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Abstract: Adhesive high-level replacement (HLR) systems have been recently
introduced as a new categorical framework for double pushout transformations. Al-
gebraic high-level nets combine algebraic specifications with Petri nets to allow the
modelling of data, data flow and data changes within the net.

In this paper, we show that algebraic high-level schemas andnets fit well into the
context of weak adhesive HLR categories. This allows us to apply the developed
theory also to algebraic high-level net transformations.
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1 Introduction

Adhesive high-level replacement (HLR) systems have been recently introduced as a new cate-
gorical framework for graph transformation in the double pushout approach [EHPP06, EEPT06].
They combine the well-known framework of HLR systems with the framework of adhesive cate-
gories introduced by Lack and Sobociński [LS05]. The main concept behind adhesive categories
are the so-called van Kampen squares, which ensure that pushouts along monomorphisms are
stable under pullbacks and, vice versa, that pullbacks are stable under combined pushouts and
pullbacks. In the case of adhesive HLR categories the class of all monomorphisms is replaced
by a subclassM of monomorphisms closed under composition and decomposition.

Algebraic high-level (AHL) nets combine algebraic specifications with Petri nets [PER95] to
allow the modelling of data, data flow and data changes withinthe net. In general, an AHL net
denotes a net based on a specificationSPin combination with anSP-algebraA, in contrast a net
without a specific algebra is called a schema.

While many types of graphs and graph-like structures are adhesive HLR categories, the cate-
gories of elementary nets, place/transition nets as well asAHL schemas with fixed specification
only satisfy a weaker version of adhesive HLR categories [EP06] called weak adhesive HLR
categories. The reason is that the categoryPTNetsof place/transition nets has general pullbacks,
but pullbacks in general cannot be constructed componentwise in Sets. However, pullbacks
along monomorphisms inPTNets can be constructed componentwise inSets. This is the key
idea to weaken the concept of adhesive HLR categories using weak VK squares. In this case,
van Kampen squares ensure the corresponding properties only under stricter requirements on the
morphisms. Nevertheless, the framework of weak adhesive HLR categories is still sufficient to
show under some additional assumptions (which are necessary also in the non-weak case) as
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main results the Local Church-Rosser Theorem, the Parallelism Theorem, the Concurrency The-
orem, the Embedding and Extension Theorem and the Local Confluence Theorem, also called
Critical Pair Lemma. Thus, underlying an adhesive HLR systems we consider either a weak or a
non-weak adhesive HLR category.

Since this concept of adhesive HLR systems includes all kinds of graphs mentioned above, and
also elementary nets, place/transition nets and AHL schemas with fixed specification, adhesive
HLR systems can be seen as a suitable unifying framework for graph and Petri net transforma-
tions.

The question arises, if and how different types of AHL schemas and nets, where we do not fix
the algebra or the specification, fit into the framework of adhesive HLR systems.

In case of AHL nets with fixed specificationSP, this category of AHL nets can be shown to be
a weak adhesive HLR category, if the underlying category of algebrasAlgs(SP), together with
a suitable morphism classM , is a weak adhesive HLR category. Generalized AHL schemas,
where the specification may change, can be shown to be a weak adhesive HLR category using
an isomorphic comma category construction. In case both specification and algebra may change,
the corresponding category of generalized AHL nets is a weakadhesive HLR category, if the
category of all algebras can be shown to be a weak adhesive HLRcategory. These three results
are the main new contributions of this paper.

This paper is organized as follows:
In Section 2, we introduce weak adhesive HLR categories and systems and review inSection 3,
that different kinds of Petri nets are weak adhesive HLR categories. InSection 4, AHL schemas
and nets are described and shown to be weak adhesive HLR categories. InSection 5, we present
generalized AHL schemas and nets and prove the properties ofa weak adhesive HLR category.
At last, inSection 6we give a conclusion and identify future work.

2 Review of Weak Adhesive HLR Categories and Systems

The intuitive idea of (weak) adhesive HLR categories are categories with suitable pushouts and
pullbacks which are compatible with each other. More precisely the definition is based on so-
called van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is stable under pullbacks,
and vice versa that pullbacks are stable under combined pushouts and pullbacks.

Definition 1 A pushout (1) is avan Kampen square, if for any commutative cube (2) with (1)
in the bottom and the back faces being pullbacks holds: the top face is a pushout if and only if
the front faces are pullbacks. A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n g

A B

C D

(1)

m

f

n

g

Since not even in the categorySetsof sets and functions each pushout is a van Kampen square,
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for (weak) adhesive HLR categories only those VK squares ofDefinition 1are considered where
m is a monomorphism.

The main difference between (weak) adhesive HLR categoriesas described in [EHPP06,
EEPT06] and adhesive categories introduced in [LS05] is that a distinguished classM of
monomorphisms is considered instead of all monomorphisms,so that only pushouts alongM -
morphisms have to be VK squares. In the weak case, only special cubes are considered for the
VK square property.

Definition 2 A categoryC with a morphism classM is a(weak) adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition (f : A→ B∈
M ,g : B→C∈M ⇒ g◦ f ∈M ) and decomposition (g◦ f ∈M ,g∈M ⇒ f ∈M ),

2. C has pushouts and pullbacks alongM -morphisms andM -morphisms are closed under
pushouts and pullbacks,

3. pushouts inC alongM -morphisms are (weak) VK squares.

For a weak VK square, the VK square property holds for all commutative cubes withm∈M
and (f ∈M or b,c,d ∈M ) (seeDefinition 1).

The categoriesSets of sets and functions,Graphs of graphs and graph morphisms and
GraphsTG of typed graphs and typed graph morphisms are adhesive HLR categories for the class
M of all monomorphisms. Moreover, an important example is thecategory(AGraphsATG ,M )
of typed attributed graphs with a type graphATG and the classM of all injective morphisms
with isomorphisms on the data part. The categoriesElemNetsof elementary nets andPTNetsof
place/transition nets with the classM of all corresponding monomorphisms fail to be adhesive
HLR categories, but they are weak adhesive HLR categories (seeSection 3).

Both adhesive and weak adhesive HLR categories are closed under product, slice, coslice,
functor and comma category constructions. That means we canconstruct new (weak) adhesive
HLR categories from given ones.

Theorem 1 If (C,M1) and (D,M2) are (weak) adhesive HLR categories, then the following
categories are also (weak) adhesive HLR categories:

1. the product category(C×D,M1×M2),

2. the slice category(C\X,M1∩C\X) and the coslice category(X\C,M1∩X\C) for any
object X inC,

3. for every categoryX the functor category([X,C],M1-functor transformations), where an
M1-functor transformation is a natural transformation t: F → G where all morphisms
tX : F(X)→G(X) are inM1,

4. the comma category(ComCat(F,G;I ),M ) with M = (M1×M2)∩MorComCat(F,G;I )

and functors F: C→ X, G : D→ X, where F preserves pushouts alongM1-morphisms
and G preserves pullbacks (alongM2-morphisms).
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Now we are able to generalize graph transformation systems,grammars and languages in the
sense of [Ehr79, EEPT06].

In general, an adhesive HLR system is based on productions, also called rules, that describe in
an abstract way how objects in this system can be transformed. An application of a production is
called a direct transformation and describes how an object is actually changed by the production.
A sequence of these applications yields a transformation.

Definition 3 Given a (weak) adhesive HLR category(C,M ), aproduction p= (L
l
← K

r
→ R)

(also called rule) consists of three objectsL, K andR called left hand side, gluing object and
right hand side respectively, and morphismsl : K→ L, r : K→ Rwith l , r ∈M .

Given a productionp = (L
l
← K

r
→ R) and an objectG with a morphismm : L→ G, called

match, adirect transformation G
p,m
=⇒H from G to an objectH is given by the following diagram,

where (1) and (2) are pushouts. A sequenceG0⇒ G1⇒ ...⇒ Gn of direct transformations is
called atransformationand is denoted asG0

∗
⇒Gn.

L K R

G D H

(1) (2)

l r

m k n

f g

An adhesive HLR system AHS= (C,M ,P) consists of a (weak) adhesive HLR category(C,M )
and a set of productionsP.

3 Petri Nets as Weak Adhesive HLR Categories

Petri net transformation systems have been first introducedin [EHKP91] for the case of low-level
nets and in [PER95] for high-level nets using the algebraic presentation of Petri nets as monoids
introduced in [MM90]. The main idea of Petri net transformation systems is to extend the well-
known theory of Petri nets based on the token game by general techniques which allow to change
also the structure of the nets. In [Pad96], a systematic study of Petri net transformation systems
has been presented in the categorical framework of abstractPetri nets, which can be instantiated
to different kinds of low-level and high-level Petri nets.

In this section we introduce our notion of elementary nets and place/transition nets and re-
capitulate that the respective categories(ElemNets,M ) and (PTNets,M ) are weak adhesive
HLR categories (see [EP06]). The corresponding instantiations of adhesive HLR systems lead
to different kinds of Petri net transformation systems.

Definition 4 An elementary netis given byN = (P,T, pre, post) with a setP of places,T of
transitions, and pre- and post-domain functionspre, post : T →P(P), whereP is the power
set functor.

An elementary net morphism f: N→N′ is given by f = ( fP : P→P′, fT : T→ T ′) compatible
with the pre- and post-domain functions, i.e.pre′ ◦ fT = P( fP)◦ pre andpost′ ◦ fT = P( fP)◦
post.

Elementary nets and elementary net morphisms form the category ElemNets.
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Corollary 1 The category(ElemNets,M ) is a weak adhesive HLR category, whereM is the
class of all injective morphisms.

Proof Idea. The category ElemNets is isomorphic to the comma category
ComCat(IDSets,P;I ), whereP : Sets→ Setsis the power set functor andI = {1,2}. Ac-
cording toTheorem 1.4it suffices to note that(Sets,M ) is a weak adhesive HLR category and
thatP : Sets→ Setspreserves pullbacks along injective morphisms.

Note, that(ElemNets,M ) is not an adhesive HLR category as stated in [EEPT06], sinceP
only preserves pullbacks along injective morphisms, but not over general ones.

Definition 5 A place/transition net N= (P,T, pre, post) is given by a setP of places, a setT of
transitions, as well as pre- and post-domain functionspre, post : T → P⊕, whereP⊕ is the free
commutative monoid overP.

A place/transition net morphism f: N→N′ is given by f = ( fP : P→P′, fT : T→T ′) compat-
ible with the pre- and post-domain functions, i.e.pre′ ◦ fT = f⊕P ◦ preandpost′ ◦ fT = f⊕P ◦ post.

Place/transition nets and place/transition net morphismsform the categoryPTNets.

Corollary 2 The category(PTNets,M ) is a weak adhesive HLR category, ifM is the class of
all injective morphisms.

Proof Idea. The category PTNets is isomorphic to the comma category
ComCat(IDSets,�

⊕;I ) with I = {1,2}, where�
⊕ : Sets→ Sets is the free commutative

monoid functor. According toTheorem 1.4it suffices to note that(Sets,M ) is a weak adhesive
HLR category and that�⊕ : Sets→ Setspreserves pullbacks along injective morphisms.

The following example shows that(PTNets,M ) is not an adhesive HLR category. This is due
to the fact, that�⊕ : Sets→ Setsdoes not preserve general pullbacks. This would imply that
pullbacks inPTNetsare constructed componentwise for places and transitions.

Example1 In Figure 1, the square(1) with non-injective morphismsg1,g2, p1, p2 is a pullback
in the categoryPTNets, where the transition component is not a pullback inSets. In the cube,
the bottom face is a pushout inPTNetsalong an injective morphismm∈M , all front and back
faces are pullbacks, but the top face is no pushout. Hence, this cube violates the VK property.

4 AHL Schemas and Nets as Weak Adhesive HLR Categories

In this section, we combine algebraic specifications with Petri nets leading to AHL schemas and
nets (see [PER95]). Intuitively, an AHL net is a Petri net, where ordinary, uniform tokens are
replaced by data elements from the given algebra. Firing a transitiont means to remove some
data elements from the input places and add some data elements, computed by term evaluation, to
the output places oft. There could be also some firing conditions to restrict the firing behaviour
of a transition. In addition, a typing of the places restricts the data elements which could be put
on each place to that of a certain type.
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t0

t ′0

1,1′

1,2′

2,2′

2,1′

t1

1 2

t2

1′ 2′

t3

p
2

(1)

A B

C D

p1

p2

g2

g1

t0

t ′0

1,1′

1,2′

2,2′

2,1′

t1

1 2

t2

1′ 2′ t3

p
2

1,1′

1,2′

2,2′

2,1′
1 2

1′ 2′

1m

p1

p2

g2

g1

Figure 1: The pullback(1) in PTNetsand the cube violating the VK property

Definition 6 An AHL schemaover an algebraic specificationSP, whereSP= (SIG,E,X) has
additional variablesX andSIG= (S,OP), is given byAS= (P,T, pre, post,cond, type) with sets
P andT of places and transitions,pre, post: T→ (TSIG(X)⊗P)⊕ as pre- and post-domain func-
tions,cond: T →P f in(Eqns(SIG,X)) assigning to eacht ∈ T a finite setcond(t) of equations
over SIG andX, andtype: P→ S a type function. Note thatTSIG(X) is theSIG-term algebra
with variablesX and(TSIG(X)⊗P) = {(term, p) | term∈ TSIG(X)type(p), p∈ P}.

An AHL schema morphism f: AS→ AS′ is given by a pair of functionsf = ( fP : P→ P′, fT :
T→ T ′) which are compatible withpre, post, condandtypeas shown below.

P f in(Eqns(SIG,X))

T (TSIG(X)⊗P)⊕

T ′ (TSIG(X)⊗P′)⊕

P

P′

S

pre
post

pre′
post′

cond

cond′

fT (id⊗ fP)⊕
type

type′
fP== =

Given an algebraic specificationSP, AHL schemas overSPand AHL schema morphisms form
the categoryAHLSchemas(SP).

As shown in [EEPT06], AHL schemas over a fixed algebraic specificationSP are a weak
adhesive HLR category.

Corollary 3 The category(AHLSchemas(SP),M ) is a weak adhesive HLR category.M is
the class of all injective morphisms f , i.e. fP and fT are injective.

Proof Idea. SinceSPis fixed, the construction of pushouts and pullbacks inAHLSchemas(SP)
is essentially the same as inPTNets, which is already a weak adhesive HLR category. We can
apply the idea of comma categoriesComCat(F,G;I ), where in our case the source functor
of the operationspre, post,cond, type is always the identityIDSets, and the target functors are
(TSIG(X)⊗ )⊕ : Sets→ Setsand two constant functors. In fact,(TSIG(X)⊗ ) : Sets→ Sets, the
constant functors and�⊕ : Sets→ Setspreserve pullbacks along injective functions. Hence also
(TSIG(X)⊗ )⊕ : Sets→ Setspreserves pullbacks along injective functions.
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To represent the actual data space, we combine AHL schemas and algebras to AHL nets.

Definition 7 An AHL net AN= (S,A) is given by an AHL schemaS over SP and an
SP-algebraA.

An AHL net morphism f: AN→ AN′ is given by a pairf = ( fS : S→ S′, fA : A→ A′), where
fS is an AHL schema morphism andfA anSP-homomorphism.

Given an algebraic specificationSP, AHL nets overSPand AHL net morphisms form the
categoryAHLNets(SP).

Corollary 4 If (Algs(SP),M ) is a weak adhesive HLR category then the category
(AHLNets(SP),M ′) is a weak adhesive HLR category.M ′ is the class of all morphisms
f = ( fS, fA), where fS is injective and fA ∈M .

Proof Idea. The category AHLNets(SP) is isomorphic to the product category
AHLSchemas(SP) × Algs(SP). According to Theorem 1.1 this implies that
(AHLNets(SP),M ′) is a weak adhesive HLR category.

Up to now, it is not clear whether the categoryAlgs(SP) of algebras over an arbitrary spec-
ification SPwith the classM of injective morphisms is a weak adhesive HLR category. This
has been shown in [EEPT06] only for so-called graph structure algebras, where only unary op-
erations are allowed. For an arbitrary specification, we canuse the classM of isomorphisms to
obtain a weak adhesive HLR category.

5 Generalized AHL Schemas and Nets as Weak Adhesive HLR
Categories

We get a more powerful variant of AHL schemas, called generalized AHL schemas, if we do not
fix the specification. This is especially useful for net transformations, where we can define rules
based on a (small) specificationSP, which represents the necessary data, that can be applied to
nets over a (larger) specificationSP′.

In this section, we define generalized AHL schemas and nets, and show that they form weak
adhesive HLR categories under certain conditions on the data part.

Definition 8 A generalized AHL schema GS= (SP,AS) is given by an algebraic specification
SPand an AHL schemaASoverSP.

A generalized AHL schema morphism f: GS→GS′ is a tuple f = ( fSP : SP→ SP′, fP : P→
P′, fT : T→ T ′), wherefSP is a specification morphism andfP, fT are compatible withpre, post,
condandtype. f #

SP is the extension offSP to terms and equations.

P f in(Eqns(SIG,X))

P f in(Eqns(SIG′,X))

T (TSIG(X)⊗P)⊕

T ′ (TSIG′(X)⊗P′)⊕

P

P′

S

S′

P f in( f #
SP) fSP,S

pre
post

pre′
post′

cond

cond′

fT ( f #
SP⊗ fP)⊕

type

type′

fP== =

Generalized AHL schemas and generalized AHL schema morphisms form the category
AHLSchemas.
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To show that generalized AHL schemas form a weak adhesive HLRcategory, we need an
extension of comma categories, where we loosen the restrictions on the domain of the functors.

Definition 9 Given index setsI andJ , categoriesC j for j ∈J andX i for i ∈I , and for
eachi ∈ I two functorsFi : Cki → X i, Gi : C`i → X i with ki , `i ∈J , then thegeneral comma
category GComCat((C j) j∈J ,(Fi ,Gi)i∈I ;I ,J ) is defined by

• objects((A j ∈ C j) j∈J ,(opi)i∈I ), whereopi : Fi(Aki )→Gi(A`i ) is a morphism inX i,

• morphismsh : ((A j),(opi))→ ((A′j),(op′i)) as tuplesh = ((h j : A j → A′j) j∈J ) such that
for all i ∈I op′i ◦Fi(hki ) = Gi(h`i )◦opi .

We can extend the result fromTheorem 1.4to general comma categories, such that the general
comma category is a weak adhesive HLR category under certainconditions.

Theorem 2 A general comma categoryGC = (GComCat((C j) j∈J ,(Fi ,Gi)i∈I ;I ,J ),M )
with M = (× j∈J M j)∩MorGC is a weak adhesive HLR category, if(C j ,M j) are weak adhe-
sive HLR categories for j∈J , and for all i∈ I Fi preserves pushouts alongMki -morphisms
and Gi preserves pullbacks alongM`i -morphisms.

Proof Idea. It is easy to show thatM is a class of monomorphisms closed under isomorphisms,
composition and decomposition since this holds for all componentsM j .

As in normal comma categories, pushouts alongM -morphisms are constructed component-
wise in the underlying categories. The pushout object is thecomponentwise pushout object,
where the operations are uniquely defined using the propertythat Fi preserves pushouts along
Mki -morphisms.

Analogously, pullbacks alongM -morphisms are constructed componentwise, where the oper-
ations of the pullback object are uniquely defined using the property thatGi preserves pullbacks
alongM`i -morphisms.

The weak VK square property follows, since in a proper cube, all pushouts and pullbacks
can be decomposed leading to proper cubes in the underlying categories, where the weak VK
property holds. The subsequent recomposition yields the weak VK property for the general
comma category.

Also the restriction of a weak adhesive HLR category to a fullsubcategory yields a weak
adhesive HLR category, if the pushouts and pullbacks overM -morphisms are preserved.

Corollary 5 Given a weak adhesive HLR category(C,M ), a full subcategory(C′,M ′) of C
with M ′ = M |C′ is a weak adhesive HLR category, ifC′ has pushouts and pullbacks along
M ′-morphisms which are preserved by the inclusion functor.

Proof Idea. By precondition, pushouts and pullbacks alongM ′-morphisms inC′ exist. Obvi-
ously,M ′ is a class of monomorphisms with the required properties. Since we only restrict the
objects and morphisms, the weak VK square property is inherited fromC.

With these results, we are now able to show that the category of generalized AHL schemas is
a weak adhesive HLR category.
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Theorem 3 The category(AHLSchemas,M ) is a weak adhesive HLR category.M is the
class of all morphisms f= ( fSP, fP, fT), where fSP is a strict injective specification morphism
and fP, fT are injective.

Proof. The categoryAHLSchemas is isomorphic to a suitable full subcategory of the general
comma categoryGC = GComCat(C1,C2,(Fi ,Gi)i∈I ;I ,J ) with

• I = {pre, post,cond, type}, J = {1,2},

• C1 = Specs×Sets, C2 = Sets, X i = Setsfor all i ∈I ,

• Fi : C2→ X i for i ∈ {pre, post,cond}, Ftype : C1→ Xtype, Gi : C1→ X i for all i ∈I ,

where the functors are defined by

• Fi = IdSets, Gi(SP,P) = (TSIG(X)×P)⊕, Gi( fSP, fP) = ( f #
SP× fP)⊕ for i ∈ {pre, post},

• Fcond = IdSets, Gcond(SP,P) = P f in(Eqns(SIG,X)), Gcond( fSP, fP) = P f in( f #
SP),

• Ftype(SP,P) = P, Ftype( fSP, fP) = fP, Gtype(SP,P) = S, Gtype( fSP, fP) = fSP,S.

Since(Specs,M1) with the classM1 of strict injective morphisms and(Sets,M2) with the
classM2 of injective morphisms are weak adhesive HLR categories,Theorem 1.1implies that
also(Specs×Sets,M1×M2) is a weak adhesive HLR category.

The functorsFi preserve pushouts alongMki -morphisms, which is obvious forFpre,Fpost,Fcond

and shown inCorollary 6for Ftype, and the functorsGi preserve pullbacks alongM`i -morphisms
as shown inCorollary 7, Corollary 8andCorollary 9, therefore we can applyTheorem 2such
thatGC is a weak adhesive HLR category.

Now we restrict the objects((SP,P),T, pre, post,cond, type) in GC to those, where
(1) pre(t), post(t) ∈ (TSIG(X)⊗P)⊕ for all t ∈ T.

The full subcategory induced by these objects is isomorphicto AHLSchemas. Since the condi-
tion (1) is preserved by pushout and pullback constructions inGC, it follows that for morphisms
f ,g∈ AHLSchemaswith the same (co)domain, the pushout (pullback) overf ,g in GC is also
the pushout (pullback) inAHLSchemas. With Corollary 5we conclude that(AHLSchemas,M )
is a weak adhesive HLR category.

Corollary 6 The functor H: Specs×Sets→ Sets: (SP,M) 7→ M,( fSP, fM) 7→ fM preserves
pushouts (alongM1×M2-morphisms).

Proof. In a product category, a square is a pushout if and only if the componentwise squares
are pushouts in the underlying categories. Thus, if(1) is a pushout inSpecs×Setsalso(2) is a
pushout inSets, which means thatH preserves pushouts.

(SP0,M0) (SP1,M1)

(SP2,M2) (SP3,M3)

(1)

( fSP, fM)

(gSP,gM) (g′SP,g
′
M)

( f ′SP, f
′
M)

M0 M1

M2 M3

(2)

fM

gM g′M

f ′M
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Corollary 7 The functor H: Specs×Sets→ Sets: (SP,M) 7→ S,( fSP, fM) 7→ fSP,S preserves
pullbacks (alongM1×M2-morphisms).

Proof. In a product category, a square is a pullback if and only if thecomponentwise squares
are pullbacks in the underlying categories. Thus, if(3) is a pullback inSpecs×Setsalso(4) is
a pullback inSpecs. In Specs, pullbacks are constructed componentwise on the signaturepart
(with some special treatment of the equations). Thus, also(5) is a pullback inSets, which means
thatH preserves pullbacks.

(SP0,M0) (SP1,M1)

(SP2,M2) (SP3,M3)

(3)

( fSP, fM)

(gSP,gM) (g′SP,g
′
M)

( f ′SP, f
′
M)

SP0 SP1

SP2 SP3

(4)

fSP

gSP g′SP

f ′SP

S0 S1

S2 S3

(5)

fSP,S

gSP,S g′SP,S

f ′SP,S

TSIG0(X0) TSIG1(X1)

TSIG2(X2) TSIG3(X3)

(6)

f #
SP

g#
SP g′#SP

f ′#SP

Corollary 8 The functor H: Specs×Sets→ Sets: (SP,M) 7→ (TSIG(X)×M)⊕,( fSP, fM) 7→
( f #

SP× fM)⊕ preserves pullbacks alongM1×M2-morphisms.

Proof. The product functor× preserves general pullbacks and, as shown in [EEPT06], the func-
tor �

⊕ preserves pullbacks along injective morphisms. Thus, it lasts to show thatT : Specs→
Sets: SP 7→ TSIG(X), where we forget the type information of the terms, preserves pullbacks.

In Specs, the pullback(4) is constructed componentwise on the sorts, operations and variables,
which means thatS0 = {(s1,s2) | g′SP,S(s1) = f ′SP,S(s2)}, OP0 = {(op1,op2) : (s1

1,s
1
2)...(s

n
1,s

n
2)→

(s1,s2) | g′SP,OP(op1 : s1
1...s

n
1→ s1) = f ′SP,OP(op2 : s1

2...s
n
2→ s2)} andX0 = {(x1,x2) | g′SP,X(x1) =

f ′SP,X(x2)}. Therefore, the terms inTSIG0(X0) are defined byTSIG0,s(X0) = X0,s∪ {(c1,c2) |
(c1,c2) :→ s∈OP0}∪{(op1,op2)(t1, .., tn) | (op1,op2) : s1...sn→ s∈OP0, ti ∈ TSIG0,si (X0)}.

We have to show thatTSIG0(X0) is isomorphic to the pullback objectP over f ′#SP and g′#SP
with P = {(t1, t2) | g′#SP(t1) = f ′#SP(t2)}. SinceP is a pullback, with f ′#SP◦ g#

SP = g′#SP◦ f #
SP

we get an induced morphismi : TSIG0(X0)→ P with i(t) = ( f #
SP(t),g

#
SP(t)), which means that

i is inductively defined byi(c1,c2) = (c1,c2) for constants,i(x1,x2) = (x1,x2) for variables and
i((op1,op2)(t1, ..., tn)) = (op1(i(t1)1, ..., i(tn)1),op2(i(t1)2, ..., i(tn)2)) for complex terms.

f ′SP,g
′
SP are specification morphisms andf ′#SP,g

′#
SP are inductively defined on terms. This

means, for a pair(t1, t2) ∈ P, the termst1 andt2 have to have the same structure. Definej : P→
TSIG0(X0) inductively by j(c1,c2) = (c1,c2) for constants,j(x1,x2) = (x1,x2) for variables and
j(op1(t1

1, ..., tn
1),op2(t1

2, ..., tn
2)) = (op1,op2)( j(t1

1 , t1
2), ..., j(tn

1 , tn
2)) for complex terms.

By induction, it can be shown thati ◦ j = idP and j ◦ i = idTSIG0(X0). This means thati and j are
isomorphisms and(6) is a pullback inSets.

Corollary 9 The functor H: Specs×Sets→Sets: (SP,M) 7→P f in(Eqns(SIG,X)),( fSP, fM) 7→
P f in( f #

SP) preserves pullbacks alongM1×M2-morphisms.

Proof. In [EEPT06], it is shown thatP preserves pullbacks along injective morphisms. Analo-
gously, this can be shown forP f in, since if we start the construction for finite sets, this property
is preserved. Thus, it lasts to show thatEqnspreserves pullbacks, which can be proven similar
to the proof for sets of terms inCorollary 8above.
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x

l(x)⊕r(x)

xx

x

l(x)⊕r(x)

think:phil

eat:phil

table: f orkput take

sorts: phil, f ork
opns: p1, ..., pn :→ phil

f1, ..., fn :→ f ork
l , r : phil→ f ork

eqns: l(pi) = fi ∀i = 1, ...,n
r(pi) = fi+1 ∀i = 1, ...,n−1
r(pn) = f1

Figure 2: The AHL net forn dining philosophers

As previously, we combine generalized AHL schemas and algebras to generalized AHL nets.

Definition 10 A generalized AHL net GN= (GS,A) is given by a generalized AHL schema
GN over the algebraic specificationSPand anSP-algebraA.

A generalized AHL net morphism f: GN→ GN′ is a tuple f = ( fGS : GS→ GS′, fA : A→
VfSP(A

′)), where fGS is a generalized AHL schema morphism andfA an algebra homomorphism.
VfSP : Algs(SP′)→ Algs(SP) is the forgetful functor induced byfSP.

Generalized AHL nets and generalized AHL net morphisms formthe categoryAHLNets.

Corollary 10 If the category(Algs,M1) of all algebras and generalized homomorphisms is a
weak adhesive HLR category, then also the category(AHLNets,M ) is a weak adhesive HLR
category.M is the class of all injective AHL net morphisms f with fA ∈M1.

Proof Idea. The category AHLNets is isomorphic to the full subcategory
(AHLSchemas×Algs)|Ob′ , whereOb′ = {((SP,P,T, pre, post,cond, type),A) | A∈ Algs(SP)}.
In this subcategory, the pushout and pullback objects overM -morphisms are the same as in
AHLSchemas×Algs. According toTheorem 1.1andCorollary 5this implies that(AHLNets,

M ) is a weak adhesive HLR category.

Up to now we do not know whether the category(Algs,M1) with the classM1 of injective
morphisms is a weak adhesive HLR category. But if we restrictM1 to isomorphisms,(Algs,M1)
is a weak adhesive HLR category andM1 is already a useful class for rules in net transformation
systems. In many cases, one does not want to change the specification and algebra within the rule
(whereM1-morphisms are necessary). But for the match, general morphisms are allowed, thus
we can apply such a rule to nets over different specificationsand with different algebras. Another
possibility is to restrict the algebra part to quotient termalgebras leading to the categoryAlgs|QTA

with objects(SP,TSP) and morphismsf = ( fSP, fT) : (SP,TSP)→ (SP′,TSP′) with fSP : SP→
SP′ and fT : TSP→ VfSP(TSP′) uniquely determined.Algs|QTA is isomorphic to the category of
specifications and thus, together with strict injective morphisms, a weak adhesive HLR category.

In the following, we present an example based on the well-known Dining Philosophers Prob-
lem (see [BEE01]), where the behaviour of the philosophers is modeled by a net, while the
philosophers themselves are modeled within the data structure.

Example2 For n philosophers, the AHL net with its specification is given inFigure 2. For the
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x xf av(x)

f av(x)x xthink:phil think:phil think:phil

read:phil

lib:book

get

returnsorts: phil sorts: phil sorts: phil,book
opns: f av:phil→book

L K R

l r

x

x

f av(x)f av(x)

x

x

x

l(x)⊕r(x)

xx

x

l(x)⊕r(x)

read:phil

lib:book

think:phil

eat:phil

table: f orkput take

return get
sorts: phil, f ork,book
opns: p1, ..., pn :→ phil

f1, ..., fn :→ f ork
l , r : phil→ f ork
f av : phil→ book

eqns: l(pi) = fi ∀i = 1, ...,n
r(pi) = fi+1 ∀i = 1, ...,n−1
r(pn) = f1

Figure 3: The production and the result of the direct transformation

data part, we use the quotient term algebra. Each philosopher pi has a left fork fi and a right
fork fi+1, exceptpn with the right fork f1, and needs these two forks to eat. In the AHL net, this
condition is assured by the pre- and post-domain functions.

In the top ofFigure 3an examplary production is shown, where we extend the possible behav-
iour of the philosophers. We introduce a library, where a philosopherpi may go to and get his
favourite bookf av(pi) to read. Due to our developed theory, this very simple rule can be applied
to all kinds of nets, independent from the number of philosophers. In the bottom, the application
of this rule to the AHL net inFigure 2is shown, where the library has been introduced. Note
that also the specification has changed, since the new sortbookand the operationf avhave been
added. Now a thinking philosophers may go to the library by firing the new transitionget.

6 Conclusion and Future Work

In this paper we have shown that all kinds of algebraic high-level schemas and nets are weak
adhesive HLR categories. This means, that we can apply the theory for graph transformations
developed in [EEPT06] also to different kinds of net transformations based on AHLschemas
and nets.

At the moment, the available data structure underlying the AHL nets is restricted to a few,
but still interesting cases. More work is needed in the area of algebras, where the categories
Algs(SP) of algebras over a certain specificationSPandAlgs of generalized algebras and homo-
morphisms should be verified to be weak adhesive HLR categories, likely under some restrictions
on the specification orM -morphisms. The categoryAlgs is equivalent to a Grothendieck cat-
egory (see [TBG91]) indexed over the categorySpecs. Grothendieck categories have general
pushouts and pullbacks, if so have the underlying categories, but they have not been shown to be
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weak adhesive HLR categories. A step towards this has been made in [EOP06], where also some
restrictions to the morphism classM are discussed which could lead to a suitable weak adhesive
HLR category.
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