Electronic Communications of the EASST

Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools
(GraBaTs 2006)

The ParMol Package for Frequent Subgraph Mining

Thorsten Meinl , Marc Worlein, Olga Urzova, Ingrid Fischand
Michael Philippsen

12 pages

Guest Editors: Albert Ztuindorf, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

The ParMol Package for Frequent Subgraph Mining

Thorsten Meinl 1, Marc W orlein2, Olga Urzova', Ingrid Fischer?, and
Michael Philippser®

1 Thorsten.Meinl@inf.uni-konstanz.de
2 Ingrid.Fischer@inf.uni-konstanz.de
ALTANA Chair for Bioinformatics and Information Mining
University of Konstanz, Box M712, 78457 Konstanz, Germany
3 woerlein@cs.fau.de
4 siolurzo@stud.informatik.uni-erlangen.de
5 philippsen@cs.fau.de
Computer Science Department 2
University of Erlangen-Nuremberg, Martensstr. 3, 9105@uigen, Germany

Abstract: Mining for frequent subgraphs in a graph database has beaguopular
topic in the last years. Algorithms to solve this problem ased in chemoinfor-
matics to find common molecular fragments in a database céentds represented
as two-dimensional graphs. However, the search procesbitnaay graph struc-
tures includes costly graph and subgraph isomorphism testsir ParMol package
we have implemented four of the most popular frequent sydbgrainers using a
common infrastructure: MoFa, gSpan, FFSM, and Gaston. dBsghe pure re-
implementation, we have added additional functionalitgdme of the algorithms
like parallel search, mining directed graphs, and miningne big graph instead of
a graph database. Also a 2D-visualizer for molecules has ingegrated.

Keywords: graph, subgraph, frequent, mining, ParMol

1 Mining Molecular Databases

The motivation for the ParMol (Pallel Molecular Mining) project is to find common features in
large sets of molecules. This is a frequently reoccurriraplem in many biological or chemical
applications. E.g. in drug discovery, the goal is to idgntibmmon parts in molecules sharing
similar chemical properties. A common approach is to usétbealimensional atom-bond struc-
ture of molecules as basis for a undirected labeled gragtbda¢ containing these molecules.
This database is searched for subgraphs that appear aineasertain number of molecules.
Searching for frequent subgraphs in a graph database isalsdgraph mining. The frequent
graph (resp. molecular) fragments then often give an insigb the specific behavior of the
molecules.

1 Although molecules are three-dimensional objects, s@agdor features on their 2D-structure often achieves
surprisingly good results.

1/12 Volume 1 (2006)

mailto:Thorsten.Meinl@inf.uni-konstanz.de
mailto:Ingrid.Fischer@inf.uni-konstanz.de
mailto:woerlein@cs.fau.de
mailto:siolurzo@stud.informatik.uni-erlangen.de
mailto:philippsen@cs.fau.de

The ParMol Package for Frequent Subgraph Mining @

A famous example for a frequent molecular fragment is the o
so called AZT, which is a well-known HIV-1 inhibitor (see Il
Figure 1for its two dimensional representation as graph with- N\ _~ C~_
out hydrogen atoms). In a database containing more than I T

40,000 molecules tested against the HIV-1 vili€[99], this c C
active molecular fragment can be found within minutes using SN \0
the right algorithms. CI:
For the extraction of molecular fragments like AZT, various o/ \c
methods have been described recently. The most popular min- '\ /
ing algorithms are re-implemented in our ParMol package Th c—c¢C
first goal of our implementation was to compare these algo— c/ \N =N=N

rithms in runtime and memory consumption, currently new ex-

tensions and application areas are researched. This gapsr frigure 1: AZT — a well-
an overview on the current state of ParMol. In the next sectighown HIV-1 inhibitor.

we introduce searching fragments in graphs and its problems

in general. Section 3gives a short description of the four implemented algorghr@ection 4
introduces ParMol itself. Extensions to ParMol are desctim Section 5 the current work is
sketched irSection 6 We conclude the paper Bection 7

2 Frequent Subgraph Mining

Mining molecules can be reduced to searching a databasepifigfor subgraphs that occur in
at least a given percentagwiport) or number frequency) of all graphs. An example of a graph
(molecular) database containing just two graphs (molsgusegiven inFigure 2at the bottom.
The database is shaded in dark gray. It contains two moketaieledGraph 1 andGraph 2 in
the Figure. The goal is to find all subgraphs that are frequrethiis database. If frequency 2 or
a support of 100% is assumed, the subgraphs must occur irgkagths.

A naive approach would be to create all possible subgraptiscadetermine their frequency
by subgraph isomorphism tests. This approach is very castlymore sophisticated algorithms
exist.

A systematic approach is to (conceptually) arrange all saits in the database in a lattice,
seeFigure 2for the running example. The empty subgraph is shown at fhetbe following
layers of the lattice contain all zero-edge, one-edgen-edge subgraphs and their frequencies.
Frequency 1 is shaded in light gray, frequency 2 is shadedayn drhere are three subgraphs
with zero edges namely the ato@sN, andO. On the next level there are four subgraphs with
one edge, five subgraphs contain two edges. On the bottore &dttice the underlying database
is given as both graphs contain five edges.connection between two items in the lattice is an
extension of a subgraph by an edge and a node if no cycle isctlos

Frequent subgraph mining now consists of creating andrsege this lattice and reporting
all frequent items. If the frequency was set to 2 moleculegte small example database in
Figure 2 the miner would output only the fragments that occur in bwoiblecules (the ones
inside the grey area in the middle of the lattice). All oth@giments would either be suppressed

2 Of course it is not necessary that the database graphs hesartie number of edges in general.

Proc. GraBaTs 2006 2112

@ ECEASST

Figure 2: A complete fragment lattice of the molecules atabiom.

or not even discovered during the search.

When implementing a subgraph miner, a traversal strategyh#olattice has to be chosen,
e.g. depth-first or breadth-first traversal. The majorityatgforithms traverses the lattice in a
depth-first way because it needs less memory than breasitisdarch.

Second it must be decided how new subgraphs are generated
from existing subgraphs. Two methods are commonly uséd—€¢=€¢ €=€—0
Either an already generated fragment is extended by an edge ™~ -

(and a node if no cycle is closed). This edge (and node) is C€—€—=€C—0

found in the database. With the help of this strategy theétt_. _ .

in Figure 2was motivated before. Edge extension needs acc'é'gsure 3: Merging two sub-
S . . hs over a common core

to the database and only creates existing candidates. tfdis Jrap b h

egy is the most popular one. Another possibility is to geimaeréo create a new subgraph.

new subgraphs by merging two subgraphs already found thiatdheommon core. This merging

approach solely works on the subgraphs and may generateataslthat do not occur in the

database. Ifrigure 3this strategy is explained. The two graphs at the top haversrmmn core

consisting of twdC atoms. This core is used to generate a new possible subgrépd lzottom

of the Figure. Then it must be checked how frequent this ndwgrsyph is.

By looking at the lattice two other observations can be m&ast, if one of the subgraphs is
infrequent, i.e. its support is below the threshold, alltefdescendants must be infrequent, too
(often called theantimonotonicity property). Thus, the search tree that is built while traversing
the lattice, can be pruned at such places (often cétkEglency based pruning). Second, most
subgraphs can be reached by traversing several differérd.pehis is undesirable, because these
subgraphs have to be filtered to prevent multiple processiggreporting. The next subsections
deal with the calculation of the frequency and describe hodirfig duplicates during the search

3/12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining @

process on different paths through the search lattice cawvdided.

2.1 Frequency Calculation

There are two possibilities to determine the frequency chradate subgraph. First ordinary
NP-complete (and thus expensive) subgraph isomorphigsidas be made against all database
graphs. The number of tests can be reduced if so-calbpdarance lists are maintained that
record the graphs a subgraph occurs in. In the running exartim@ fragment consisting of the
atomsC and O connected with a bond has both database molecules in itaaue list as

it appears in both molecules. The sub molecule consisting afid N has an appearance list
with the graph 1 ofrigure 2 After extending a subgraph, it suffices to check all graphthé
appearance list instead of testing the whole databaseduolatd the frequency. This is possible
because of the antimonotonicity property described in tegipus section.

Another possibility is to usembedding lists. An embedding is a subgraph isomorphism of a
subgraph in the lattice to a graph in the database. The erimgelist contains all possible em-
beddings. In the embedding list the subgraph isomorphisenstared whereas in the appearance
list only the molecules are mentioned a subgraph appeaviih.embedding lists the frequency
can be determined by just counting the different referregblgs of the isomorphisms. Addition-
ally, it is easy to find all possible extensions of a subgraplobking at the surroundings of the
embeddings in the graphs of the database. Without embesittiegsubgraphs to be extended
would have to be re-embedded again and again. However, grgdhe use of embedding lists
requires much more memory since the number of embeddingbecnge especially for small
or symmetric subgraphs.

2.2 Filtering Duplicates in the Search Lattice

A subgraph can be reached on different paths in the seatweldt is important for an efficient
algorithm to avoid these duplicates, every subgraph sHmifdund just once. There are different
ways to avoid duplicates. First a local heuristics can bdieghghat decides if an extended
subgraph has already been found (or will be found in the &turhe most popular heuristics are
maxi mum source node extension andrightmost path extension [Bor05. They work by restricting
the number of nodes in a subgraph, at which a new edge can bd.add

In Figure 4both extension princi-

ples are illustrated. In this Figure a Cc c

. . . 1.~ R 1.~ e
subgraph and its different extension, _CZ... 8(, ~C%y. O
possibilities are given. Extensions C .. c.. N C. c.. N
are marked with dotted lines. Nodes 0 0 & 0

are numbered (see the little number(a) maximum source node: 1 (b) rightmost path: 0-1 -3

?hnejaﬁ:vgok?:()er?ﬁﬁ(s);crllgg tl(; t:]heeosrgq{igure 4. E>_<amples of maximum source node exten-
. sjons and rightmost path extension for a molecular

graph. The crossed-out eXtensmr}?agment

are not allowed by the corresponding '

heuristic.

Maximum source node extension only allows new edges at the s@de or nodes that have

Proc. GraBaTs 2006 4112

@ ECEASST

been added to the subgragtter the node that has been extended in the last stepri@iamum
source node). An example is shown iffigure 4(a) The last inserted node @with number 3. It
extended the nod€ with number 1. So it is possible to extend the nodes 1, 2 andi3eimext
step but not node 0.

Rightmost path extension forbids to add edges at nodes teata on the rightmost path,
which is a path from the root node to the latest added node xAmple is shown ifrigure 4(b)
The rightmost path is a path from node 0 to node 3. Extensmnede 2 are forbidden, as this
node is not on the path from node 0 to node 3.

However, these local heuristics cannot suppress all catpcand do not work for algorithms
that generate new possible subgraphs by merging two sutgy@peady found as described
before. Therefore, another (more complex) filtering stepasded, for which two different
approaches exist. First a list of all already discoveredggytihs is maintained and any new
candidate will be checked for graph isomorphism. Secooahanical form for each subgraph
can be built during the construction, that reflects the esttenorder. A canonical form is a
special code to describe a subgraph. To avoid duplicat&stlfmsubgraph with the minimal (or
maximal)canonical codeis kept and extended further. All other non-canonical omesgmored.
In [WMFPO5 NKO6] it is shown that the latter approach performs better inficac An example
of a canonical form is given in the next section.

Summing up, graph mining algorithms need a search strategudh the subgraph lattice,
must generate new subgraphs and calculate their frequehity avoiding duplicates. Differ-
ent graph mining algorithms solve these problems difféyerin the ParMol package we im-
plemented four different graph miners to evaluate theifguerance when mining molecular
databases. The implemented graph mining algorithms arédyspoesented in the next section.

3 MoFa, gSpan, FFSM, and Gaston

All four fragment miners included in ParMol work on genemahdirected graphs with labeled
nodes and edges. They are all restricted to finding conneciiegraphs and traverse the lattice
in depth-first order.

MoFa (Molecule Fagment Miner, by Borgelt and Berthold in 200BB02]) has been tar-
geted towards molecular databases, but it can also be usatbftrary graphs. MoFa stores all
embeddings. New subgraphs are build by extending old spbgrevith an edge (and a node
if necessary). Extension is restricted to those fragmehts, actually appear in the database.
Isomorphism tests in the database can be done cheaply gtegtether an embedding can
be refined in the same way. MoFa uses a fragment-local heulete to the maximum source
node extension described above and uses standard isosrorf#sting to remove duplicates.

FFSM (Fast Fequent 8bgraph_Mning, by Huan, Wang, and Prins in 2008\VP03) rep-
resents graphs as triangle matrices (node labels on therdihgedge labels elsewhere). The
canonical adjacency matrix, CAM, is used to detect duplicates. The matrix-code is thmeate-
nation of all its entries, left to right and line by line. Bdsen lexicographic ordering, isomor-
phic graphs have the same canonical codeFijure 5this canonical form is illustrated based
on graph 2 inFigure 2 For the canonical code the rows of the matrices are comhéatming a
long string. IfO > C and 2> 1 > — these strings can be compared lexicographically. The left

5/12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining @

matrix in Figure 5is the biggest one, its string is the canonical code.
New subgraphs are gen-

erated by merging CAMs | O o C
f[hat have special prop.e'rtie 2 (1: o ! (1: c i c c
in common. In addition 1 c - 1 cC “l1 - - ¢
- - 1 cC - -1 - ¢C -1 - -0
FFSM needs a restricted| P e e

extension operation: a new_, _ . _ , .
edge-node pair may onlyFlgure 5: Three different adjacency matrices for Graph 2thwi

be added téhe last node of O >Cand 2> 1> — the left one is the biggest and so canonical

a CAM. When FFSM joins °N€:

two matrices of fragments to generate new subgraphs, ontyoat two new structures result.
After refinement generation, FFSM permutes matrix lineshieck whether a generated matrix
is in canonical form. If not, it can be pruned. FFSM stores edaings to avoid explicit subgraph
isomorphism testing.

gSpan(graph-based @bstructure pieern, by Yan and Han in 2002Y]H02]) uses a canonical
form for graphs (calledifs-code: depth first search code) resulting from the used rightmatt p
extension to eliminate the remaining duplicates. A deptt fraversal of a graph defines an
order in which the nodes and edges are visited. The condateraf edge representations in
that order is the graph’s dfs-code. Refinement generatioesisicted by gSpan in two ways:
First, fragments can only be extended at nodes that lie onighemost path of the depth first
search tree. Second, fragment generation is guided byrecmg in the appearance lists. Since
these two pruning rules cannot fully prevent isomorphiginant generation, gSpan computes
the canonical (lexicographically smallest) dfs-code facterefinement. Refinements with non-
minimal dfs-code can be pruned. Since instead of embeddg®san only stores appearance
lists for each fragment, explicit subgraph isomorphisntingsmust be done on all graphs in
these appearance lists.

Gaston(GrAph/Sequence/Tee extractiONby Nijssen and Kok 2004NK04a NKO04h]) stores
all embeddings to generate only new subgraphs that aceygbgar in the database and to achieve
fast isomorphism testing. The main insight of Gaston is thatte are efficient ways to uniquely
enumerate paths and trees. The last phase deals with ggregrak. As Gaston first generates
paths, then trees, and finally general graphs, it has a veagiapsearch strategy through the
subgraph lattice. For all three steps different and speeimethods to generate new subgraphs
are used. For the last phase Gaston defines a global orderclenabysing edges to minimize
the need for graph isomorphism tests. By considering fragsnibat are paths or trees first, and
by only proceeding to general graphs with cycles at the etaftge fraction of the work can be
done efficiently. Only in that last phase, Gaston faces thedBpleteness of the subgraph iso-
morphism problem. Duplicate detection is done in two phakashing to pre-sort and a graph
isomorphism test for final duplicate detection. Gaston @outate the frequency of a subgraph
either with isomorphism tests or embedding lists.

Proc. GraBaTs 2006 6/12

@ ECEASST

4 The ParMol Package

Work on the ParMol package started in 2004 with the impleat@r and the comparison of the
four graph miners based on a common graph library and irpéuhodules. This overlapping
code basis ensured the comparability and the same leveltafitgaof our implementations. To
ensure platform independence and extensibility we useala®programming language. Instead
of some original code, our code is released under the GPL (Bi\ilic License) and is available
at http://www2.cs.fau.de/Forschung/Projekte/ParMaliere is no other library that contains all
four miners based on the same data structures. For gSpank8M Ro open source imple-
mentations are available at all by the original authors. fiat goal was to make all miners
comparable based on runtime and memory consumption.

HIV(42689 graphs) HIV(42689 graphs)
120 T T T T T T T 1.6 T T T T T T
ﬁ] MoFa(base) --{zF-- MoFa(base) --1=F--
100 + % gSpan X g l4r
< \ FFSM —g— = 1oL
E 8 [Gaston =@ - ‘© :
£ Y % 1+
o 60 | = E]
£ * 2 08
€ a0} B, . S
= e IS 0.6 -
S S)
20 S Ly = [€ 04 -
0 gl R o SRR xR . ST 0.2 L 28 D TRIIED SEITTTITIOR e rpeeeas foeens X
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
minimal support in % minimal support in %

Figure 6: Runtime and memory measurements on the NCI-H¥sgat

In Figure 6runtime and memory of the four algorithms when mining the IHW199] database
is given. This database contains the famous AZT showfignre 1 The HIV dataset contains
42,689 molecules with an average of 27 edges. The tests Welena on 64bit Linux systems
because of the huge memory requirements of some algorithiresruntime experiments were
done on a Dual-Itanium 2 PC running at 1.3 GHz with 10GB of RAMre we used IBM’s Java
Virtual Machine (JVM) 1.4.2 because it produced the bestimm results for all algorithms.
The maximal heap space available to the JVM was set to 8GBdinl awapping influences.
For the memory tests we used the SUN JVas the IBM JVM showed garbage collector arti-
facts. Each test was run five times, the values given are gegriaom these runs. On the x-axis
in Figure 6the support is given when running the algorithms rangingau@@%. On the left
hand side, the runtime of the different algorithms is give, y-axis is labeled with minutes.
On the right hand side memory consumption is shown, wherg/-#peas is labelled with GB.
In this test, Gaston needs the most memory while gSpan usegdbt memory for the HIV
database. This result is confirmed by tests of the authordseobtiginal algorithm. Other tests
we describe in\WMFP09 showed that Gaston and gSpan are very fast while gSpan dbese
much memory.

3
4

http://ww+ 128.i bm conl devel operwor ks/j ava/ j dk/i ndex. ht m
http://java. sun. conf

7112 Volume 1 (2006)

http://www2.cs.fau.de/Forschung/Projekte/ParMol/

The ParMol Package for Frequent Subgraph Mining @

The molecule databases can be read and written in a variggrrofts (Smiles, SLN, SDF,
GraphViz dot, and some generic graph representations)inphecan optionally be compressed
with gzip in order to save space. As it is common for molecdkitasets, ParMol can divide the
input graphs into several classes and independent sugpoltecgiven for each class.

The four miners have a common interface, a set of commonroptiike the min/max support,
reporting just closed subgraphs (s&gbsection 5)1, or mining only trees or simple paths, and
have been successfully applied to databases containing 2@7t771 molecules with a support
of 5% on a Dual-Itanium 2 PC running at 1.3 GHz with 10GB of RAd%pan and MoFa have
been extended since then in different directions.

We also implemented a 2D visu-
alizer for molecules (Prz05 based | PaMol - Pasalelle Molecular mining

. algorithm: | GSpan v o,
on [Helgq AUtom_ated draW”t]g database: |HIY-CA-02 smiles.gz . Y
of molecules in 2D is not as SiM{ equengs: 10% N
. . Y
ple as rendering in 3D, becausrrapnwpe: all graphs - Q_\"
chemist have certain drawing conjl/desed Fragments \

ventions like regular polygons for
rings, fixed angles between twc n
bonds, or the overall direction of the
“main-chain”. The existing tools for
2D visualization are either for draw-Figure 7: ParMol visualization tool. gSpan is applied
ing molecules by hand (e.glgl, to a mining algorithm is applietiV-CA [NCI99]. The
Che JMo, JCH) or require special most prominent fragment, the HIV-1 inhibitor AZT, is dis-
representations that afterwards caplayed.

be displayed fGR04. Additionally

not all of them are available as Java libraries. Thus we @elcid extend the project by our own
visualizer that can be used to report progress during thelsea to display graphical represen-
tations of the found fragmentg&igure 7contains a screen shot of the graphical user interface of
ParMol and the molecule viewer.

start search |Fragment 2387 |V|64854l] |v

5 Extensions to the Mining Algorithms

MoFa and gSpan have been extended in several directions.pNming strategies were added
and the ParMol package was adapted for a new application pre@eedural abstraction in com-
piler construction.

5.1 Mining Closed Fragments

First we integrated the special pruning rules for closedrfrants (a fragment is closed when
there is no supergraph with the same support in the grapmdet gonsideration). This reduces
the number of found fragments and the complete set can easiyistructed out of it. As a nice
side effect, the user is mainly interested in the closedixg set only.

5 A molecular fragment must e.g. occur in at least 10% of altitat molecules but in at most 5% of all “inactive”

ones.

Proc. GraBaTs 2006 8/12

@ ECEASST

Closed fragments can of course be filtered after the mininggss but integrating the filtering
into mining leads to a smaller search space using less membegyintegrated pruning scheme
for MoFa BMBO04] and gSpan YHO03] works more or less the same. For each extension of a
fragment it is checked if it can be applied to all its embeddinThis indicates that the extended
fragment might have the same frequency as its parent. I&tiseone, MoFa only follows this
so calledperfect extension and defers all other possible extensions. To keep the lgraphical
order, gSpan just prunes lexicographic smaller extensidog/ever, the pruning rules presented
in [BMBO04, YHO3] are too general, because there exist closed fragmentsdei@tben cyclic
structures that are accidentally pruned. Therefore ouldmentations use this pruning only on
non-cycle edges (so callduidges).

5.2 Graph Mining for Procedural Abstraction

Mining molecule databases is the most common applicatiea @irgraph mining. We also apply
graph mining to a special problem in compiler constructidfDM ~06, DWF"07]. To reduce
the code size of programs, common code parts can be abdtriacigocedurespfocedural
abstraction). Graph mining on the data flow graphs of a program finds suthéasting code
fragments.

These data flow graphs are directed acyclic graphs (DAG) fuchvseveral extensions are
necessary. lirigure 8a short piece of code and its corresponding data flow grapivesigin
this data flow graphs there are several subgraphs that appearthan once. A frequent code
fragment can be extracted to a new procedure. If the repeaidel fragments are substituted
with a call to the new procedure, the overall code size shrink

[dr r3, [r1]!
sub r2, r2, r3

add r4, r2, #4 > > ——
ldr r3, [ri]! @ Extension

sub r2, r2, r3 e O>—— 8 D
ldr r3, [r1]!

add ra Ez,]#4 e > T T & o e 5o
Figure 8: basic block of assembler code Figure 9. Just one embedding for the fragment

(left) and the corresponding data flow graph A — B exists, but two for the extended fragment
(right). A—B—C.

To implement mining on directed graphs, we have (among dtiirgs) extended gSpan’s
canonical form with an additional flag. Also MoFa can easiyduapted for directed graphs.
MoFa must only distinguish between incoming and outgoingesdand an additional pruning
rule can be added (all incoming edges are always added kbffest outgoing edge).

Most importantly, mining for procedural abstraction neaddifferent way to determine the
frequency. For mining molecules, the number of graphs arieag appears in is important. In
contrast, for mining data flow graphs, the number of occuesrof the fragments in all graphs is
relevant. Thus the frequency computation has to be chamged’graph-based” to "embedding-
based”. However, this has a severe implication on frequéasgd pruning: Because of sym-
metries the frequency does not decrease monotonically amg and thus cannot be used for

9/12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining @

pruning the search tree, segure Q Fortunately, if the counting of occurrences is restridted
the maximal set ohon-overlapping embeddings, the frequency again falls monotonically and
pruning is possible. As a nice side effect, this restrici®also useful for code abstraction, be-
cause overlapping embeddings cannot be outlined togetlygrag. However, determining this
maximum set is another NP-complete problem that makes mewen more expensive. It es-
sentially requires to compute the maximum independentfsat nodes in a so-called collision
graph in which the embeddings of a subgraph form the nodesntwles are connected if the
two embeddings overlap.

6 Current and future work

In [MWFPO0§ we presented parallel versions of gSpan and MoFa on a higbrpgnce shared-
memory multiprocessor system. Because such SMP systemaitg@xpensive and do not scale
well, we are implementing a version of ParMol that runs inwstdr using the JavaPartya\
framework. The additional communication required becafgbe distributed memory should
be amortized by the benefit of unsynchronized memory acsesse

We generalize and extract structural similarities betwiberfour different algorithms to derive
a form of parallelization that works for all of them. The geadamining pattern is as follows:
During initialization the required primary steps like thengration of initial search lattice nodes
or relabeling/compressions of the database can be dorenwaiitds the traversing loop considers
the unextended fragments according to the traversal sequemd checks them for relevance
(frequency, canonical, size, etc.). If the current fragteas to be extended, one of different
child generation algorithms can be inserted (maximum souaaze, rightmost path extension,
Gaston’s path/tree/cycle generation, or others). Afted&ahe analyzed fragment can be stored
if necessary and all the children found have to be traver$adally, additional filters can be
selected to reduce the set of found fragments. E.g. the tieduo the closed subset of found
fragments can also be done at the end so that each algoritheasdy (but not necessary very
efficiently) support this feature.

From this pattern the granularity of the parallelizatiooliwious: each processing unit (cluster
computer or shared memory processor) performs the checlenébthe extension of one frag-
ment. By extending the children afterwards by the same oradimgr idle unit a dynamic and
efficient parallelization can be reachéd\[V/FP0g.

Additionally, this generalization enables a flexible esien and adaption of the algorithms
to different applications. Special actions can easily wuihed into or in-between each step,
so a full control over each step is possible. Different paais be attached or detached as it is
required for the algorithms. Currently the gSpan algoritduma its extensions are transformed
to this unified pattern; the other algorithms will follow. ©w0f the most important extensions
to MoFa, the use of canonical codéxof09 to remove the need for testing each new candidate
against all other found frequent fragments, has yet to egrated into ParMol. Specialized
algorithms for mining trees or directed acyclic graphs,ammected or unlabeled graphs will
also be made available.

Proc. GraBaTs 2006 10/12

@ ECEASST

7 Conclusions

The ParMol package consists of open source implementasidiesir popular frequent subgraph
miners. A 2D visualizer for molecules is integrated in thafiework and can be attached directly
to the miners. To speed up the search on huge databaselpeeadions of two miners are
available. Their scalability is discussed in another pd&iV/FP0].

In addition to the re-implementations of the algorithms wespnted several extensions of
MoFa and gSpan not only to speed up the search but also to rhake dpplicable to non-
molecule applications. We also sketched our current warkdims at unifying the graph miner
even more.

Bibliography

[BBO2] C. Borgelt, M. R. Berthold. Mining Molecular Fragmisn Finding Relevant Sub-
structures of Molecules. IRroc. IEEE Int’| Conf. on Data Mining. Pp. 51-58.
Maebashi City, Japan, Nov. 2002.

[BMB04] C. Borgelt, T. Meinl, M. R. Berthold. Advanced Prung Strategies to Speed Up
Mining Closed Molecular Fragments. Rroc. of the 2004 |EEE Conf. on Systems,
Man and Cybernetics, SMC 2004. Pp. 4565 — 4570. Den Haag, The Netherlands,
Oct. 2004.

[Bor05] C. Borgelt. On Canonical Forms for Frequent Grapilty. In3rd Int’| Workshop
on Mining Graphs, Trees, and Sequences. Pp. 1-12. Porto, Portugal, Oct. 2005.

[Che] ChemWindow 6.0. http://www.bio-rad.com/.

[DWF*07] A. Dreweke, M. Wrlein, I. Fischer, D. Schell, T. Meinl, NPhilippsen. Graph-
Based Procedural Abstraction. In Society (eBrpc. of the 2007 CGO. Pp. 259—
270. IEEE Computer Society, Los Alamitos, CA, USA, 2007.

[FGRO4] P. C. Fricker, M. Gastreich, M. Rarey. Automated Wireg of Structural Molec-
ular Formulas under Constraintiurnal of Chemical Information and Computer
Science 44:1065-1078, 2004.

[Hel99] H. E. Helson. Structure Diagram GeneratiBaviewsin Computational Chemistry,
pp. 313-398, 1999.

[HWPO3] J. Huan, W. Wang, J. Prins. Efficient Mining of Fregqu8ubgraphs in the Presence
of Isomorphism. IrProc. of the 3rd IEEE Int’| Conf. on Data Mining. Pp. 549-552.
Melbourne, FL, Nov. 2003.

[1S1] ISIS/Draw 2.5. http://www.mdli.com/products/fraawork/isis draw/index.jsp.
[Jav] JavaParty, a distributed companion to Java. httpwpd.uka.de/JavaParty/.
[JCh] JChemPaint, an interactive molecule editor. hjghi@mpaint.sourceforge.net/.

11/12 Volume 1 (2006)

The ParMol Package for Frequent Subgraph Mining @

[JMO] JMol, a molecule viewer in Java. http://jmol.souragfe.net/.

[MWFPQO6] T. Meinl, M. Wrlein, I. Fischer, M. Philippsen. Mimg Molecular Datasets on Sym-
metric Multiprocessor Systems. Rroc. of the 2006 |EEE Int’| Conf. on Systems,
Man and Cybernetics. Pp. 1269-1274. Taipei, Taiwan, 2006.

[NCI99] National Cancer Institute, DTP AIDS Antiviral Sae.
http://dtp.nci.nih.gov/docs/aids/aidiata.html, Mar. 1999.

[NKO4a] S. Nijssen, J. N. Kok. Frequent Graph Mining and itgphAcation to Molecular
Databases. IProc. of the 2004 IEEE Conf. on Systems, Man and Cybernetics,
SMC 2004. Pp. 4571 — 4577. Den Haag, The Netherlands, Oct. 2004.

[NKO4b] S. Nijssen, J. N. Kok. The Gaston Tool for Frequenb&aph Mining.Proc. Int’|
Workshop on Graph-Based Tools 127(1):77-87, 2004.

[NKO6] S. Nijssen, J. N. Kok. Frequent Subgraph Miners: RuatDon’t Say Everything.
In Gartner et al. (eds.Rroc. of the Int’| Workshop on Mining and Learning with
Graphs (MLG 2006). Pp. 173-180. Berlin, Germany, 2006.

[Urz05] O. Urzova. Zweidimensionale Visualisierung von Iekillgraphen in Java. Stu-
dienarbeit, Computer Science Department 2, University rtdrigen-Nuremberg,
Oct. 2005.

[WDM*T06] M. Worlein, A. Dreweke, T. Meinl, I. Fischer, M. Philpps. Edgar: the
Embedding-baseD GrAph MineR. In Gartner et al. (ed2:pc. of the Int’| Work-
shop on Mining and Learning with Graphs (MLG 2006). Pp. 221-228. Berlin, Ger-
many, 2006.

[WMFPO5] M. Worlein, T. Meinl, I. Fischer, M. Philippsen. guantitative comparison of the
subgraph miners MoFa, gSpan, FFSM, and Gastorkriowledge Discovery in
Database: PKDD 2005. Volume 3721, pp. 392—403. Springer, Berlin, 2005.

[YHO2] X. Yan, J. Han. gSpan: Graph—-Based SubstructureeaMining. InProc. IEEE
Int’l Conf. on Data Mining ICDM. Pp. 721-723. Maebashi City, Japan, Nov. 2002.

[YHO3] X. Yan, J. Han. CloseGraph: Mining Closed Frequena@r Patterns. liProc.
of the 9th ACM S GKDD Int’| Conf. on Knowledge Discovery and Data Mining.
Pp. 286—295. Washington, DC, Aug. 2003.

Proc. GraBaTs 2006 12/12

	Mining Molecular Databases
	Frequent Subgraph Mining
	Frequency Calculation
	Filtering Duplicates in the Search Lattice

	MoFa, gSpan, FFSM, and Gaston
	The ParMol Package
	Extensions to the Mining Algorithms
	Mining Closed Fragments
	Graph Mining for Procedural Abstraction

	Current and future work
	Conclusions

