Electronic Communications of the EASST

Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools
(GraBaTs 2006)

Isomorphism Checking in GROOVE
Arend Rensink

11 pages

Guest Editors: Albert Ztuindorf, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Isomorphism Checking in GROOVE

Arend Rensink

Department of Computer Science, University of Twente
P.O.Box 217, 7500 AE Enschede, The Netherlands

Abstract: In this paper we show how isomorphism checking can be used as a
effective technique for symmetry reduction in graph-bastate spaces, despite
the inherent complexity of the isomorphism problem. In ijgatér, we show how
one can uselement-based graph certificate mappitgselp in recognising non-
isomorphic graphs. These are mappings that assign to alkels (edges and nodes)
of a given graph a number that is invariant under isomorphisrine sense that any
isomorphism between graphs is sure to preserve this nunilber.individual ele-
ment certificates of a graph give rise to a certificate for th@e graph, which can
be used as a hash key for the graph; hence, this yields athetoidecide whether a
graph has an isomorphic representative in a previously atedpset of graphs. We
report some experiments that show the viability of this rodth

Keywords: Graph Certificates, Isomorphism, GROOVE, Model Checking

1 Introduction

The core activity of any model checker is state space exjora In case of exiplicit-state
model checking, for this purpose it is imperative to be ablddtect, as fast as possible, whether
the target state of a newly computed transition has beeruate@d before during exploration.
In a setting where the states are graphs, as in the GROOVHE10plin fact it is even more
interesting to know if amsomorphicstate has been encountered before: differences that are fine
than isomorphism do not matter to any property that we miginitwo check, and by collapsing
isomorphic states one achieves the strongest possible dbsymmetry reduction. Not only
does this reduce the state space by a factor equal to theedgfigsgmmetry in the problem, but it
also relieves us from the burden of choosing clever reptasees for fresh nodes or edges that
are newly created in a production: the isomorphism of thgetagraph does not depend on this
choice.

The downside of this idea, obviously, is that graph isomptis a hard problem, believed not
to be polynomial (see, e.g14]). The main contribution of this paper is to discuss the palef
choices made in GROOVE to alleviate this problem. The esseto usesertificates(often also
calledinvariantg to characterise the isomorphism classes of graphs. Thessaxy definitions
are given in Sectiog; in Section3 we discuss the particular algorithm implemented in GROOVE
to compute the certificates. In Sectibwe show this has been successful at least to some degree:
for a particular (highly symmetrical) example problem, rtka to the automatic isomorphism
checking, GROOVE is able to generate answers for largedsproblems than conventional
model checkers. Finally, in Secti@we discuss the results, including some directions for &rrth
improvement.

1/11 Volume 1 (2006)

Isomorphism Checking in GROOVE @

2 Definitions

We assume a univerdab of labels, with an injective hash functidrash: Lab — Nat assigning
numbers to labels. We first recall the definitions of grapttsiaomorphism.

Definition 1 (graphs and isomorphisms) dxaphis a tuple(V, E, src, tgt, lab) with V a set of
nodes ancE a set of edgessrc,tgt: E—V the source and target function, alath: E — Lab
the edge labelling function. Given two grap@sH, anisomorphism f G—H is a pair of
bijections fy : Ve — Wy and fg : Eg — En such thatsroy o fg = fy o Srcg, tgty o fg = fy otgtg
andlaby o fg = labg.

Let Graph denote the universe of graphs. We recall the following (se®, [L4]):

Observation2 (complexity of isomorphism) Given two graph$s,H, decidingG = H is in NP
relative to|\s|, but not known either to be in P or to be NP-complete; it is fiduo be neither.

An important concept in algorithms for isomorphism chegkis that of aninvariant or cer-
tificate

Definition 3 (graph certificates) Agraph certificate mapping a functionc: Graph — X for
some seK such thaiG = H impliesc(G) = c(H). c(G) is called thecertificateof G. cis called
element-based c(G) = (cG,c8) with cG: Vg — Y, andcg: Eg — Ye for some set¥y, Yg, such
thatf : G = H impliescS = ¢l o fy andcE = cf o fe.

Hence, an element-based graph certificate mapping is omehfoh the sei of graph certifi-
cates consists of individual certificate mappings for thdesoand edges of the graphs. In this
paper we concentrate on certificated\iat, i.e., such thaK =, = Yg = Nat. Straightforward
examples are:

e G+ |Eg|, yielding the number of edges in a graph;
e G (oy,Ce) whereoy : v |tgtgt(v)| andce : e hashlabg(e)).

Note that, given an element-based certificate mappijnge can easily derive a certificate map-
ping c: Graph — Nat, for instance by defining

C:G— ¥ cC(v)+ Z e . (1)

vevg

Bisimulation. Our algorithm for isomorphism checking is inspired tuigimilarity as defined
by Milner [7] and Park 9], but this is due to our own background; in terms of the litera
on graph isomorphism, what we are about to define correspontdie notion of arequitable
partition (see McKay §)).

Definition 4 (generalised bisimilarity) Given a grajih ageneralised bisimulation over 5
arelationRs C (V x V) U (E x E) satisfying the following two properties:

Proc. GraBaTs 2006 2/11

@ ECEASST

Figure 1: Two bisimilar, non-isomorphic graphs

1. (vyw) € Rg implies there is a bijectiog” from the incident edges afto the incident edges
of w, such that for alle € dom(g"): (i) src(e) = v iff src(g'(e)) = w, (ii) tgt(e) = v iff
tgt(g"(e)) = w, and (ii) (.6 (e)) & Re.

2. (d,e) € Rg implies (i) lab(d) = lab(e) and (i) (src(d), src(e)), (tgt(d), tgt(e)) € Re.

Generalised bisimilarity over (lenoted~g, is the largest generalised bisimulation o@er

The notion of a largest generalised bisimulation is wefirgel because the identity relation
is a generalised bisimulation, as is the union of an arlyitemt of generalised bisimulations.
The connection between generalised bisimilarity and ispimem is given by the following
proposition, wher& W H denotes the disjoint union @& andH:

Proposition 1 f : G=H implies v~gun fv(v) for all v € Vg and e~guy fe(e) for all e € Eg.

On the other hand, it inot the case that generalised bisimilarity completely pred&bmor-
phism; rather, it gives rise to a strictly coarser relatidio. make this statement precise, let us
denoteG ~ H if there is a bijective mappinigfrom the elements d& to those oH (not necessar-
ily a morphism) such that ~gun h(v) ande ~gun h(e) for allv eV, e € E. Now PropositionlL
can be seen to imply th& ~ H wheneverG = H. However, the inverse does not hold; in
other words,~ is strictly coarser tharkz. An example is given in Figuré&, which shows two
non-isomorphic graph& andH, with some non-trivially~gu-related node pairs connected by
dashed lines. Clearlg ~ H in the sense defined above.

As discussed in the introduction, our business here is sfaee exploration, where a graph
is associated with each state and we want to collapse sté@tessamorphic associated graphs.
The problem to be solved is therefore not just comparing tvaplgs up to isomorphism, but
determining whether we have already encountered any igunwovariant of a given graph. To be
precise, given a grapB and a previously computed, finite $bf graphs, which are guaranteed
to be distinct up to isomorphism, we want to find the uni¢lie Ssuch thatG = H if such an
H exists, or to comput&U {G} otherwise. (Clearly, the problem of deciding isomorphisim o
two given graph&s, H appears as a special case of this, by tal8rg{H}.) In this problem, not
only the size of the graphs but also the siz&dd a factor in the complexity.

3 The algorithm

The algorithm we use to solve the problem described aboveisisrof the following elements:

3/11 Volume 1 (2006)

Isomorphism Checking in GROOVE @

1. For a given grapis, we compute a sequence of element certificate mapmtt{ygs‘E) for
i € Nat, mapping toNat; each such mapping induces a similarity relation> ~g over
the nodes and edges @f defined by ~' wif ¢, (v) = ¢, (w) andd ~' eif c(d) = cc(e);

2. We stop the computation at the fiisior which [V /~!| < [V/~I71|, i.e., as soon as the
number of cells in the partition induced by the certificatgppiag no longer grows;

3. From the ensuing element-based graph certificate maypirith (cG,cS) = (c‘v,ciE), we
derive a certificate mappingas in ();

4. The set of previously explored grapBis stored as a hash set with hash values determined
by c;

5. After computinge(G) for a new graplG, we determine the set of grapQsC Sdefined by
Q={H|c(H)=c(G)}. We try to establistG = H for all H € Q; if this fails, we addG
toS

6. To testG = H, we proceed as follows:

Equal graphs First testG = H; if so, obviouslyG = H;

Injective element certificates Otherwise, test itG andcg are injective; if soG = H if
and only if ((c}) "o cC, (cH) 1o c8) is an isomorphism;

Complex isomorphism Otherwise, definex C (Vg x Vi) U (Eg x En) such thatv ~ w
iff cS(v) =cf(w) andd ~ eiff cS(d) =cH(e); if f:G=H thenv=~ fy(v) and
e~ feg(e) for all ve Vg, e € Eg, so~ gives a good starting point for findinfy

False positives|f all fails, thenc(G) = ¢(H) whereass % H; we call this afalse positive
of the certificate functior.

Obviously, if G ~ H but G 2 H then a false positive is unavoidable; but false positiveg aiso
arise in casé + H, depending on how well the certificate mapping does in asgigdistinct
values to elements that are not bisimilar.

Although the requirements on the sequence of element catéfimappings that are listed above
are sufficient to guarantee therrectnesf the algorithm, itperformancedepends strongly on
some further “quality criteria”. Desirable properties the sequence of mappings are:

e Each next similarity relation should refine the previous;,i~'*1 C ~I for all i. (This
implies that the termination criterion in Stégs satisfied if and only i¥/ /~' =V /~1—1,
i.e., if and only if thei-th certification mapping induces tisamepartition as the previous
one.) Moreover, once the refinement has stabiliséd(= ~' at somd) it should remain
stable ¢ = ~! for all j > i). (This ensures that we do not terminate the iteration too
early.)

¢ The sequence of similarity relations should converge¢gi.e., ~' = ~g for somei. (In
combination with the requirement' D ~ in Stepl, this implies thatV /~' 1| < |V /~|
for thati, and hence the termination criterion in St fulfilled. If, furthermore, the
previous desideratum is also met, we are sure to actuaityiriate at that and not before,
so the mapping is optimalfor our purpose.)

Proc. GraBaTs 2006 4711

@ ECEASST

i=1| -7|13| 3 | 3| 3
i=2| —-14/16| -4 | 11| -4
i=3]| 14 |55|-35| 6 | —35

Ce H (1,8,2) ‘ (2,b,4) ‘ (3,b,1) ‘ (4,8,3) ‘ (4,a,5) ‘ (5,b,1) H
=0 1 2 2 1 1 2
= 4 6 6 4 4 6
=2 1 14 4 11 11 4
=3 4 43 -12 19 19 -12

Figure 2: Example graph and element certificate functionpfash(a) = 1,
hash(b) = 2 and newCertold, lab, srcCert tgtCert) = old + lab+ srcCert+ tgtCert

e The number of iterations until termination should be sneablg the computation of each
next mapping in the sequence fast. (We recall from Paige andrT[g] that the average-
case complexity of computing bisimilarity, which is basedtbe same principle of par-
tition refinement, iO(nlogn) with n= |V|. In analogy, we conjecture that the average
number of iterations ideally i©(log|V|), in which case the complexity of each iteration
isO(V1).)

Our basic strategy is to sta} at some constant argd at the hash value of the edge labels, and
to compute the certificates in each next iteration as a fonaf the previous certificate values
for the immediate local context, i.e., the end nodes for tiges and the incident edges for the
nodes. In short:

i hasHlab(e)) ifi=0

ce(e) = { i—1 i—1 i—1 :
newCerfcg ~(e),lab(e),c, ~(src(e)),q, ~(tgt(e))) otherwise

) = {1 ifi=0

v - Ci\/il(v) + Zv:src(e) CiE (e) - ZV:tgt(e) CiE(e) otherwise

where the most important parameter is the functiewCert which computes the next edge
certificate value from the previous one, the edge label, Bagtevious certificate values of the
source and target nodes. As an aside, it is not difficult tugtbat, irregardless of the choice of
newCert the above definition results in a valid sequence of elemenificate mappings.

As an example, in Figur2 we show a graph with some internal symmetry and the caloulati
of ¢, andck until V /~' converges, which is fdr= 3, atV /~% =V /~? = {{1}{2},{3,5}, {4} }.
Note that, for the sake of understandability, here we hakenta particularly simple choice for
newCert

Itis the task ohewCertto pick appropriate values so as to meet the desideratd bimve. For
instance, ideallynewCertshould be injective (so that the sequence converges, atidctiisns

5/11 Volume 1 (2006)

Isomorphism Checking in GROOVE @

in label or end nodes are taken into account), and everyvdsymametric in its third and fourth
parameter (so that the direction of the edges is taken immiouent). In practice, however, we have
to make do with the finite fragment of integers offered by awrgpamming language of choice;
in Java, the typént with 32 bits. As a consequence, we cannot even ensure infgctlhe
current implementation is as follows:

int newCert(int old, Label lab, int srcCert, int tgtCert) {
int srcShift = 8;
int tgtShift = (hash(lab) & Oxf) + 1;
return ((srcCert << srcShift) | (srcCert >>> (32-srcShift)))
+ ((tgtCert << tgtShift) | (tgtCert >>> (32-tgtShift)))
+ ol d;

}

The core algorithm for the computation @5, cS), as outlined above (Stefis-3), is given in
Table3. We assume arraysit[] src, tgt, | ab encoding the graph withnt vSi ze, eSi ze
the node and edge count; the result of the algorithm is giyeartaysi nt[] vCert, eCert.
To determine the size of the partitions we have implementygel nt Set with methodsvoi d
add(int i) andint size();itworks on the basis of a hash set.

Note that the complexity of each iteration @ |V |+ |E|), and the number of iterations is
bounded by|V| (since the iteration terminates as soon as the size of thgigarstops grow-
ing, and the size can obviously grow no larger thdl). As mentioned above, by analogy to
the complexity of bisimilarity checking we conjecture thlag average number of iterations is
O(log V).

4 Results

In this section we provide some statistics that give an isgom on how well GROOVE performs
with respect to isomorphism checking using the setup desgrabove, and we discuss future
work.

Table4 shows figures from a number of case studies we have undertdkesse were mea-
sured on a 3 GHz Pentium IV machine, running the developmergian of GROOVE in the
JVM 1.5.0 with 1,5 GB of memory. The first three case studieseveéso reported (for an older
version of GROOVE) in13, 11]).

Mutex is a mutual exclusion protocol taken frorl][It is characterised by relatively small
states with a lot of unpredictable symmetries. The figurpsnted here are for graphs of
up to 6 nodes (which can either be processes or resourcesiia bf the protocol).

Philosophers is a variant of the well-known dining philosophers examplere computed for
a problem size 12. For a precise description s&. [It is characterised by a 12-fold
symmetry, which is quite predictable as no nodes are creatdedleted.

Append models a concurrently invoked append method that puts a feweat to the tail of
a list. For a precise description s€€3]. The case is characterised by symmetry that is
mainly due to confluence of rules; the graphs are quite dynam grow relatively large.
The figures reported here are for a list of length 8 and 4 ceenuimvocations.

Proc. GraBaTs 2006 6/11

@ ECEASST

int[] tnmp = new int[vSize];
int partSize = 1;
/1 initialise the edge certificates
for (int e = 0; e < eSize; e++)
eCert[e] = hash(lab[e]);
// initialise the node certificates
for (int v = 0; v < vSize;, v++)
vCert[v] = 1;
do {
/] store the current number of partition cells
int oldPartSize = partSize;
/1 calculate the new edge certificates
for (int e = 0; e < eSize; e++) {
eCert[e] = newCert(eCert[e], lab[e], vCert[src[e]],
vCert[tgt[e]]);

/'l propagate to the endpoints
tnp[src[e]] += eCert[e];
tnp[tgt[e]] -= eCert[e];
}
/1 collection of certificate values, used to conpute partition size
IntSet certSet = new IntSet();
for (int v = 0; v <vVSize; v++) {
/1 copy the tenporary node certificates to the real ones
vCert[v] = tnp[v];
tnp[v] = 0;
certSet.add(vCert[v]);

}
partSi ze = certSet.size();
/1 continue while the nunber of cells in the partition still grows

} while (partSize > oldPart Si ze);
Table 3: Core of the certificate computation

Gossips models the “gossipping girls” example (see, e.d]).[It is characterised by a huge
amount of unpredictable symmetry. The graphs are staticodes are created or deleted.
The figures reported here are for 8 girls.

The results in the table should be interpreted as follows:

e Theaverage nodeandedge couns give an indication of the size of the graphs involved.

e Thecomparison countis the number of graphs for which the essential questiond e
encounter an isomorphic representative of this graph e@fdnad to be answered.

e Thedistinct graph count is the total number of distinct graphs, i.e., the numberrogs
the properanswer to the above question was “no”.

e Theequal graph certificate countis the number of times the certificate of a new graph
had been encountered before, so thatati®al answer to the above question was “yes”
(including false positives).

7111 Volume 1 (2006)

Isomorphism Checking in GROOVE

S

\ | Mutex | Philosophers| Append | Gossips|
Average node count 5 24 38 16
Average edge count 14 66 114 64
Comparison count 1212724 2873309| 116643| 12193600
Distinct graph count 515134 347337 31104| 2309763
Equal graph certificate count 698664 2526077| 82905| 9889024

Equal graphs 252402 2076356| 36503| 3314920
Injective element certificates 436454 449616 42734 7936
Complex isomorphism 8734 0 3668 | 6560981
False positives 1074 105 0 5187
Isomorphism checking (s) 76 269 21 12802
Isomorphism checking (% of total) 58% 53% 28% 72%
Computing certificates (% of iso timg) 86% 65% 62% 15%
Graph equality (% of iso time) 5% 27% 12% 1%
Element certificate (% of iso time) 7% 8% 16% 0%
Complex isomorphism (% of iso time) 2% 0% 10% 84%

Table 4: Isomorphism checking results

e The next lines split up the further analysis of the equal lyregrtificates; see Sectich
The sum of these four cases equals the total above.

e The number of false positives is listed separately; thefatg equation should hold

comparisons = distinct graphs + equal certs — false positives.

e Theisomorphism checkingrows indicate the time taken to compute the above.

The results give rise to the following observations:

1. Isomorphism checking takes between 25% and 75% perceiiedbtal time for state
space exploration — a major fraction.

2. The degree of symmetry in all but the “append” example fBcsent to warrant the time
taken for isomorphism checking. For instance, the “gossgample can be analysed in a
traditional model checker, without symmetry reductiontagize 6 only — which should
be contrasted to the size 8 reported Here.

3. In most cases, the majority of this time is taken up by camguhe graph element cer-
tificates. The exception is the “gossips” example, which&hsge amount of non-trivial
symmetry.

4. The graph certificates are very accurate in predictingaphism, yielding false positives
in only 0,2% of cases for the worst case (the “mutex” example).

1 In[12] we report a further improvement by an order of magnitudéjexd by using quantified transformation
rules.

Proc. GraBaTs 2006 8/11

@ ECEASST

5. Between 30% and 80% of the isomorphic graphs are actugligie

6. In the great majority of the remaining cases, the grapmehé certificates are injective
(or, in other words, in terms of Definitios there are no non-trivial bisimilarities in the
graphs) so that they give a fast method for establishing aspmsm. The exception is,
once more, the “gossips” example.

7. In the “gossips” example, most of the time (amounting t&5df the total time for state
space exploration) is spent in establishing the actual ésphisms. There is certainly
room for improvement here.

8. Inthe “append” example, which is the most realistic safevmodel with the least symme-
try, the most dynamism and the largest average graph siesdimorphism check takes
0,18 ms per graph.

As an aside, it may be worth mentioning that even in the sme#iee studies, over 50% of the
total state space exploration time is taken up by garbadectioin. In the “gossips” case this is
much worse; we have no precise figures here, but we conjetttarén the order of 90% of the

total time is taken up by garbage collection.

Parallel independence. Whatever we do to improve the performance of isomorphisnciche
ing, as long as we are dealing with arbitrary graphs (but sém) it will always remain a major

bottleneck. The best improvement would be to avoid havirghexk for isomorphism in the first
place. It turns out that this is indeed often possible, ngrbhgltaking advantage of parallel inde-
pendence of productions. Namely, if the applications;adndr; in the following diagram are

independent, then we can predict beforehand, without gaaitheck anything, thaf; = Ko.

Hi —=Ki

~

G

Y
X
H2L>K:2

We have recently improved GROOVE based on this insight. rtigwout that, with respect to
Table4, 50-100% of theequalgraphs are due to such “confluent diamonds”. Since we can then
omit even the computation of the certificate, this resulta imotable speedup in isomorphism
checking, of 25% in the “append” and “gossips” examples & 1dthe “philosophers” example.
Our implementation is inspired by].

5 Conclusion

Summarising, the contribution of this paper is the follogin

e We have set out the variant of the graph isomorphism problenmeed to solve for the
purpose of symmetry reduction in GROOVE, and described #s&lstrategy for solving
this using graph certificates;

9/11 Volume 1 (2006)

Isomorphism Checking in GROOVE @

e We have presented an algorithm to compute the certificaigesalas implemented in
GROOVE;

e We have reported and discussed some experimental results.

We have not yet carried out a sufficiently extensive comparatvestigation to know how well
our implementation does with respect to either other mdaetkers that use symmetry reduction
(e.g., symmetric SPINL] or Murg [5]), or with respect to other tools for isomorphism checking
(e.g., Nauty §]); this is clearly a necessary part of our future work.

This paper allows states that can be arbitrary graphs. $hidact one of the major differences
with traditional model checkers such as the aforementiddBtN and Mugp, which a priori
assume a rather rigid structure consisting of processeslaad Though we want to stick to the
graph view, we believe that for software models it may be ciefiit to usedeterministicgraphs
only — that is, graphs for which the out-degree of any nodeafor given label does not exceed
1. Since isomorphism checking is known to be polynomial actdaly sometimes linear for
subclasses of graphs satisfying this type of restrictitmes penefit may be enormous. This, too,
is future work.

Acknowledgements: The research reported herein was carried out as part of tHeGME
project, funded by NWO (Grant 612.000.314)

Bibliography
[1] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric SPEYTT 4(1):92-106, 2002.

[2] A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. RasAn event structure semantics
for safe graph grammars. In E.-R. Olderog, ediiggramming Concepts, Methods and
Calculi, volume A-56 ofiFIP Transactions pages 423-444. IFIP, North-Holland Publish-
ing Company, 1994.

[3] R. Heckel. Compositional verification of reactive syatespecified by graph transforma-
tion. In E. Astesiano, editoirundamental Approaches to Software Engineering (FASE)
volume 1382 ofLecture Notes in Computer Sciengaages 138-153. Springer-Verlag,
1998.

[4] C. A. J. Hurkens. Spreading gossip efficientiMieuw Archief voor Wiskundé.(2):208—
210, 2000.

[5] R. losif. Symmetry reductions for model checking of cament dynamic softwareSTTT
6(4):302-319, 2004.

[6] B. D. McKay. Practical graph isomorphisr@ongressus Numerantiyr®0:45-87, 1981.

[7] R. Milner. A Calculus of Communicating Systemslume 92 oflecture Notes in Computer
Science Springer, 1980.

Proc. GraBaTs 2006 10/11

@ ECEASST

[8] R. Paige and R. E. Tarjan. Three partition refinementritlyms. SIAM Journal of Com-
puting 16(6):973—-989, 1987.

[9] D. Park. Concurrency and automata on infinite sequeniceB. Deussen, editoRroceed-
ings 5th Gl Conferengevolume 104 ot ecture Notes in Computer Scienpages 167-183.
Springer, 1981.

[10] A. Rensink. The GROOVE simulator: A tool for state spammeration. In J. Pfalz,
M. Nagl, and B. Bohlen, editordpplications of Graph Transformations with Industrial
Relevance (AGTIVEYolume 3062 of_ecture Notes in Computer Scienpages 479-485.
Springer-Verlag, 2004.

[11] A. Rensink. Time and space issues in the generationagftgtransition systems. Inter-
national Workshop on Graph-Based Tools (GraBa¥sjume 127 ofElectronic Notes in
Theoretical Computer Scienggages 127-139. Elsevier Science Publishers, 2005.

[12] A. Rensink. Nested quantification in graph transfoioratules. In A. Corradinit et al.,
editor, International Conference on Graph Transformation (ICGMlume 4178 of ecture
Notes in Computer Scienggages 1-13. Springer-Verlag, 2006.

[13] A. Rensink,A. Schmidt, and D. Varro. Model checking graph transfoiora: A com-
parison of two approaches. In H. Ehrig, G. Engels, F. P&nissicce, and G. Rozenberg,
editors,International Conference on Graph Transformations (IC@/BJume 3256 ot ec-
ture Notes in Computer Sciengqeages 226—241. Springer-Verlag, 2004.

[14] E. W. Weisstein. Isomorphic graphs. From MathWorld — Alidam Web Resource.
http://mathworld.wolfram.com/IsomorphicGraphs.html, 2002.

11/11 Volume 1 (2006)

http://mathworld.wolfram.com/IsomorphicGraphs.html

	Introduction
	Definitions
	The algorithm
	Results
	Conclusion

