
Electronic Communications of the EASST
Volume 1 (2006)

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

Automation of Java Code Analysis for Programming Exercises

Carsten Köllmann, Michael Goedicke

11 Pages

 ECEASST

2 / 12 Volume 1 (2006)

Automation of Java Code Analysis for Programming Exercises

Carsten Köllmann, Michael Goedicke

University of Duisburg-Essen

Abstract:
In this paper we present a tool environment for semi-automatic verification of basic
programming exercises. We describe how graph transformation can be used for analysis
of code structures and present an example from a current course.

Keywords: graph transformation, static analysis, agg, programming exercises, Java, Tool

1 Introduction
Mapping problems to algorithmic solutions and to program code is a major challenge for first
year students. The main problem is the development of an algorithm fitting to the given
problem and deriving a corresponding program later on. Experience shows that teaching of
abstract structural concepts together with corresponding program structures is an adequate
teaching concept.
To internalize this kind of knowledge, numerous accompanying coding exercises are
mandatory. Manual correction of these exercises is a protracted work which needs a lot of
manpower, especially when the large number of first year students (several hundreds in our
case) has to be taken into account. Therefore partial or, if possible, full automation of these
corrections would generate a great benefit. Exercises in the field of basic programming are
characterized by the fact that a given problem mostly induces only a small number of principal
solutions. Furthermore in most cases only a set of similar “standard errors” occurs which can
be derived from incorrect usage of the principal solutions the students learned before.
In this paper we describe a graph transformation [EEKR99] based Java code analysis tool for
the automatic check of Java applications for “standard errors” specific to a given exercise, so
the manual correction later on can focus on more individual problems. The tool supports the
full Java 5 syntax and shall provide the basis for more extensive analyses in the future. Its
application in the context of exercise testing for a big group of students has been done for
collecting experience in a real world scenario. Thus, we can benefit from the results in terms of
scalability, the range of possible applications, usage conditions and performance.
The support for structured representation, verification and modification of the Java source
code is provided by graph transformation techniques. Graph transformation supports the
description of syntax and the formalization of semantic aspects in one coherent formal
technique. The representation of source code syntax in a graph structure and its modification
by graph transformation has been done in several contexts like program refactoring [ND04]
due to its ability of handling structures in a well defined way. Furthermore by using graph
transformation it is possible to introduce abstract views on concrete code by e.g. merging
elements, or searching for code structures that can occur in arbitrary sequences without loosing

Automation of Java Code Analysis for Programming Exercises

Proc. GraBaTs 2006 3 / 12

the context of the original code. Several existing graph transformation environments give
related tool support which allows to actually apply the idea in practice.
Given these advantages we constructed a tool chain based on a general Java to graph structure
transformation, structured graph transformation and transformation back to Java and applied
this tool chain to the analysis problem sketched above.
In the following we describe the workflow and tools used for the system. We focus on the
static Java code analysis by presenting our analysis approach, showing the buildup of an
example exercise together with some corresponding verification tests. In addition we present a
brief initial evaluation of our approach and justify the main design choices. At the end with
give a brief description of our future work directed towards an additional dynamic analysis.

2 Environment
The workflow of our program verification system includes three main components:

• Teacher Component: The teacher creates the coding exercises and corresponding
verification tests. For static tests he primary defines the principal solutions of the
exercise. Later on graph rules for checking the code for corresponding structures have
to be defined by him or a person experienced in creating graph rules. For runtime tests
assertions have to be defined which a model checker can check later on. The
component stores the rules and assertions for processing students’ solutions.

• Student Component: The student uploads the source code of his solution to the server.
After performing the checks he gets the information if his code is OK or what kind of
standard flaws have been detected. Now he can correct his code and check it again
later on.

• Check Component: The Server gets the source code of the students, automatically
processes the tests using the tool chain described below and stores the results.

Student

Browser

Server
- static analysis
- model checking

Teacher
Coding Exercise

Result

Upload of
source code

- Definition of check rules
for static analysis
- Definition of assertions
 for model checking

Figure 1: Environment for automatic exercise check

The server component includes automatic verification of the uploaded solution code using
rules and assertions defined by the teacher. To realize this fully automated back-end for code
verification we combined graph tools for static code verification and for code modifications
needed for the model checking [CS01] later on. In the following we describe the workflow
realized by the back-end and present a more in-depth view of the tools.

 ECEASST

4 / 12 Volume 1 (2006)

Workflow of the server back-end:

Static Analysis:
After the source code has been uploaded and stored into a database it is transformed into a
graph structure with java2ggx. Next the graph rules of the specific exercise are applied to the
source code graph by using the tool Control for choosing the rule(s) to be applied and AGG
(Attributed Graph Grammar System) [AGG06] for actual processing the selected rule(s). If an
error is detected a node is generated including information about the specific problem. After
procession of all check-rules the resulting source code graph is parsed for these “error nodes”
and their content is stored in the database for generating a report which can be accessed by the
submitting student. If no error nodes are found the source code is marked as OK.

Preparing code for model checking:
Because of possible security problems during execution by the model checker Java
PathFinder (e.g. commands affecting the file system) only the usage of predefined libraries is
allowed and has to be checked before with the static analysis techniques mentioned above.
Then the assertions a teacher has defined before are inserted into the source code of the
student’s solution. The assertions are automatically placed in the given code after each
assignment of a variable occurring in the assertion. All input operations are replaced with calls
to the API of the model checker Java PathFinder including the input range that shall be
checked. After finishing these modifications the graph structure is retransformed into Java
code by ggx2java.

Runtime Analysis:
The prepared source code is compiled and the model checker Java Pathfinder will be started.
If an error has been found the error path is displayed and will be stored into the database.
The server back-end workflow (fig. 2) combines several existing tools and our own tools. The
major challenge is the integration of the various tool formats in a way which assures a coherent
presentation of the source code along the tool chain in order to generate useful hints related to
the submitted original source code in the case of an error. In addition a good performance and
scalability has to be accomplished which has been achieved by coupling the different tools as
close as possible, e.g. by using directly the API of the graph transformation tool AGG and not
its graphical interface.

Thus the server back-end combines the following tools:

• AGG: AGG [Tae00] is a graph transformation tool where graph rules can be applied
following the single push-out or double push-out approach [EHK+97]. Graphs in this
environment can be attributed by any kind of Java object.

Automation of Java Code Analysis for Programming Exercises

Proc. GraBaTs 2006 5 / 12

J a v a C o d e G r a p h S t r u c tu r e A n a ly s i s R e s u l t R e s u l t s i n D B

B y te c o d e A n a ly s i s R e s u l t R e s u l t s in D B

G r a p h R u le s
f o r e x e r c i s e

T r a n s f o r m a t io n to
G r a p h F o r m a t

A p p l i c a t io n o f c h e c k r u l e s

s to r a g e

m o d e l
c h e c k in g

s to r a g e

S t a t i c A n a ly s i s :

R u n t im e A n a ly s i s :

G r a p h S t r u c tu r e G r a p h S t r u c tu r e
w i th A s s e r t io n s

P r e p e r a t io n f o r r u n t im e a n a ly s i s :

J a v a B y te c o d ec o m p i l e

G r a p h R u le s c h e c k l ib r a r ie s & in c lu d e
a s s e r t io n s

J a v a S o u r c e C o d eT r a n s f o r m a t io n
to J a v a C o d e

Figure 2: Workflow implemented on server back-end

• Java2ggx: Our tool transforms Java source code into a graph structure and stores it in
the graph description format ggx used by AGG. The code is parsed by using the parser
generator JavaCC [JCC06] including the Java TreeBuilder which provides the
Abstract Syntax Tree (AST) of Java. Additional edges are introduced to express
implicit dependencies in a source code. Thus is a standard technique which allows
easier formalisation of transformation rules. The resulting structure is stored in the ggx
format.

• ggx2java: Our tool retransforms the ggx graph representation into Java source code.
• Control: Our tool uses the AGG API to initiate the execution of a specific sequence of

graph rules and therefore the sequence of the source code checks and modifications
needed.

• Java PathFinder: Java PathFinder [Path06] is a model checking tool for Java
applications, checking assertions and concurrency faults. It executes all potential
execution paths of a program for the whole range of possible input values for the
application. The range of these values has to be predefined by the user as well as the
assertions.

3 Graph based Code Representation and Graph Transformation
based Verification
Graph transformations are based on graph grammars that consist of a graph (our Java source
code graph representation), and graph rules (our check rules) that perform the transformation.
Graph rules consist of a left hand side describing the pattern in a graph to be found, called
match, and a right hand side describing the target structure of the transformation.
The graph representation of the Java code is based on its AST. Additional dependencies to the
AST are created to simplify the pattern matching for code verification later on. These
dependencies include among others explicit edges from object usage to its instantiations and
from there to its declaration, edges from method calls to the method declaration and nodes for

 ECEASST

6 / 12 Volume 1 (2006)

explicitly defining the beginning and the end of logical blocks. An example of the source code
representation is given in figure 3.
The challenge we are facing with our approach for static source code analysis is how to
statically test functional aspects of Java programs that are coded in a very restrictive context.
The main idea of our approach is to search for principal structures that should be used for
solutions of an exercise and to define those as patterns for the left hand side of a rule. If none
of these structures can be found, a possible error is indicated and an error node is created
whose content is displayed to the student later on. Searching for these solution patterns by
graph rules gets more simple the more dependencies of the code have been made explicit.

The patterns currently used can be applied to five main categories of program structures:

• Intra-method structures: Major structures to be used in a method like different kinds
of loops, recursion or condition statements are covered here.

• Inter-method structures: Structures like method calls, parameters, or return statements
are checked here.

• Intra-class attributes: The declaration and usage of variables and constants in a class is
analysed by patterns covered by this category.

• Inter-class structures: Here the local object instantiations are covered as well as the
calls of methods and public attributes from outside.

• Combined structures: More in-depth checks often need a combination of the patterns
used above. An example is the verification of the counter variable of a while loop
combining an intra-method with an intra-class attributes check.

4 Example of Exercise Creation
In this chapter we present the definition of an example exercise and the creation of its principle
solutions and corresponding rules. The exercise has been taken from an existing course
teaching basic Java programming. It includes the three steps: a) conceptual exercise
formulation, b) definition of principal solutions and corresponding flaws, c) creation of check
rules.

Problem statement:
Implement a dynamic FIFO (first in first out) list with methods for insertion of an element,
searching for an elements and deletion of an element.

Templates to be used:

class Element{
String text;
Element nf;}

class List{
Element head, foot;
void insert (String text){…}
void search (String text){…}
void delete (String tetxt){…}}

Automation of Java Code Analysis for Programming Exercises

Proc. GraBaTs 2006 7 / 12

Possible flaws to check (among others):

1. The implementation does not use the templates.
2. The insert method does not consider the head of the list correctly.
3. The search method includes a loop without a structural correct termination

condition.
4. The delete method does not consider the correct handling of the list head.

Definition of check rules and rule flow:
 Flaw 1:

• Check if the structure of the given templates appears (separately and in
combination).

• Check if the methods are named correctly.

Flaw 2:
• Check if the method insert includes a condition containing the sub-term ==

and a class variable of type Element before or after this expression. The
identification of the Element class has to be done by structure check, not by
checking the class Name.

• Check if the body of this condition includes assignments from an object of the
type Element that is dependent on the method parameter, to the class variable
detected before.

 Possible solution variant:
class List{
Element head, foot;
public void insert (String text){

Element e=new Element;
e.text=text;
if(head==null){

 head=e;
 …

Flaw 3:

• Check for loops included in the search method and check if there is a
connection between the termination condition of the loop and the method
parameter.

• Check if on the left or the right of the connected element an object of the
Element type appears, that points directly or indirectly to the class parameter
text.

 Possible solution variant (see also figure 3):
class List{
public void search (String text){
...
while (!e.text.equals(text))
…

 ECEASST

8 / 12 Volume 1 (2006)

Flaw 4:

• Check for conditions included in the delete method and check if these
conditions are connected to class variables

• Check if the corresponding bodies contain a) assignments from these variables
and/or b) to these variables.

 Possible solution variant:
class List{
Element head ,foot;
public void delete (String text){
if (e==head){ //e represents the text containing

element
 head=head.nf; …

In the following we show the practical usage of our approach by presenting a description of
our implementation for checking flaw 3. Figures 3 and 4 show the main rules used to detect
principal solution structures while figure 5 shows the graph of a possible implementation
variant. The structure searched for to cover flaw 3 is highlighted here. All figures are from the
AGG tool. Some dependency edges from variable usages to their declarations have been
hidden in figure 5 for clarity. The graph contains the Element class and the List class just
including the search method.
After the while node has been found the corresponding termination condition is analysed. The
expression structure is traversed to find a connection to the method parameter text and the
reference to the text definition in the Element class.
Figure 3 shows the pattern used to match the reference to the text variable of the Element class.
The node mark is used for traversal through the termination condition (traversal rules are not
shown here). We avoided to use the name of the variable in this rule. So even solutions using a
different name than text for the variable in the Element class are found. The bold text element
of the possible solution expression while (!e.text.equals(text)) is e.g. found here.

Figure 3: Rule to detect the usage of a variable declared in the Element class

The second main rule we used is presented in figure 4. Here the dependency of an element in
the termination condition of the while loop on the parameter text of the search method is
detected. This rules explicitly searches for a method parameter named text that has to be used
in the condition of the while loop. The bold text element of the possible solution expression
while (!e.text.equals(text)) is e.g. found by this rule.

Automation of Java Code Analysis for Programming Exercises

Proc. GraBaTs 2006 9 / 12

Figure 4: Rule to detect the usage of the text parameter of the search method

If the two rules described above find a match in the graph of the Java code then the fact is
verified, that the termination condition of the while loop contains the correct reference objects.
Further rules could now be used to analyse if these are connected with the method call equals
of the String class. A disadvantage of these rules would be the limited number of possible
solutions they cover, because students could e.g. use self written methods for checking the
String equality. Of course, more general rules can be formulated which cover more correct
solutions variants.
So far we presented the static part of the checking. The dynamic part, using pathfinder, is
ongoing work. Here the transformation abilities of AGG are essential for the instrumentation
of code with assertions.

Figure 5: Graph representation of solution code with highlighted nodes for checking flaw 3

 ECEASST

10 / 12 Volume 1 (2006)

5 Evaluation
In the first part of this chapter we desribe an initial experimental evaluation of our approach
while in the second part we justify our main design choices.

Experimental evaluation
We evaluated our approach by choosing typical exercises of an introductory programming
course. Here we describe two of them. The first one is used in the middle of the semester
including the creation of a dynamic list, search for specific elements and deletion of elements
in this list. The flaws we cover here have partly been presented in the exercise above. The
second example is used at the end of the semester examining the handling of interfaces in Java.
Here we checked among other things the valid connection between interfaces and classes and
their correct instantiation.
For our evaluation the exercises have been processed by 7 students. Their solutions have been
checked by using the tool environment described in chapter 2. Because of the fact that our
approach can not process a full semantic check, the solutions have been additionally analysed
manually to investigate possible errors at a more detailed level.
The table below includes the number of rules used for checking the whole exercise, the total
number of flaws that can be checked by these rules, the number of flaws found during our
experiment and the number of false negatives (the students used structures that we have not
anticipated during rule creation) found in the student examples. We also counted the number
of solutions containing errors that have not been found by our rules because they appeared at a
very detailed level.

 Interface
Example

Dynamic
List
Example

Total number of rules used for structure check 9 19
Total number of flaws covered 5 10
Flaws found in student solutions 10 6
False negatives found in student solutions 2 2
Errors not found in student solutions 2 1

It can be seen that we needed in both exercises approximately twice as many rules as the
number of flaws. The flaws found included wrong class initialisations in the interface example,
like SquareClass q = new GeometricObjectInterface(), which tries to instatiate an object by
using an interface. Further errors in the dynamic list example included a wrong usage of
objects, like the statement head=head.nf for list traversal during the search for a specific
element, which results in the loss of the head element of a dynamic list. Other more simple
flaws covered simply missing statements or missing implementation of demanded
functionality. The false negatives in the interface example resulted from the usage of the valid
array definition GeometricObjektInterface o [] = {new circle(), new square()} not covered by
our basic array initialisation check in the interface example. The false negatives of the list
example resulted from the usage of internal methods not anticipated by us. The errors not
found resulted from wrong usage of auxiliary variables.

Automation of Java Code Analysis for Programming Exercises

Proc. GraBaTs 2006 11 / 12

The result of this preliminary evaluation is encouraging, because of the significant number of
flaws found compared to the number of false negatives. However, it can be seen that further
abstraction is needed to cover also the false negatives detected here and the handling of
auxiliary variables. Of course, this abstraction must not result in false positives. During this
evaluation no false positives have been detected.

Justification of the main design choices
Graph transformation is a good choice since it allows addressing structural errors in the
context of the student’s solutions (see chapter 5). The representation of Java 5 programs using
graphs has been chosen to cover a wide range of applications (check and transformation of
Java programs). Thus, it may seam that the structure is overly complex. However, the
approach was to use the AST plus some additional information to allow a detailed
representation. For areas in program checking where a lot of implementation variants have to
be covered we use “coarsening” rules, which provide abstractions from the specific graph
elements (see chapter 4). The usage of further abstraction techniques is planned to cover
information about the software architecture at a more global level e.g. just regarding
dependencies between methods and classes.

6 Related Work
In [TRB] a similar approach is presented checking Java code for principal solutions based on
the AST and a XML description of the solutions to be checked. The principal solutions are
either given as concrete Java code or as an abstract structure. The advantage of our graph
transformation based approach is the possibility of using abstract elements together with
concrete ones, so it is possible to generate check structures at a more advanced level.
From the point of view of a general E-Learning environment our testing tool helps to ensure
the quality of a basic programming course by supporting students in their learning efforts and
is therefore part of the quality process [Str06]. Other tools used in this context mostly focus
either on static- or runtime analysis whereas we offer a combined solution.
Our approach for identification of principal solution structures in source code can be compared
with approaches used for design pattern detection [ACGJ01] and the recognition of “bad
smelling code” used for program refactoring [FBB+00]. While these techniques focus on the
analysis of arbitrary code, patterns analysed are on a more abstract level like class
dependencies or method interactions. Because of the more specific context of our code we can
create more in-depth analysis, including more semantic aspects.

7 Remarks and Future Work
In this paper we presented an approach for source code analysis by graph transformation and
its applicability in a real world example. We focused on a tool environment combining several
existing and self-implemented tools covering the complete Java 5 syntax for verification of
first year student exercises.
Currently we implemented the back end tool chain and generated several exercises. The next
step is the implementation of the web access and checking the exercises of a whole semester.
The verification environment will be used in the basic Java programming course
“Programming” in semester 2006/2007 with about 500 students.

 ECEASST

12 / 12 Volume 1 (2006)

Further work will analyse the scalability of this approach detecting the limits of this “exercise
specific” process verifying the functional aspects. Furthermore we currently investigate the
detection of problematical structures derived from non-functional aspects like performance,
and maintainability.

8 References
[ACGJ01] H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and N. Jussien. Instantiating and detecting design

patterns: putting bits and pieces together. In Proceedings of 16th Annual International
Conference of Automated Software Engineering, pages 166-173. IEEE Computer Society Press,
November 2001.

 [AGG06] The agg web site. http://tfs.cs.tu-berlin.de/agg/, June 2006.
 [CS01] E. M. Clarke, B. Schlinglo, Model Checking, In A. Robinson and A. Voronkov, editors.

Handbook of Automated Reasoning, cElsevier Science Publishers B.V., 2001.
[EEKR99] Hartmut Ehrig, Gegor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.

Handbook of Graph Grammars and Computing by Graph Transformation, Vol.2: Applications,
Languages and Tools. World Scientific, Signapore, 1999.

 [EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiron, A. Wagner, and A. Corradini. Algebraic
Approaches to Graph Transformation II: Single Pushout Approach and Comparison with
Double Pushout Approach. In G. Rozenberg editor. The Handbook of Graph Grammar and
Computing by Graph Transformations, Volume I: Foundations.World Scientific. 1996.

 [FBB+00] Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts, Refactoring: Improving
 the Design of Existing Code, Addison-Wesley, 2000.
 [JCC06] The JavaCC web site. https://javacc.dev.java.net/. June 2006.
 [ND04] Niels van Eetvelde and Dirk Jannsens. Extending graph rewriting for refactoring. In

Proceedings of International Conference of Graph Transformation 2004. Springer. September
2004.

 [Path06] The Java PathFinder web site. http://javapathfinder.sourceforge.net/. June 2006.
 [Str06] C. Stracke, Process-oriented Quality Management. In J. Pawlowski, U. Ehlers, editors.

European Handbook for Quality and Standardisation in E-Learning, pages 77-91, Springer,
2006.

 [TRB04] Nghi Truong, Paul Roe and Peter Bancroft, Static Analysis of Students' Java Programs. In Proc.
Sixth Australasian Computing Education Conference (ACE2004), Dunedin, New Zealand.
CRPIT, 30. Lister, R. and Young, A. L., Eds., ACS. 317-325. 2004.

 [Tae00] Gabriele Taenzer. AGG: A tool environment for algebraic graph transformation. In M.Nagel,
A.Schürr, and M. Münch, editors. Application of Graph Transformation with Industrial
Relevance: International Workshop, AGTIVE’99, Kerlkerade, The Netherlands, volume 1779,
pages 481-488. Springer, Heidelberg, 2000.

