strict conventions makes it easy, but cumbersome, to code a newAGraph library. We have thus
implemented two methods to automatically generateAGraph library implementations:

� In the first method, the user describes the different kinds of nodes in an XML-based
schema description language. This approach is presented in Section4.1. The main ad-
vantage of this method is its flexibility, at the expense of requiring additional work from
the user.

� In the second method, the representation schema is automatically generated from a de-
scription of the syntax of the language. The advantage of this approach is that it can be
generated from the same description that would be used to generate a parser (with possibly
some extra annotations) and the burden of designing a schema for the language is avoided.
Details are provided in Section4.2.

Proc. GraBaTs 2006 6 / 13

ECEASST

4.1 Customized generation

The first input format proposed for our generator is an XML-based description of its nodes and
some additional information concerning, e.g., the identification of the root of the graph. Because
the set of operations to manipulate the graphs is fixed for each kind of node (amake function
for the node and aset and aget for each attribute of the node) this information is enough to
automatically generate theAGraph library.

To describe the schemas for a given programming or specification language, we defined a
simpleXML elements syntax, described below.

Customized input format specification The XML-based schema description language has 9
different elements: Unit, Datatype, Attribute, Edge, Hyperedge, Node, RootNode, Import and
List.

Unit is the main element delimiting the document. It contains XML-attributes1 identify-
ing the language being represented (XML-attributelang) and the node kind of the graph root
(XML-attribute root), e.g.:

<Unit lang="pn" root="net" >

The Unit element contains a sequence ofDataType elements, followed by exactly one
RootNode element, and any number ofNode, Import andList elements.

The DataType element may be used to declare named enumerated data types to be later
employed to define node attributes. For instance, assume that we want to represent a net with
colored tokens, where the color may be white, grey or black, we can declare the corresponding
data type:

<DataType name="TokenColor" value="White|Grey|Black" />

TheNode element specifies a node kind, identified by its name (XML-attributename), and
embeds elements that can be eitherAttribute , Edge or Hyperedge .

TheAttribute element specifies the characteristics of a node attribute. It has two manda-
tory XML-attributes:name, to identify the attribute, andtype to specify the type of the attribute
values. For example, nodes that represent nets will have an attribute to represent their name:

<Attribute name="aIdentifier" type="string" />

Edge specifies the characteristics of an edge. It has two mandatory XML-attributes:name,
to identify the edge, andtype to specify the legal types of the edge destination. For example,
nodes representing tokens will have an edge towards the node of the corresponding place:

<Edge name="nPlace" type="place" />

Hyperedge specifies the characteristics of a hyperedge (edge with several destination nodes).
It inherits the XML-attributes ofEdge, with the further restriction that thetype XML-attribute
shall be the identifier of a list node kind. For example, nodes representing nets will have a
hyperedge towards the list of places in the net:

1 To avoid confusion betweenAGraph node attributes and XML element attributes, we call the latterXML-
attributes.

7 / 13 Volume 1 (2006)

AGraphs: Definition, implementation and tools

<Hyperedge name="nPlaces" type="placelist" />

The elementsAttribute , Edge andHyperedge are then combined to define a node kind,
as in:

<Node name="token">
<Edge name="nPlace" type="place" />
<Attribute name="aQuantity" type="int" />

</Node>

TheRootNode element specifies the node kind of the root. It is a specialization of theNode
element, and must additionally include arootIdentifier XML-attribute, that specifies the
name of the attribute that contains the unit name, and alistImports XML-attribute, that
specifies the name of the edge accessing the list of imported units (when relevant). For example,
in our modular Petri net language, this element would be:

<RootNode name="net"
rootIdentifier="aIdentifier"
listImports="nSubnets">

<Attribute name="aIdentifier" type="string">
<Hyperedge name="nPlaces" type="placelist">
<Hyperedge name="nSubnets" type="subnetlist">
<Hyperedge name="nImports" type="placelist">
<Hyperedge name="nExports" type="bindinglist">
<Hyperedge name="nTransitions" type="transitionlist">
<Hyperedge name="nTokens" type="tokenlist">

</RootNode>

The Import element specifies an external unit reference mechanism. It is a specialization
of theNode element with an additional XML-attributerootIdentifier specifying the edge
pointing to the root of the imported unit. The XML-attribute value must match that of an existing
sub-element. In our example, we have a single external reference mechanism, which is the
subnet:

<Import name="subnet" rootIdentifier="nSubnet">
<Edge name="nSubnet" type="net" />
<Hyperedge name="nPorts" type="bindinglist" />

</Import>

Finally, theList element specifies a list of nodes. It has four mandatory XML-attributes to
identify the name of the node class, the name of the edges leading to the value, the successor and
the predecessor of the current cell. Additional edges and attributes or constraints on mandatory
edges may also be specified:

<List name="bindinglist" next="nNext" previous="nPrevious" value="nValue">
<Edge name="nValue" type="binding" />

</List>

4.2 Generation from syntax descriptions

We also provide a direct connection from the syntax definition of a languageL (e.g. a Petri
net description language) to the corresponding graph format. This connection shows that it is

Proc. GraBaTs 2006 8 / 13

ECEASST

possible to extract the abstract graph representation from a description of the concrete syntax.
Having this mapping automated allows us to: (1) use the syntax definition as documentation of
the graph format; (2) quickly prototype new formalisms; and (3) react efficiently to new versions
of a formalism.

We reuse an existing tool that maps syntax definitions to abstract data-types [11]. From the
abstract data-type generated by this tool, anAGraph format definition can be effectively generated.
The generation process follows a linear flow: (1) the primary input is a syntax definition in
SDF [17], from which two artifacts may be generated: a parser and a so-calledAbstract Data
Type Definition file; (2) theAbstract Data Type Definition file is translated to anAGraph format
definition (using the schema presented in Section4.1), by rephrasing the original tree-oriented
definition to a graph-oriented definition; (3) this graph definition is then used to generate an
AGraph library in C and/orJAVA.

The artifacts produced in this generation process may be employed to write a compiler for
L (or any kind of transformation tool). The parser resulting from the first step may be used to
generate the parse tree of any program in the languageL (e.g. a Petri net description), and the
AGraph library may be used to construct an attributed graph from this parse tree. The overall
architecture of this flow is represented in Figure3.

SDF2 Syntax definition

SDF2-to-ADT Parser Generator

Abstract Data Type

ADT-to-XML

AGraph Format Definition Generator

Specification

Parser

AGraph

Abstract Syntax Tree

Java/C code Compiler

Figure 3: AGraph generation and deployment

This architecture introduces a close correspondence between the syntax of a module in the de-
fined formalism, and the correspondingAGraph representation of the module. TheAbstract Data
Type Definition documents the contract between the parser and the compiler, and theAGraph for-
mat definition documents the contract between the compiler and other tools that will manipulate
a module ofL.

9 / 13 Volume 1 (2006)

AGraphs: Definition, implementation and tools

5 Related work

AGraphs are primarily designed for the representation and manipulation of programming and
specification languages. As they are based on a graph data structure, they can also be viewed as
a graph-representation language.AGraphs are a generic data structure that can be instantiated
for specific domains. A significant effort has been made to automate the implementation of each
instance from high-level specifications (grammars or graph schemas).

In the following, we discuss the relationship ofAGraph with other important graph formats and
compare the automated generation capabilities against that of other (non graph-based) formats.

5.1 Graph formats

Several graph description languages and graph-based exchange formats have been proposed so
far for specific applications [16, 9] or with the intention of becoming defaults in some application
domain [7, 3, 19]. Some of them, such as GDL [16] concentrate on visual characteristics of the
graph being described, while others, such as GraphML [3] or GXL [19] are more flexible and
general, and may be considered as standards in their respective domains.

GraphML, oriented to graph drawing, is an extensible and flexible graph-description language
that provides mechanisms to describe the structure of graphs, as well as to include application-
specific annotations. GXL, a standard for software reengineering tools, is also flexible and
generic, subsuming many other existing graph formats. In the same vein as in the work pre-
sented in [4], an AGraph could be translated into GraphML for visualization. Also, GXL could
be used as a more verboseAGraph persistent format, extending GXL-based tools toAGraphs.

On the other hand,AGraphs provide facilities for generating graph instances from programs or
specifications and to manipulate these graph instances. Thus,AGraphs characterise themselves
as more than just an exchange format, also providing corresponding support tools. This, as far
as we know, is out of the scope of most available formats.

A possible exception to this is the Meta Object Facility (MOF2) with, e.g., its MetaData
Repository (MDR3) implementation. However, although extremely powerful tools, and because
of that, they are also very verbose, require a bigger initial investment for developing an applica-
tion and tend to generate much bigger source code.

5.2 Automated generation

Code generation is an effective, and increasingly popular, method for software engineering [5].
The AGraph generator was developed in the tradition of code generators that take data-type
definitions as input. There are many such systems that generate implementations for tree-like
data-structures, e.g. ApiGen [11], ASDL [18], JJForester [13], and JAVA Tree Builder. Also,
code generators such as Breeze XML Studio for binding XML files to an object hierarchy are
based on similar principles.

The main advantage ofAGraphs with respect to these works is that the generated code im-
plements a graph data-structure instead of a tree. Since cross-references are very common in

2 http://www.omg.org/mof
3 http://mdr.netbeans.org

Proc. GraBaTs 2006 10 / 13

ECEASST

applications that analyze and transform programs or specifications,AGraphs immediately offer
the data-structure that is actually needed during computation. This results in efficient and com-
pact code. Tree-based data-structures need to be complemented with for example hash-tables to
accomplish the same cross-referencing ability.

6 Conclusions and Future work

AGraphs are a graph-based language representation and data exchange format. They form a
general data representation mechanism to be instantiated for each language to be represented.
This characteristic, fully explored in its API, makesAGraphs simple to use. For instance, to
get the value of a node attribute calledX, a functionlangGetX is to be called (wherelang
is a prefix given by the user at generation time). This approach differs from other known graph
manipulation libraries, such as libGR, used in the Gr-Gen tool [8], which are usually generic.

Automated generation of the implementation of anAGraph instance in the languagesC and
JAVA can be performed from a schema defined in a XML format or from a grammar inSDF. The
file format can be used as a communication mechanism between tools built with bothC andJAVA
instances ofAGraphs. The AGraph generator can be extended to support other programming
languages.

Both manually and automatically generatedAGraph instances have been effectively used in-
house in different software development efforts and have proved an easy and practical mean to
represent, manipulate and transform software artifacts (specifications and programs).

As future work, we plan to improve interoperability by taking several actions: port the gen-
erator to other programming languages whenever needed, establish a bridge with GraphML and
GXL. Currently, theAGraph generated library contains a function to write a GXL representation
of the graph. It is also possible to generate a function that reads into memory a GXL represen-
taion of anAGraph. This approach would loose in file size but would gain in interoperability. We
also propose to improve programming support by adding visualization tools. Finally, we also
plan to useAGraphs to support other research projects related to programming languages and
software engineering.

Bibliography

[1] M. Bidoit and P. D. Mosses. CASL User Manual, volume 2900 (IFIP Series) ofLecture
Notes in Computer Science. Springer Verlag, 2004. With chapters by Till Mossakowski,
Donald Sannella, and Andrzej Tarlecki.

[2] M. Brand, H. de Jong, P. Klint, and P. Olivier. Efficient annotated terms.Software-Practice
and Experience, 30:259–291, 2000.

[3] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall. Graphml progress
report: Structural layer proposal. InProceedings 9th International Symposium on Graph
Drawing (GD ’01), Springer Lecture Notes in Computer Science 2265, 2002.

11 / 13 Volume 1 (2006)

AGraphs: Definition, implementation and tools

[4] U. Brandes, J. Lerner, and C. Pich. GXL to GraphML and vice versa with XSLT.ENTCS,
127:113–125, 2005.

[5] K. Czarnecki and U. Eisenecker.Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, 2000.

[6] D. Déharbe, S. Shankar, and E. Clarke. Model checking VHDL with CV. In G. Gopalakr-
ishnan and P. Windley, editors,Formal Methods in Computer-Aided Design, volume 1522
of Lecture Notes in Computer Science, pages 508–514. Springer Verlag, 1998.

[7] J. Ebert, B. Kullbach, and A. Winter. Grax – an interchange format for reengineering
tools. In F. Balmas, M. Blaha, and S. Rugaber, editors,Proceedings of the Sixth Working
Conference on Reverse Engineering, pages 89–98, 1999.

[8] R. Geiss, G. Batz, D. Grund, S. Hack, and A. Szalkowski. Gr-Gen: A Fast SPO-Based
Graph Rewriting Tool. InProceedings of the Third International Conference on Graph
Transformations, volume 4178 ofLNCS, pages 383–397, 2006.

[9] M. Himsolt. Gml, a graph modelling language, 1997.
http://infosun.fmi.uni-passau.de/GraphLet/GML/ .

[10] D. Jin. Exchange of software representations among reverse engineering tools. Technical
report, Department of Computing and Information Science - Queens University, December
2001.

[11] H. d. Jong and P. Olivier. Generation of abstract programming interfaces from syntax
definitions.Journal of Logic and Algebraic Programming, 59, 2004.

[12] E. Kindler and M. Weber. A universal module concept for petri nets: an implementation-
oriented approach. Informatik Bericht 150, Institut für Informatik, Universiẗat zu Berlin,
2001.

[13] T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. In M. van den Brand
and D. Parigot, editors,Electronic Notes in Theoretical Computer Science, volume 44.
Elsevier Science Publishers, 2001. Proc. of Workshop on Language Descriptions, Tools
and Applications (LDTA).

[14] A. M. Moreira, C. Ringeissen, D. D́eharbe, and G. Lima. Manipulating algebraic specifi-
cations with term-based and graph-based representations.Journal of Logic and Algebraic
Programming, 59:63–87, 2004.

[15] A. M. Moreira, C. Ringeissen, and A. Santana. A Tool Support for ReusingELAN Rule-
Based Components.Electronic Notes in Theoretical Computer Science, 86(2), 2003.

[16] G. Sander. Vcg – visualization of compiler graphs. Technical report, Universität des Saar-
landes, February 1995.

[17] E. Visser.Syntax Definition for Language Prototyping.PhD thesis, University of Amster-
dam, Sep. 1997.

Proc. GraBaTs 2006 12 / 13

ECEASST

[18] D. Wang, A. Appel, J. Korn, and C. Serra. The Zephyr Abstract Syntax Description Lan-
guage. InProceedings of the Conference on Domain-Specific Languages, pages 213–227,
1997.

[19] A. Winter, B. Kullbach, and V. Riediger. An overview of the GXL Graph Exchange Lan-
guage. In S. Diehl, editor,Revised Lectures on Software Visualization International Semi-
nar, number 2269 in LNCS, pages 324–336, London, UK, 2002. Springer-Verlag.

13 / 13 Volume 1 (2006)

	Introduction
	Example
	AGraphs
	Design of the AGraph representation
	Interface provided for an AGraph representation
	Schema specification
	Implementation of AGraph libraries
	Implementation of the graph nodes
	Unit dependencies
	AGraph API
	Persistent formats for AGraphs

	Automated generation of AGraph libraries
	Customized generation
	Generation from syntax descriptions

	Related work
	Graph formats
	Automated generation

	Conclusions and Future work

