Electronic Communications of the EASST

Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools
(GraBaTs 2006)

ENFORCe: A System for Ensuring Formal Correctness of Heylell
Programs

Karl Azab, Annegret Habel, Karl-Heinz Pennemann and Ghnsfuckschwerdt

12 pages

Guest Editors: Albert Zuindorf, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Ea ECEASST

ENFORCe: A System for Ensuring Formal Correctness of
High-level Programs

Karl Azab, Annegret Habel, Karl-Heinz Pennemann and Christan Zuckschwerdt

Carl v. Ossietzky Universitat Oldenburg, Germany
{azab,habel,pennemann,zuckschwg@informatik.uni-oldenburg.de

Abstract: Graph programs allow a visual description of programs omplygaand
graph-like structures. The correctness of a graph progréimrespect to a pre- and
a postcondition can be shown in a classical way by constrgietiveakest precondi-
tion of the program relative to the postcondition and chagkivhether the precon-
dition implies the weakest precondition. ENFORCe is a alyadeveloped system
for ensuring formal correctness of graph programs and, rgereral, high-level
programs by computing weakest preconditions of these anogr In this paper, we
outline the features of the system and present its softwanadwork.

Keywords: high-level programs, correctness, formal verificationakest precon-
ditions, weak adhesive HLR categories.

1 Introduction

Graph transformation has many application areas in compgience, such as software engi-
neering or the design of concurrent and distributed systdtris a visual modeling technique
and plays a decisive role in the development of growinglgdarand complex systems. How-
ever, the use of visual modeling techniques alone does @mwagtee the correctness of a design.
In context of rising standards for trustworthy systemsrehie a growing need for the verifica-
tion of graph transformation systems. Therefore, toolgsetng formal verification of graph
transformations will increase the attractiveness of thigleting technique and are in this sense
important for its practical application.

There exist several tools specifically concerned with gtaghsformation: Engines for plain
transformation, e.g.,Hus04 GBG"06, MPO0€], general purpose tools with visual editors and
debuggers for transformation systems lika¢04 SWZ99 BGN'04], and tools concerned with
model checking or analysis of transformation systems pti@®e e.g., Tae04 KK06, SV03
KR06, BBG"06).

Until now, most of these tools focus on transformation systeinstead of rule-based pro-
grams. Programs featuring at least sequential compositidriteration are Turing-complete and
necessary to model transactions when dealing with an arpitumber of elements. Moreover,
most tools are specifically concerned with a distinct kindtoficture, let it be simple labeled,
(typed) attributed graphs or hypergraphs. From a thealgtiaint of view, weak adhesive HLR
categorieslEEPTO0G are an important effort to build a unified theory for trarrsfiation systems
covering several kinds of structures, e.g., various kifd$igper-)graphs, place-transition nets
and algebraic specifications. Unfortunately, there do rist éools designed to follow that idea,
i.e., whose algorithms will work for more than just a spedied of structure.

1/12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs Ea

In this paper, we will present the main ideas of ENFORCe, & sfitools for ensuring the
correctness of high-level programs. It is designed for waaitiesive HLR categories, exploiting
the fact that necessary high-level algorithms can be basesl small set of structure-specific
methods. Structurally, ENFORCe consistsAgplications(e.g., user interface)Correctness
ToolsandTransformationge.g., for proving the correctness of a prograBnginesi.e., specific
data structures and methods) an€are containing general high-level notions and methods,
connecting these components. We plan to reuse existingesdike GRAJ. Our efforts aim for
a tool supplementary to existing tools such @sg04 KK06, KR06, BBG' 06, i.e., in terms of
structures or functionality (see related systems).

The paper is organized as follows. In Sectiyrwe introduce programs for high-level struc-
tures like graphs and algebraic specifications and preseratlaod for showing correctness for
high-level programs. In Sectiorsand4, we present the system requirements and the system
design. In Sectior®b, we give an overview on related systems. A conclusion irindurther
work is given in Sectiorb.

2 Correctness of Programs

In this section, we give an informal introduction to the magmcepts of the paper, in particular
into correctness of high-level programs based on all kifithégin-level structures such as graphs,
place-transition nets, and algebraic specifications. Treepts are illustrated by a running
example in the category of graphs. For more details refeed?[T06 HPRO4.

Assumption. We assume thgts’,.#) is a weak adhesive HLR category with a decidable gt
binary coproducts, epi# -factorization, an# -initial object, i.e., there is an objettsuch that,
for every objeciG in %, there exists a unique morphism frdno G in ., and a finite number
of matches for each object, i.e., for every morphisnK — L in .# and every objecG, there
exist only a finite number of morphisnms: L — G such that|l, m) has a pushout complement.

Example 1 (access control graphdjor illustration, we consider the weak adhesive HLR cate-
gory of all directed labeled graphs. We consider a simplesgcontrol for computer systems,
which abstracts authentication and models user and sasgioagement in a simple way. The
basic items are use(®), sessions®), and computer systen@ with directed edges between
them. An edge between a user and a system represents thakethieas the right to access the
system, i.e., establish a session with the system. Evesjoseis connected to a user and a sys-
tem. The direction of the latter edge differentiates betwg@posed and established sessions,
i.e., an edge from a session node to a system in the first casa mversed edge in the latter.
Self-loops may occur in graphs during the execution of @ogr to select certain elements, but
not beyond. An example of an access control graph is giveigur€1l. The complete example
is published in HPROQ.

T-6-@-6-®

Figure 1: A state graph of the access control system

Proc. GraBaTs 2006 2/12

Ea ECEASST

We use a graphical notion of conditions to specify valid eystand program states, as well as
morphism.

Definition 1 (conditions). A condition over an objecP is of the formJa or 3(a,c), where
a: P — Cis a morphism and is a condition oveC. Moreover, Boolean formulas over condi-
tions [overP] are conditions [oveP]. Additionally, V¥(a,c) abbreviates-3(a,—c). A morphism
p: P — G satisfiesa conditionda [3(a, c)] over P if there exists a morphismg: C — G in .#
with goa = p [satisfyingc]. An object G satisfiesa conditionda [3(a,c)] if all morphisms
p: P— Gin . satisfy the condition. The satisfaction of conditions [oR§is extended onto
Boolean conditions [ovdP] in the usual way.

In the context of objects, conditions are also cabedstraints in the context of rules, they
are calledapplication conditions

Example 2 (access control conditiond)he conditionnosession= 3(0 — c5@—~@-—®) over
the empty graph expresses that a selected user shall noahagstablished session, and the
conditionnouser= $(0 — @) means that no user is selected.

Transformation rules form the elementary steps of our camgumodel.

Definition 2 (rules). A rule consists of glain rule p= (L — K — R), shortly denoted by
(L = R), and a paifaq_,acs) of conditions ovelL andR, respectivelyL is called the left-hand
side, R the right-hand side, an the interface. The conditions gag are called thdeft and
right application conditiorof p.

2 |m

L ~——
m @
GH

O-~—X
T-—

A direct derivationthrough a plain rulep consists of two pushouts (1) and (2). We write
G =pmm H, G=pH, or shortG = H and say tham is the matchand m* is the comatch
of pin H. A direct derivation G=pmm- H through a rule is a direct derivatic® =, mm H
through the underlying plain rule such that the matckatisfies the left application condition
aq and the comatcim* satisfies the right application conditionrac

Example 3 (access control ruleg)he ruleSelectU selects a user and the rilegoutU1 cancels
an established session of a selected user.

SelectU: (@ = @)
LogoutUl: (C@—O—® =@ ®)

Sequential composition and iteration give rise to rulecdgsrograms.

Definition 3 (programs). Programsare inductively definedSkip and every rulep are pro-
grams. Every finite se? of programs is a program. Given prografmandQ, then the sequential
composition(P; Q), the reflexive, transitive closuf@* and the as long as possible iteratiep
are programs. Theemanticof a programP is a binary relation or%¥’. Programs of the form
(P; (Q;R)) and((P; Q); R) are considered as equal; by convention, both can be wristen@ R.

3/12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs Ea

Example 4 (access control programJhe progranLogout = SelectU;LogoutUl| selects a
user and closes all of his established sessions.

Definition 4 (correctness). A programP with respect to a pre- and a postconditiorcasrect

if, for all objectsG satisfying the precondition holdst satisfies the postcondition for every pair
(G,H) in the semantics d®, there is some pai{G,H) in the semantics dP, and the prograr®
terminates folG.

Concerning correctness, we are considering the followiragegies:

Correctness by proof A well-known method for showing the total correctness ofagpam
with respect to a pre- and a postcondition is to construct akest precondition (Wp) of the
program relative to the postcondition and to prove that ttezgndition implies the weakest
precondition.

program

- weakest

iti w — -
postcondition - P precondition Decide

yes/no

precondition

In [HPRO4, we consider weakest preconditions for high-level praggaimilar to the ones for
Dijkstra’s guarded commands and show how to construct vet@keconditions for programs on
weak adhesive HLR categories with a finite number of matcimesase of rules, the construction
of a weakest precondition makes use of two known transfeomatiH\W95, EEHP06§ HP0Y
from constraints to right application conditions, and froight to left application conditions,
and additionally, a new transformation from applicatiomditions to constraints{PRO4.

However, this method requires an algorithm for the impiaaproblem for conditions, which
may be able to decide the problem for a suitable class of tiondj and approximate the de-
cision in the general case. Moreover, the construction afkest preconditions for programs
with iteration relies on invariants, which in the generadeaequires an approximation or user
intervention.

Example 5 (correctness by prooffonsider the prograrhogoutUser of Example4 and the
conditions in Exampl€. One might verify the partial correctnesslafgoutUser with respect

to the preconditiomouserand the postconditionosessionAccording to HPR0§, we construct
the weakest liberal precondition WikogoutUser, nosession= WIp((SelectU;LogoutUl]),
nosessioh= WIlp(SelectU, Wip(LogoutUl|, nosessiol). One has to show that WlpogoutU1|,
nosession= WIp(LogoutU1*, WIp(LogoutUl, false) = nosession= WIp(LogoutUl*, V(0 —
C@—O~—@, ~Appl(LogoutUl)) = nosessiohif Wip (LogoutUl*, (0 — @—O~®) =
nosessioh equivalent to true, hence WlpogoutU, nosessioh equivalent to true. Obviously
nouserimplies true, henckogoutUser is correct with respect to the given conditions. For more
examples, we refer to the long version bffR04.

Correctness by transformation Given a program with pre- and postcondition, a correct
program is derived from the input program by minimal sentahtiestrictions. The main idea is

Proc. GraBaTs 2006 4112

Ea ECEASST

to insert assertions in form of applications conditiong intles within iterations of the program
to enforce the invariance of postconditions. The constiacis based on the integration of
constraints into application conditions of rules. It makes of the two known transformations
from constraints to right application conditions (A), amdrf right to left application conditions
(L) [HW95, HPOY.
program
postcondition
precondition

correct program

Transformation

Example 6 (Correctness by transformation)Consider the postconditionosession The pro-
gram LogoutUser = SelectU;LogoutUl] is transformed into a partial correct progrdm=
Assert(C);SelectU; (LogoutUL, (ac true))*, with constraint = WIp(SelectU, (WIp(P, false)

= nosessiol), and application condition ae L (LogoutUl, A(LogoutUl, (WIp(P, false) =
nosessiol)), andAssert(c) = ((I = I), (c,true)) for any conditionc over the.# -initial object

I. As observed in Examplg, ((WIp(P, false) = nosessiohis equivalent to true. A subsequent
optimization step may be able to eliminate some superflupplcation conditions.

The strategies for ensuring correctness base on certdiAdigl transformations (see Table
such as the transformations from constraints to right appén conditions and from right to left
application conditions. In a concrete weak adhesive HLRgmly, high-level transformations

| Symbol | Description | Reference |
A From constraints to application conditions [HW95, HP0g
L From right to left application conditions [HW95, HPO]
C From application conditions to constraints [HPR04

Table 1: High-level transformations

may be applied by using a small set of elementary, strudpeeific operations (see Tabite
such as the constructions of pushouts and pushout compigntba set of all epimorphisms
with a given domairG, the composition of two morphisms, and th#&-test for morphisms.

3 System Requirements

The software framework should work on high-level prograines, programs on high-level struc-
tures like graphs, place-transition nets, and algebracipations. For program specifications,
i.e., programs with pre- and postconditions, there shoaldbbls for correctness by proof and
correctness by transformation. For the correctness giestave identify a chain of algorithmic
dependencies, see Figuze In the figure, we exclude standard tools, e.g., checkingtlvene
a given object satisfies a given condition. The dependemcie®rganized in three layers; the

5/12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs Ea

| Symbol | Description |
PO Construct a pushout along/-morphisms
POC Construct a pushout complement of two morphisms, if possipl
= Check commutativity of two morphisms
o Construct the composition of two morphisms
initial Construct morphism from initial object to input object
matches Find all.#-matchings of one object in another
epia Construct an epi# -factorization of a morphism
epimorphisms | Construct all epimorphisms with a given domain (up to iso.)
is.? [iISEpi?] Is the given morphism anZ-morphism [epimorphism]?

Table 2: Structure-specific operations

correctness strategies (correctness tools) dependinggbsdvel transformations of conditions
that in turn depend on elementary structure-specific ojpgiat For one transformation system
working on graphs and for another on Petri-nets, the streetpecific operations differ but the
algorithms for transformation of conditions and the camess tools remain the same. From a
software engineering point of view, the components modetimrrectness algorithms and weak
adhesive HLR categories should therefore be loosely cdupte have as few dependencies on
each other as possible. This ensures that the system carsibe eedended with new weak
adhesive HLR categories and high-level algorithms.

C t%cc))rlgectness [Correctness by propf [Correctness by transformation >

(Transformations /Qlij/ / m . >

7
operations lepimorphisms [isEpi? lepi|

Figure 2: Levels in ENFORCe

4 System Design

This section describes the basic software components d&MMeORCe framework. Basically,
the system consists of five componenEnginesrepresent specific weak adhesive HLR cate-

Proc. GraBaTs 2006 6/12

Ea ECEASST

gories, theCore evaluates conditions and connects Engines with the thindpoment, Trans-
formations that contain algorithms transforming conditions, and Alpplicationuses the four
previous components to calculate the correctness rewilisér has requested. The components
and their static dependencies are illustrated in Figu@s.

Application

Application j

Correctness tools

Correctness tools j

m
>
g
;
Core) Engines
(@) (b)

Figure 3: (a) Static dependencies and (b) runtime data flow

Engines An Engine is the combination of the structural implemeotaiof a weak adhe-
sive HLR category with a category specific implementatiorhef operations listed in Tabl&
E.g. Gr aphEngi ne, contains the data structures for directed labeled graptisgeaph mor-
phisms as well as the algorithms working exclusively on ¢hatsuctures. As ENFORCe may
have several Engines the Engine component is shown withdmsgh& he Core and Transforma-
tions can use different (and new) Engines without havingetonodified or updated.

Correctness tools and Transformations These two components contain algorithms operating
exclusively on weak adhesive HLR categories and can therdfe abstracted from the actual
category in question. An example of algorithms working & tevel is the chain of transforma-
tions from constraints to right- to left application conalits to weakest preconditions. Pseudo
code for the transformation from constraints to applicgatonditions is shown in Figuré Cor-
rectness tools and Transformations works on conditionglagxng their static dependency on
the Core.

Core. The Core consists of two important parts: One contains statectures for programs
and conditions. It also evaluates conditions with the hélpperations in Engines. The other
part channels and controls the communication between fimanations and individual Engines
at runtime. To facilitate communication, the Core providesnterface for Engine plug-ins and
works as a dependency injector, explaining the runtime eation between Transformations and
Engines.

Although of secondary concern, the Core can execute high-fgograms. Most necessary
parts are already implemented for other functionality: eDstructures modeling programs and
conditions, evaluation of conditions, and the matching pushout operation in the Engines.

Application. This is the action initiating component of the system. Tinaetime data flow
between the components is shown in Figai(e). The Application contacts the Core with orders

7112 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs

B

to connect the system with an Engine and then uses one of thed@iwess tools. The Application
provides the graphical user interface (GUI) and manageg/ogtput for creation, saving and
loading of data structures, e.g., rules, structures angblnimmns. To create structures usable by
an Engine, the Application must know the specifics of the ditactures of the Engine. This

static dependency is illustrated in Figud¢a).

Data: Rule r, Condition ¢
Result the transformed result in ¢

if c is Existential or ¢ is Universghen
R :=r.rightHandSide
P := c.morphism.domain
B:=createTupl eSet (initial (R),initial (P),false)
if ¢ is Universalthen
j := new Disjunction
foreach (s, p) in Bdo
| J+=new Existential(ssubr out i ne (p, ¢))
end
c:=j
else// ¢ is Existential
j := new Conjunction
foreach (s, p) in Bdo
| j+=new Universal(ssubr out i ne (p, c))
end
c:=j
end
else
foreachcl in c.childrendo
| A(r, c1)
end
end

Algorithm 0: transformation A

Data: Morphism p, Morphism x, Boolean cheak
Result the set of morphism tuples to a common codomain, in

A :=new Set()
t, q :=pushout (p, X)
E :=epi nor phi sns (t.codomain)
foreache in Edo
r:=conpose (q,e)// e o q
if rin M then
u:=conpose (t,e)// e ot
if not checku or u in Mthen
[A+=(ur1)
end
end
end

Algorithm 0: cr eat eTupl eSet

Data: Morphism p, Condition ¢
Result the transformed resultin ¢

if ¢ is Existential or c is Universahen
A :=createTupl eSet (p, c.morphism, true)
if c is Existentialthen
j := new Disjunction
foreach (u, r) in Ado

if ¢ is basicthen

| j+=new Existential(u)
else
j += new Existential(usubr out i ne (r,
c.child))

end
end
else// ¢ is Universal
j := new Conjunction
foreach (u, r) in Ado

| j+=new Universal(usubr out i ne (r, c.child))
end
end
c:=j
else// ¢ is a bool ean constraint
foreachcl in c.childrendo
| subroutine (p, cl)

end
end

Algorithm 0: subr out i ne

Figure 4: Pseudo code for the transformation A from constttai right application condition

Our Current Status

ENFORCe is a work in progress. A Java based implementatiéheo€ore component is run-

ning. We have a workingx aphEngi ne based on software from #&J [Bus04 and imple-

Proc. GraBaTs 2006

8/12

Ea ECEASST

mentations of the Transformations from constraints totrighleft application conditions. Our
plans include an Application with a GUI allowing users to efment with the functionality
promised by ENFORCe.

5 Related Systems

There are several related systems that may be distingufahetionally and methodically: E.g.,
one may distinguish between (e) transformation engineg¢syndols supporting model checking,
verification or analysis (termination, confluence).

| Tool Abbreviation/Synopsis Referende
AGG Attributed Graph Grammar system s Tap04
AUGUR 2 analysis of hypergraph transformation system sKK(6]
CHECKVML CHECK Visual Modelling Languages s S\V03
FuJiaBA From UmL to JAva and BAck s BGNT04]

GROOVE GRaph based Object-Oriented VErification s KRg]
PROGRES PROgramming with Graph REwriting System s SVJ/Z99

GRAJ GRAph programs in Java e B(isO4
GRGEN Graph Rewrite GENerator e GBG'06]
YAM York Abstract Machine e IMPOg

Table 3: A selection of related systems

AGG [Tae04 is a general development environment for attributed grtaghsformation sys-
tems written in Java. It consists of a SPO-based transfawmangine, graphical editors, a visual
interpreter/debugger and a set of validation tools. AGGsug graph parsing, a transforma-
tion of (basic) constraints into equivalent left applicaticonditions HW95] and critical pair
analysis, i.e., a test for confluency.

AUGUR 2 [KKO06] is a tool for analyzing node-preserving hyperedge tramsédion systems
by abstraction to so-called Petri graphs: A node in a Peaiplyirepresents multiple hypergraph
nodes, while token represent hyperedges. The system toosspproximating algorithms for
the abstraction of hypergraph transformation system, arednility as well as a planned reacha-
bility algorithm for deciding Petri graph properties, arfastiaction refinement algorithms in the
case of a counterexample.

CHECKVML [SV03 is a tool for model checking dynamic consistency propertiearbitrary
visual modeling languages (e.g., UML, Petri nets) by gdiragaa model-level specification.
Such high-level specifications are translated into a todéfrendent abstract representation of
transition systems defined by a corresponding meta-modes ifitermediate representation is
automatically translated to the input language of the bamkmodel checker tool SPIN.

The FUJABA TooL SUITE [BGN'04] is primarily an UML CASE Tool. Implemented as a
plugin within this framework is an approximative invariatecker BBG*06] for conjunctions
of negative existential graph conditions for transformasystem with basic negative application

9/12 Volume 1 (2006)

ENFORCe: A System for Ensuring Formal Correctness of High-level Programs Eﬁ

condition and priorities (SPO with gluing condition). Apdrom the priorities, the method
corresponds to the construction of a weakest preconditimhtlae decision of the implication
problem while ignoring the application conditions and tmglicit gluing conditions of the rules
(both correct approximations).

GRAJ [Bus04 is a tool for executing graph programs. The system consisgsvirtual ma-
chine, a compiler translating rules intcR@J machine code and a recently developed graphical
user interface. The virtual machine provides primitivasrf@nipulating graphs and storing the
execution history of a program needed for implementing the-deterministic behavior of pro-
grams. Thea aphEngi ne of ENFORCe will make use of @aJ.

GRGEN [GBG'06] is a generative programming system for graph rewritingzohsists of a
compiler for SPO rules specified in a declarative languagersformation engine called libGr
written in C and a shell-like frontend for the transformatiengine called GrShell. &@5EN
is aimed at attributed typed directed multigraphs, supmpgprtarious matching conditions and
featuring attribute computation, relabeling and regulapb rewrite sequences comparable to
graph programs.

GROOVE [KRO§] is a set of (planned) tools for software model checking géoboriented
systems. It aims at directed edge-labeled graphs withoatlpbedges, a structure suitable for
representing binary predicate logic. Th@@ovE Simulator, consisting of a user interface and
a SPO-based transformation engine, may be used for state geaeration of (finite) trans-
formation systems. The state space is translated to a Ksplketure for standard CTL model
checking.

PROGRES[SWZ9] is a set of tools as well as a hybrid visual language forlatted graph
transformation. The environment consists of graphical iextbal editors supporting syntax-
directed editing of graphical specifications and increrlgmarsing of textual language elements,
an interpreter/debugger with built-in constraint chegkiacilities for transformation specifica-
tions, and a compiler backend that translates graph tranafmns into C-code and generates a
tcl/tk-based user interface for calling graph transfoioret and displaying manipulated graphs.

YAM [MPO4g defines a stack-based abstract machine language for geaygfidrmation, com-
parable to postscript for graphics. This includes low-@wstructions as get node, get node/edge
label, get source/target, add/delete/relabel node edgehich graph transformations rules get
translated to. The YAM interpreter is written in C, while angpiler for translating graph rules
and programs to YAM code is still under development.

ENFORCe focuses on correctness of high-level programs apflication conditions. Its
functionality will distinguish it from most tools presentbere, e.g., from AGG which is primar-
ily concerned with confluency. Tools concerned with comess include AGUR 2, CHECK-
VML, GrRoovEand the lBJABA invariant checker. Due to its approximation technique GAR
2 is restricted to node-preserving hypergraph replacesystém, while it will be able to check a
certain fragment of monadic second order properties foetgmaphs (seeg[CKK04] for details).
GRooVE is a model checker tool and will be able to handle arbitraryeeldbeled graph trans-
formation systems with application conditions once alo$itva is added to its features, while the
type of checkable properties depends on the used abstraclive FuJABA invariant checker
is concerned with story patterns (= graph transformatidesrwith basic negative application
conditions) and considers a small, decidable fragment sifdirder logic. ENFORCe aims at
full first-order properties.

Proc. GraBaTs 2006 10/12

Ea ECEASST

6 Conclusion

ENFORCe is a suite of tools for ensuring the correctnessgif-lével programs. It is designed
for weak adhesive HLR categories, exploiting the fact thetessary high-level algorithms can
be based on a small set of structure-specific methods. Gtallpt ENFORCe consists of Ap-
plications (e.g., user interface), Correctness tools,(fagcorrectness by construction), Engines
(i.e., specific data structures and methods for a weak agheliR category) and a Core con-
taining general high-level notions and methods, conngdiingines with the rest of the system.
This separation allows us to include new categories withrarmim of effort and to develop new
Correctness tools and Transformation which instantly weitk any Engine. While developing
more efficient algorithms for a category, the ability to ddycexchange Engines could be useful
for comparing the performance. Further topics could be ¢heviing:

(1) Engines for other weak adhesive HLR categories, likectitegories of place-transition
nets, hypergraphs, or typed attributed graphs.

(2) Adapters for other existing transformation enginee MAM or GRGEN. Adapters pro-
vide an interface and complete functionality, if necessary

(3) Further Correctness tools and Transformations likeasgim converters of conditions and
rules, for switching the satisfiability and matching notdinom arbitrary morphisms to
-morphisms and vice versalP04, or a tool for proving the conflictfreeness of specifi-
cations.

(4) The construction of a correct program from a specificatioform of a pre- and postcon-
dition, e.g., seel|[EHS04).

Acknowledgements: This work is supported by the German Research FoundatioG}DF
grants GRK 1076/1 (Graduate School on Trustworthy Soft@stems) and HA 2936/2 (De-
velopment of Correct Graph Transformation Systems).

Bibliography

[BBG106] B.Becker, D.Beyer, H. Giese, F. Klein, D. Schilling. Syatic invariant verification
for systems with dynamic structural adaptationPiioc. of the 28th int. conference
on Software engineering (ICSE’08p. 72-81. ACM Press, 2006.

[BCKKO04] P. Baldan, A. Corradini, B. Kdnig, B. Kdnig. Vdyiing a Behavioural Logic for
Graph Transformation Systems. fmoc. of COMETA '03ENTCS 104, pp. 5-24.
Elsevier, 2004.

[BGNT04] S.Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wads&ckyagner, L. Wendehals,
A. Zundorf. Tool integration at the meta-model level: thgdba approachlournal
on Software Tools for Technology Transfer (ST&(B):203—-218, 2004.

[BusO4] G. Busatto. GraJd: A System for Executing Graph Rrogrin Java. Technical re-
port 3/04, University of Oldenburg, 2004. Available ai].

11/12 Volume 1 (2006)

ENFORCe:

A System for Ensuring Formal Correctness of High-level Programs Ea

[EEHPO6]

[EEPTO6]

[GBG*06]

[HPO5]

[HPOB]

[HPRO6]

[HW95]

[KKO6]

[KROG]

[LEHSO06]

[MPO6]

[SVO03]

[SWZ99]

[Tae04]

[Uni]

H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann. Theof Constraints and Applica-
tion Conditions: From Graphs to High-Level Structureandamenta Informaticae
74:135-166, 2006.

H. Ehrig, K. Ehrig, U. Prange, G. TaentZzeundamentals of Algebraic Graph Trans-
formation EATCS Monographs of Theoretical Computer Science. Sprivigriag,
Berlin, 2006.

R. Geil3, V. Batz, D. Grund, S. Hack, A. M. Szalkowski. GrGGa fast SPO-based
graph rewriting tool. InGraph Transformations (ICGT'06LNCS 4178, pp. 383—
397. Springer, 2006.

A. Habel, K.-H. Pennemann. Nested Constraints angliégtion Conditions for
High-Level Structures. InfFormal Methods in Software and System Modeling
LNCS 3393, pp. 293-308. Springer, 2005.

A. Habel, K.-H. Pennemann. Satisfiability of Highvet Conditions. InGraph
Transformations (ICGT'06)LNCS 4178, pp. 430-444. Springer, 2006.

A. Habel, K.-H. Pennemann, A. Rensink. Weakest éhditions for High-Level
Programs. InGraph Transformations (ICGT'06)LNCS 4178, pp. 445-460.
Springer, 2006. A long version is available as technicabregt [Uni].

R. Heckel, A. Wagner. Ensuring Consistency of Caindidl Graph Grammars — A
Constructive Approach. IBEGRAGRA'9SENTCS 2, pp. 95-104. 1995.

B. Konig, V. Kozioura. Augur 2 — A New Version of a Todbr the Analysis of
Graph Transformation Systems. Rroc. Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT'O&NTCS. Elsevier, 2006. To appeatr.

H. Kastenberg, A. Rensink. Model Checking Dynamiat8s in GROOVE. IiModel
Checking Software (SPIN)LNCS 3925, pp. 299-305. Springer, 2006.

M. Lohmann, G. Engels, R. Heckel, S. Sauer. Model«h Monitoring: An Appli-
cation of Graph Transformation for Design by Contract@raph Transformations
(ICGT'06). LNCS 4178. Springer, 2006.

G. Manning, D. Plump. The York Abstract Machine Rroc. Graph Transformation
and Visual Modelling Techniques (GT-VMT OENTCS. Elsevier, 2006. To appear.

A. Schmidt, D. Varrd. CheckVML: A Tool for Model Checking $ial Modeling
Languages. IfProc. UML 2003: 6th International Conference on Unified Miialg
Language LNCS 2863, pp. 92-95. Springer, 2003.

A. Schurr, A. J. Winter, A. Zundorf. The PROGRESpkpach: Language and En-
vironment. InHandbook of Graph Grammars and Computing by Graph Trabé.
ume 2, pp. 487-550. World Scientific, 1999.

G. Taentzer. AGG: AGraph Transformation Environim®r Modeling and Vali-
dation of Software. IProc. Application of Graph Transformations with Industria
Relevance (AGTIVE'O3LNCS 3062, pp. 446—453. Springer, 2004.

http://formal e-sprachen. i nformati k. uni - ol denbur g. de/ pub/ ei ndex. htm .

Proc. GraBaTs 2006 12 /12

	Introduction
	Correctness of Programs
	System Requirements
	System Design
	Related Systems
	Conclusion

