
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

The ParMol Package for Frequent Subgraph Mining

Thorsten Meinl , Marc Wörlein, Olga Urzova, Ingrid Fischer, and
Michael Philippsen

12 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

The ParMol Package for Frequent Subgraph Mining

Thorsten Meinl 1, Marc W örlein3, Olga Urzova4, Ingrid Fischer2, and
Michael Philippsen5

1 Thorsten.Meinl@inf.uni-konstanz.de
2 Ingrid.Fischer@inf.uni-konstanz.de

ALTANA Chair for Bioinformatics and Information Mining
University of Konstanz, Box M712, 78457 Konstanz, Germany

3 woerlein@cs.fau.de
4 siolurzo@stud.informatik.uni-erlangen.de

5 philippsen@cs.fau.de
Computer Science Department 2

University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, Germany

Abstract: Mining for frequent subgraphs in a graph database has becomea popular
topic in the last years. Algorithms to solve this problem areused in chemoinfor-
matics to find common molecular fragments in a database of molecules represented
as two-dimensional graphs. However, the search process in arbitrary graph struc-
tures includes costly graph and subgraph isomorphism tests. In our ParMol package
we have implemented four of the most popular frequent subgraph miners using a
common infrastructure: MoFa, gSpan, FFSM, and Gaston. Besides the pure re-
implementation, we have added additional functionality tosome of the algorithms
like parallel search, mining directed graphs, and mining inone big graph instead of
a graph database. Also a 2D-visualizer for molecules has been integrated.

Keywords: graph, subgraph, frequent, mining, ParMol

1 Mining Molecular Databases

The motivation for the ParMol (Parallel Molecular Mining) project is to find common features in
large sets of molecules. This is a frequently reoccurring problem in many biological or chemical
applications. E.g. in drug discovery, the goal is to identify common parts in molecules sharing
similar chemical properties. A common approach is to use thetwo dimensional atom-bond struc-
ture of molecules as basis for a undirected labeled graph database containing these molecules.1

This database is searched for subgraphs that appear at leastin a certain number of molecules.
Searching for frequent subgraphs in a graph database is alsocalledgraph mining. The frequent
graph (resp. molecular) fragments then often give an insight into the specific behavior of the
molecules.

1 Although molecules are three-dimensional objects, searching for features on their 2D-structure often achieves
surprisingly good results.

1 / 12 Volume 1 (2006)

mailto:Thorsten.Meinl@inf.uni-konstanz.de
mailto:Ingrid.Fischer@inf.uni-konstanz.de
mailto:woerlein@cs.fau.de
mailto:siolurzo@stud.informatik.uni-erlangen.de
mailto:philippsen@cs.fau.de

The ParMol Package for Frequent Subgraph Mining

O

C

C

O

C

C

C

N N NCO

O

C

C C

N

C

N

Figure 1: AZT – a well-
known HIV-1 inhibitor.

A famous example for a frequent molecular fragment is the
so called AZT, which is a well-known HIV-1 inhibitor (see
Figure 1for its two dimensional representation as graph with-
out hydrogen atoms). In a database containing more than
40,000 molecules tested against the HIV-1 virus [NCI99], this
active molecular fragment can be found within minutes using
the right algorithms.

For the extraction of molecular fragments like AZT, various
methods have been described recently. The most popular min-
ing algorithms are re-implemented in our ParMol package. The
first goal of our implementation was to compare these algo-
rithms in runtime and memory consumption, currently new ex-
tensions and application areas are researched. This paper gives
an overview on the current state of ParMol. In the next section
we introduce searching fragments in graphs and its problems
in general. Section 3gives a short description of the four implemented algorithms. Section 4
introduces ParMol itself. Extensions to ParMol are described inSection 5, the current work is
sketched inSection 6. We conclude the paper inSection 7.

2 Frequent Subgraph Mining

Mining molecules can be reduced to searching a database of graphs for subgraphs that occur in
at least a given percentage (support) or number (frequency) of all graphs. An example of a graph
(molecular) database containing just two graphs (molecules) is given inFigure 2at the bottom.
The database is shaded in dark gray. It contains two molecules labeledGraph 1 andGraph 2 in
the Figure. The goal is to find all subgraphs that are frequentin this database. If frequency 2 or
a support of 100% is assumed, the subgraphs must occur in bothgraphs.

A naive approach would be to create all possible subgraphs and to determine their frequency
by subgraph isomorphism tests. This approach is very costlyand more sophisticated algorithms
exist.

A systematic approach is to (conceptually) arrange all subgraphs in the database in a lattice,
seeFigure 2for the running example. The empty subgraph is shown at the top, the following
layers of the lattice contain all zero-edge, one-edge, ...,n-edge subgraphs and their frequencies.
Frequency 1 is shaded in light gray, frequency 2 is shaded in gray. There are three subgraphs
with zero edges namely the atomsC, N, andO. On the next level there are four subgraphs with
one edge, five subgraphs contain two edges. On the bottom of the lattice the underlying database
is given as both graphs contain five edges.2 A connection between two items in the lattice is an
extension of a subgraph by an edge and a node if no cycle is closed.

Frequent subgraph mining now consists of creating and traversing this lattice and reporting
all frequent items. If the frequency was set to 2 molecules for the small example database in
Figure 2, the miner would output only the fragments that occur in bothmolecules (the ones
inside the grey area in the middle of the lattice). All other fragments would either be suppressed

2 Of course it is not necessary that the database graphs have the same number of edges in general.

Proc. GraBaTs 2006 2 / 12

ECEASST

Figure 2: A complete fragment lattice of the molecules at thebottom.

or not even discovered during the search.
When implementing a subgraph miner, a traversal strategy for the lattice has to be chosen,

e.g. depth-first or breadth-first traversal. The majority ofalgorithms traverses the lattice in a
depth-first way because it needs less memory than breadth-first search.

Figure 3: Merging two sub-
graphs over a common core
to create a new subgraph.

Second it must be decided how new subgraphs are generated
from existing subgraphs. Two methods are commonly used.
Either an already generated fragment is extended by an edge
(and a node if no cycle is closed). This edge (and node) is
found in the database. With the help of this strategy the lattice
in Figure 2was motivated before. Edge extension needs access
to the database and only creates existing candidates. This strat-
egy is the most popular one. Another possibility is to generate
new subgraphs by merging two subgraphs already found that have a common core. This merging
approach solely works on the subgraphs and may generate candidates that do not occur in the
database. InFigure 3this strategy is explained. The two graphs at the top have a common core
consisting of twoC atoms. This core is used to generate a new possible subgraph at the bottom
of the Figure. Then it must be checked how frequent this new subgraph is.

By looking at the lattice two other observations can be made:First, if one of the subgraphs is
infrequent, i.e. its support is below the threshold, all of its descendants must be infrequent, too
(often called theantimonotonicity property). Thus, the search tree that is built while traversing
the lattice, can be pruned at such places (often calledfrequency based pruning). Second, most
subgraphs can be reached by traversing several different paths. This is undesirable, because these
subgraphs have to be filtered to prevent multiple processingand reporting. The next subsections
deal with the calculation of the frequency and describe how finding duplicates during the search

3 / 12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining

process on different paths through the search lattice can beavoided.

2.1 Frequency Calculation

There are two possibilities to determine the frequency of a candidate subgraph. First ordinary
NP-complete (and thus expensive) subgraph isomorphism tests can be made against all database
graphs. The number of tests can be reduced if so-calledappearance lists are maintained that
record the graphs a subgraph occurs in. In the running example, the fragment consisting of the
atomsC and O connected with a bond has both database molecules in its appearance list as
it appears in both molecules. The sub molecule consisting ofC andN has an appearance list
with the graph 1 ofFigure 2. After extending a subgraph, it suffices to check all graphs in the
appearance list instead of testing the whole database to calculate the frequency. This is possible
because of the antimonotonicity property described in the previous section.

Another possibility is to useembedding lists. An embedding is a subgraph isomorphism of a
subgraph in the lattice to a graph in the database. The embedding list contains all possible em-
beddings. In the embedding list the subgraph isomorphisms are stored whereas in the appearance
list only the molecules are mentioned a subgraph appears in.With embedding lists the frequency
can be determined by just counting the different referred graphs of the isomorphisms. Addition-
ally, it is easy to find all possible extensions of a subgraph by looking at the surroundings of the
embeddings in the graphs of the database. Without embeddings the subgraphs to be extended
would have to be re-embedded again and again. However, in general the use of embedding lists
requires much more memory since the number of embeddings canbe huge especially for small
or symmetric subgraphs.

2.2 Filtering Duplicates in the Search Lattice

A subgraph can be reached on different paths in the search lattice. It is important for an efficient
algorithm to avoid these duplicates, every subgraph shouldbe found just once. There are different
ways to avoid duplicates. First a local heuristics can be applied that decides if an extended
subgraph has already been found (or will be found in the future). The most popular heuristics are
maximum source node extension andrightmost path extension [Bor05]. They work by restricting
the number of nodes in a subgraph, at which a new edge can be added.

(a) maximum source node: 1 (b) rightmost path: 0 - 1 - 3

Figure 4: Examples of maximum source node exten-
sions and rightmost path extension for a molecular
fragment.

In Figure 4both extension princi-
ples are illustrated. In this Figure a
subgraph and its different extension
possibilities are given. Extensions
are marked with dotted lines. Nodes
are numbered (see the little number
on each node) according to the order
they have been inserted in the sub-
graph. The crossed-out extensions
are not allowed by the corresponding
heuristic.

Maximum source node extension only allows new edges at the same node or nodes that have

Proc. GraBaTs 2006 4 / 12

ECEASST

been added to the subgraphafter the node that has been extended in the last step (themaximum
source node). An example is shown inFigure 4(a). The last inserted node isC with number 3. It
extended the nodeC with number 1. So it is possible to extend the nodes 1, 2 and 3 inthe next
step but not node 0.

Rightmost path extension forbids to add edges at nodes that are not on the rightmost path,
which is a path from the root node to the latest added node. An example is shown inFigure 4(b).
The rightmost path is a path from node 0 to node 3. Extensions to node 2 are forbidden, as this
node is not on the path from node 0 to node 3.

However, these local heuristics cannot suppress all duplicates and do not work for algorithms
that generate new possible subgraphs by merging two subgraphs already found as described
before. Therefore, another (more complex) filtering step isneeded, for which two different
approaches exist. First a list of all already discovered subgraphs is maintained and any new
candidate will be checked for graph isomorphism. Second acanonical form for each subgraph
can be built during the construction, that reflects the extension order. A canonical form is a
special code to describe a subgraph. To avoid duplicates, only the subgraph with the minimal (or
maximal)canonical code is kept and extended further. All other non-canonical ones are ignored.
In [WMFP05, NK06] it is shown that the latter approach performs better in practice. An example
of a canonical form is given in the next section.

Summing up, graph mining algorithms need a search strategy through the subgraph lattice,
must generate new subgraphs and calculate their frequency while avoiding duplicates. Differ-
ent graph mining algorithms solve these problems differently. In the ParMol package we im-
plemented four different graph miners to evaluate their performance when mining molecular
databases. The implemented graph mining algorithms are shortly presented in the next section.

3 MoFa, gSpan, FFSM, and Gaston

All four fragment miners included in ParMol work on general,undirected graphs with labeled
nodes and edges. They are all restricted to finding connectedsubgraphs and traverse the lattice
in depth-first order.

MoFa (Molecule Fragment Miner, by Borgelt and Berthold in 2002 [BB02]) has been tar-
geted towards molecular databases, but it can also be used for arbitrary graphs. MoFa stores all
embeddings. New subgraphs are build by extending old subgraphs with an edge (and a node
if necessary). Extension is restricted to those fragments,that actually appear in the database.
Isomorphism tests in the database can be done cheaply by testing whether an embedding can
be refined in the same way. MoFa uses a fragment-local heuristic close to the maximum source
node extension described above and uses standard isomorphism testing to remove duplicates.

FFSM (Fast Frequent Subgraph Mining, by Huan, Wang, and Prins in 2003 [HWP03]) rep-
resents graphs as triangle matrices (node labels on the diagonal, edge labels elsewhere). The
canonical adjacency matrix, CAM, is used to detect duplicates. The matrix-code is the concate-
nation of all its entries, left to right and line by line. Based on lexicographic ordering, isomor-
phic graphs have the same canonical code. InFigure 5this canonical form is illustrated based
on graph 2 inFigure 2. For the canonical code the rows of the matrices are connected forming a
long string. IfO > C and 2> 1 > − these strings can be compared lexicographically. The left

5 / 12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining

matrix inFigure 5is the biggest one, its string is the canonical code.

O
2 C
- 1 O
- 1 - C
- - - 1 C
- - - 1 - C

>

O
1 C
- 1 C
- - 1 C
- - 1 - C
- 2 - - - O

>

C
1 C
1 - C
1 - - C
- 1 - - O
- 2 - - - O

Figure 5: Three different adjacency matrices for Graph 2. With
O > C and 2> 1>− the left one is the biggest and so canonical
one.

New subgraphs are gen-
erated by merging CAMs
that have special properties
in common. In addition
FFSM needs a restricted
extension operation: a new
edge-node pair may only
be added tothe last node of
a CAM. When FFSM joins
two matrices of fragments to generate new subgraphs, only atmost two new structures result.
After refinement generation, FFSM permutes matrix lines to check whether a generated matrix
is in canonical form. If not, it can be pruned. FFSM stores embeddings to avoid explicit subgraph
isomorphism testing.

gSpan(graph-based Substructure pattern, by Yan and Han in 2002 [YH02]) uses a canonical
form for graphs (calleddfs-code: depth first search code) resulting from the used rightmost path
extension to eliminate the remaining duplicates. A depth first traversal of a graph defines an
order in which the nodes and edges are visited. The concatenation of edge representations in
that order is the graph’s dfs-code. Refinement generation isrestricted by gSpan in two ways:
First, fragments can only be extended at nodes that lie on therightmost path of the depth first
search tree. Second, fragment generation is guided by occurrence in the appearance lists. Since
these two pruning rules cannot fully prevent isomorphic fragment generation, gSpan computes
the canonical (lexicographically smallest) dfs-code for each refinement. Refinements with non-
minimal dfs-code can be pruned. Since instead of embeddings, gSpan only stores appearance
lists for each fragment, explicit subgraph isomorphism testing must be done on all graphs in
these appearance lists.

Gaston(GrAph/Sequence/Tree extractiON, by Nijssen and Kok 2004 [NK04a, NK04b]) stores
all embeddings to generate only new subgraphs that actuallyappear in the database and to achieve
fast isomorphism testing. The main insight of Gaston is thatthere are efficient ways to uniquely
enumerate paths and trees. The last phase deals with generalgraphs. As Gaston first generates
paths, then trees, and finally general graphs, it has a very special search strategy through the
subgraph lattice. For all three steps different and specialized methods to generate new subgraphs
are used. For the last phase Gaston defines a global order on cycle-closing edges to minimize
the need for graph isomorphism tests. By considering fragments that are paths or trees first, and
by only proceeding to general graphs with cycles at the end, alarge fraction of the work can be
done efficiently. Only in that last phase, Gaston faces the NP-completeness of the subgraph iso-
morphism problem. Duplicate detection is done in two phases: hashing to pre-sort and a graph
isomorphism test for final duplicate detection. Gaston can calculate the frequency of a subgraph
either with isomorphism tests or embedding lists.

Proc. GraBaTs 2006 6 / 12

ECEASST

4 The ParMol Package

Work on the ParMol package started in 2004 with the implementation and the comparison of the
four graph miners based on a common graph library and in-/output modules. This overlapping
code basis ensured the comparability and the same level of maturity of our implementations. To
ensure platform independence and extensibility we used Java as programming language. Instead
of some original code, our code is released under the GPL (GNUPublic License) and is available
athttp://www2.cs.fau.de/Forschung/Projekte/ParMol/. There is no other library that contains all
four miners based on the same data structures. For gSpan and FFSM no open source imple-
mentations are available at all by the original authors. Ourfirst goal was to make all miners
comparable based on runtime and memory consumption.

 0

 20

 40

 60

 80

 100

 120

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

in
 m

in

minimal support in %

HIV(42689 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4 6 8 10 12 14 16 18 20

m
em

or
y

us
ag

e
in

 G
B

minimal support in %

HIV(42689 graphs)

MoFa(base)
gSpan
FFSM

Gaston

Figure 6: Runtime and memory measurements on the NCI-HIV dataset

In Figure 6runtime and memory of the four algorithms when mining the HIV[NCI99] database
is given. This database contains the famous AZT shown inFigure 1. The HIV dataset contains
42,689 molecules with an average of 27 edges. The tests were all done on 64bit Linux systems
because of the huge memory requirements of some algorithms.The runtime experiments were
done on a Dual-Itanium 2 PC running at 1.3 GHz with 10GB of RAM.Here we used IBM’s Java
Virtual Machine (JVM) 1.4.2 because it produced the best runtime results for all algorithms.3

The maximal heap space available to the JVM was set to 8GB to avoid swapping influences.
For the memory tests we used the SUN JVM4 as the IBM JVM showed garbage collector arti-
facts. Each test was run five times, the values given are averaged from these runs. On the x-axis
in Figure 6the support is given when running the algorithms ranging up to 20%. On the left
hand side, the runtime of the different algorithms is given,the y-axis is labeled with minutes.
On the right hand side memory consumption is shown, where they-axis is labelled with GB.
In this test, Gaston needs the most memory while gSpan uses the least memory for the HIV
database. This result is confirmed by tests of the authors of the original algorithm. Other tests
we describe in [WMFP05] showed that Gaston and gSpan are very fast while gSpan does not use
much memory.

3 http://www-128.ibm.com/developerworks/java/jdk/index.html
4 http://java.sun.com/

7 / 12 Volume 1 (2006)

http://www2.cs.fau.de/Forschung/Projekte/ParMol/

The ParMol Package for Frequent Subgraph Mining

The molecule databases can be read and written in a variety offormats (Smiles, SLN, SDF,
GraphViz dot, and some generic graph representations). Theinput can optionally be compressed
with gzip in order to save space. As it is common for moleculardatasets, ParMol can divide the
input graphs into several classes and independent support can be given for each class.5

The four miners have a common interface, a set of common options, like the min/max support,
reporting just closed subgraphs (seeSubsection 5.1) , or mining only trees or simple paths, and
have been successfully applied to databases containing up to 237,771 molecules with a support
of 5% on a Dual-Itanium 2 PC running at 1.3 GHz with 10GB of RAM.gSpan and MoFa have
been extended since then in different directions.

Figure 7: ParMol visualization tool. gSpan is applied
to a mining algorithm is appliedHIV-CA [NCI99]. The
most prominent fragment, the HIV-1 inhibitor AZT, is dis-
played.

We also implemented a 2D visu-
alizer for molecules [Urz05] based
on [Hel99]. Automated drawing
of molecules in 2D is not as sim-
ple as rendering in 3D, because
chemist have certain drawing con-
ventions like regular polygons for
rings, fixed angles between two
bonds, or the overall direction of the
“main-chain”. The existing tools for
2D visualization are either for draw-
ing molecules by hand (e.g. [ISI,
Che, JMo, JCh]) or require special
representations that afterwards can
be displayed [FGR04]. Additionally
not all of them are available as Java libraries. Thus we decided to extend the project by our own
visualizer that can be used to report progress during the search or to display graphical represen-
tations of the found fragments.Figure 7contains a screen shot of the graphical user interface of
ParMol and the molecule viewer.

5 Extensions to the Mining Algorithms

MoFa and gSpan have been extended in several directions. Newpruning strategies were added
and the ParMol package was adapted for a new application area: procedural abstraction in com-
piler construction.

5.1 Mining Closed Fragments

First we integrated the special pruning rules for closed fragments (a fragment is closed when
there is no supergraph with the same support in the graph set under consideration). This reduces
the number of found fragments and the complete set can easilyreconstructed out of it. As a nice
side effect, the user is mainly interested in the closed fragment set only.

5 A molecular fragment must e.g. occur in at least 10% of all “active” molecules but in at most 5% of all “inactive”
ones.

Proc. GraBaTs 2006 8 / 12

ECEASST

Closed fragments can of course be filtered after the mining process but integrating the filtering
into mining leads to a smaller search space using less memory. The integrated pruning scheme
for MoFa [BMB04] and gSpan [YH03] works more or less the same. For each extension of a
fragment it is checked if it can be applied to all its embeddings. This indicates that the extended
fragment might have the same frequency as its parent. If there is one, MoFa only follows this
so calledperfect extension and defers all other possible extensions. To keep the lexicographical
order, gSpan just prunes lexicographic smaller extensions. However, the pruning rules presented
in [BMB04, YH03] are too general, because there exist closed fragments embedded in cyclic
structures that are accidentally pruned. Therefore our implementations use this pruning only on
non-cycle edges (so calledbridges).

5.2 Graph Mining for Procedural Abstraction

Mining molecule databases is the most common application area of graph mining. We also apply
graph mining to a special problem in compiler construction [WDM+06, DWF+07]. To reduce
the code size of programs, common code parts can be abstracted to procedures (procedural
abstraction). Graph mining on the data flow graphs of a program finds such interesting code
fragments.

These data flow graphs are directed acyclic graphs (DAG) for which several extensions are
necessary. InFigure 8a short piece of code and its corresponding data flow graph is given. In
this data flow graphs there are several subgraphs that appearmore than once. A frequent code
fragment can be extracted to a new procedure. If the repeatedcode fragments are substituted
with a call to the new procedure, the overall code size shrinks.

ldr r3, [r1]!
sub r2, r2, r3
add r4, r2, #4
ldr r3, [r1]!
sub r2, r2, r3
ldr r3, [r1]!
add r4, r2, #4

add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

Figure 8: basic block of assembler code
(left) and the corresponding data flow graph
(right).

Figure 9: Just one embedding for the fragment
A → B exists, but two for the extended fragment
A → B →C.

To implement mining on directed graphs, we have (among otherthings) extended gSpan’s
canonical form with an additional flag. Also MoFa can easily be adapted for directed graphs.
MoFa must only distinguish between incoming and outgoing edges and an additional pruning
rule can be added (all incoming edges are always added beforethe first outgoing edge).

Most importantly, mining for procedural abstraction needsa different way to determine the
frequency. For mining molecules, the number of graphs a fragment appears in is important. In
contrast, for mining data flow graphs, the number of occurrences of the fragments in all graphs is
relevant. Thus the frequency computation has to be changed from ”graph-based” to ”embedding-
based”. However, this has a severe implication on frequencybased pruning: Because of sym-
metries the frequency does not decrease monotonically any more and thus cannot be used for

9 / 12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining

pruning the search tree, seeFigure 9. Fortunately, if the counting of occurrences is restrictedto
the maximal set ofnon-overlapping embeddings, the frequency again falls monotonically and
pruning is possible. As a nice side effect, this restrictionis also useful for code abstraction, be-
cause overlapping embeddings cannot be outlined together anyway. However, determining this
maximum set is another NP-complete problem that makes mining even more expensive. It es-
sentially requires to compute the maximum independent set of all nodes in a so-called collision
graph in which the embeddings of a subgraph form the nodes; two nodes are connected if the
two embeddings overlap.

6 Current and future work

In [MWFP06] we presented parallel versions of gSpan and MoFa on a high performance shared-
memory multiprocessor system. Because such SMP systems arequite expensive and do not scale
well, we are implementing a version of ParMol that runs in a cluster using the JavaParty [Jav]
framework. The additional communication required becauseof the distributed memory should
be amortized by the benefit of unsynchronized memory accesses.

We generalize and extract structural similarities betweenthe four different algorithms to derive
a form of parallelization that works for all of them. The general mining pattern is as follows:
During initialization the required primary steps like the generation of initial search lattice nodes
or relabeling/compressions of the database can be done. Afterwards the traversing loop considers
the unextended fragments according to the traversal sequence and checks them for relevance
(frequency, canonical, size, etc.). If the current fragment has to be extended, one of different
child generation algorithms can be inserted (maximum source node, rightmost path extension,
Gaston’s path/tree/cycle generation, or others). Afterwards the analyzed fragment can be stored
if necessary and all the children found have to be traversed.Finally, additional filters can be
selected to reduce the set of found fragments. E.g. the reduction to the closed subset of found
fragments can also be done at the end so that each algorithm can easily (but not necessary very
efficiently) support this feature.

From this pattern the granularity of the parallelization isobvious: each processing unit (cluster
computer or shared memory processor) performs the checks for and the extension of one frag-
ment. By extending the children afterwards by the same or anyother idle unit a dynamic and
efficient parallelization can be reached [MWFP06].

Additionally, this generalization enables a flexible extension and adaption of the algorithms
to different applications. Special actions can easily be included into or in-between each step,
so a full control over each step is possible. Different partscan be attached or detached as it is
required for the algorithms. Currently the gSpan algorithmand its extensions are transformed
to this unified pattern; the other algorithms will follow. One of the most important extensions
to MoFa, the use of canonical codes [Bor05] to remove the need for testing each new candidate
against all other found frequent fragments, has yet to be integrated into ParMol. Specialized
algorithms for mining trees or directed acyclic graphs, unconnected or unlabeled graphs will
also be made available.

Proc. GraBaTs 2006 10 / 12

ECEASST

7 Conclusions

The ParMol package consists of open source implementationsof four popular frequent subgraph
miners. A 2D visualizer for molecules is integrated in the framework and can be attached directly
to the miners. To speed up the search on huge databases parallel versions of two miners are
available. Their scalability is discussed in another paper[MWFP06].

In addition to the re-implementations of the algorithms we presented several extensions of
MoFa and gSpan not only to speed up the search but also to make them applicable to non-
molecule applications. We also sketched our current work that aims at unifying the graph miner
even more.

Bibliography

[BB02] C. Borgelt, M. R. Berthold. Mining Molecular Fragments: Finding Relevant Sub-
structures of Molecules. InProc. IEEE Int’l Conf. on Data Mining. Pp. 51–58.
Maebashi City, Japan, Nov. 2002.

[BMB04] C. Borgelt, T. Meinl, M. R. Berthold. Advanced Pruning Strategies to Speed Up
Mining Closed Molecular Fragments. InProc. of the 2004 IEEE Conf. on Systems,
Man and Cybernetics, SMC 2004. Pp. 4565 – 4570. Den Haag, The Netherlands,
Oct. 2004.

[Bor05] C. Borgelt. On Canonical Forms for Frequent Graph Mining. In3rd Int’l Workshop
on Mining Graphs, Trees, and Sequences. Pp. 1–12. Porto, Portugal, Oct. 2005.

[Che] ChemWindow 6.0. http://www.bio-rad.com/.

[DWF+07] A. Dreweke, M. Wrlein, I. Fischer, D. Schell, T. Meinl, M.Philippsen. Graph-
Based Procedural Abstraction. In Society (ed.),Proc. of the 2007 CGO. Pp. 259–
270. IEEE Computer Society, Los Alamitos, CA, USA, 2007.

[FGR04] P. C. Fricker, M. Gastreich, M. Rarey. Automated Drawing of Structural Molec-
ular Formulas under Constraints.Journal of Chemical Information and Computer
Science 44:1065–1078, 2004.

[Hel99] H. E. Helson. Structure Diagram Generation.Reviews in Computational Chemistry,
pp. 313–398, 1999.

[HWP03] J. Huan, W. Wang, J. Prins. Efficient Mining of Frequent Subgraphs in the Presence
of Isomorphism. InProc. of the 3rd IEEE Int’l Conf. on Data Mining. Pp. 549–552.
Melbourne, FL, Nov. 2003.

[ISI] ISIS/Draw 2.5. http://www.mdli.com/products/framework/isis draw/index.jsp.

[Jav] JavaParty, a distributed companion to Java. http://www.ipd.uka.de/JavaParty/.

[JCh] JChemPaint, an interactive molecule editor. http://jchempaint.sourceforge.net/.

11 / 12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining

[JMo] JMol, a molecule viewer in Java. http://jmol.sourceforge.net/.

[MWFP06] T. Meinl, M. Wrlein, I. Fischer, M. Philippsen. Mining Molecular Datasets on Sym-
metric Multiprocessor Systems. InProc. of the 2006 IEEE Int’l Conf. on Systems,
Man and Cybernetics. Pp. 1269–1274. Taipei, Taiwan, 2006.

[NCI99] National Cancer Institute, DTP AIDS Antiviral Screen.
http://dtp.nci.nih.gov/docs/aids/aidsdata.html, Mar. 1999.

[NK04a] S. Nijssen, J. N. Kok. Frequent Graph Mining and its Application to Molecular
Databases. InProc. of the 2004 IEEE Conf. on Systems, Man and Cybernetics,
SMC 2004. Pp. 4571 – 4577. Den Haag, The Netherlands, Oct. 2004.

[NK04b] S. Nijssen, J. N. Kok. The Gaston Tool for Frequent Subgraph Mining.Proc. Int’l
Workshop on Graph-Based Tools 127(1):77–87, 2004.

[NK06] S. Nijssen, J. N. Kok. Frequent Subgraph Miners: Runtime Don’t Say Everything.
In Gärtner et al. (eds.),Proc. of the Int’l Workshop on Mining and Learning with
Graphs (MLG 2006). Pp. 173–180. Berlin, Germany, 2006.

[Urz05] O. Urzova. Zweidimensionale Visualisierung von Molekülgraphen in Java. Stu-
dienarbeit, Computer Science Department 2, University of Erlangen-Nuremberg,
Oct. 2005.

[WDM+06] M. Wörlein, A. Dreweke, T. Meinl, I. Fischer, M. Philppsen. Edgar: the
Embedding-baseD GrAph MineR. In Gärtner et al. (eds.),Proc. of the Int’l Work-
shop on Mining and Learning with Graphs (MLG 2006). Pp. 221–228. Berlin, Ger-
many, 2006.

[WMFP05] M. Wörlein, T. Meinl, I. Fischer, M. Philippsen. Aquantitative comparison of the
subgraph miners MoFa, gSpan, FFSM, and Gaston. InKnowledge Discovery in
Database: PKDD 2005. Volume 3721, pp. 392–403. Springer, Berlin, 2005.

[YH02] X. Yan, J. Han. gSpan: Graph–Based Substructure Pattern Mining. InProc. IEEE
Int’l Conf. on Data Mining ICDM. Pp. 721–723. Maebashi City, Japan, Nov. 2002.

[YH03] X. Yan, J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. InProc.
of the 9th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining.
Pp. 286–295. Washington, DC, Aug. 2003.

Proc. GraBaTs 2006 12 / 12

	Mining Molecular Databases
	Frequent Subgraph Mining
	Frequency Calculation
	Filtering Duplicates in the Search Lattice

	MoFa, gSpan, FFSM, and Gaston
	The ParMol Package
	Extensions to the Mining Algorithms
	Mining Closed Fragments
	Graph Mining for Procedural Abstraction

	Current and future work
	Conclusions

