Electronic Communications of the EASST

Volume 2 (2006)

Proceedings of the
Workshop on Petri Nets and Graph Transformation
(PNGT 2006)

Algebraic High-Level Nets as
Weak Adhesive HLR Categories

Ulrike Prange

13 pages

Guest Editors: Paolo Baldan, Hartmut Ehrig, Julia Padberg, Grzegorz Rozenberg

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122




@ ECEASST

Algebraic High-Level Nets as
Weak Adhesive HLR Categories

Ulrike Prange

Department of Software Engineering and Theoretical Coerfbitience
Technical University of Berlin, Germany
uprange@cs.tu-berlin.de

Abstract:  Adhesive high-level replacement (HLR) systems have beeeantly
introduced as a new categorical framework for double pustiansformations. Al-
gebraic high-level nets combine algebraic specificatioitls Retri nets to allow the
modelling of data, data flow and data changes within the net.

In this paper, we show that algebraic high-level schemasnatsl fit well into the
context of weak adhesive HLR categories. This allows us filyaihe developed
theory also to algebraic high-level net transformations.
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1 Introduction

Adhesive high-level replacement (HLR) systems have beeentty introduced as a new cate-
gorical framework for graph transformation in the doublsipaut approactHHPP0O§ EEPTO04.
They combine the well-known framework of HLR systems with ttamework of adhesive cate-
gories introduced by Lack and SobocihgkED5. The main concept behind adhesive categories
are the so-called van Kampen squares, which ensure thabyiisshlong monomorphisms are
stable under pullbacks and, vice versa, that pullbackstaldesunder combined pushouts and
pullbacks. In the case of adhesive HLR categories the cliaaht monomorphisms is replaced
by a subclass# of monomorphisms closed under composition and decompnsiti

Algebraic high-level (AHL) nets combine algebraic speeifions with Petri netsHER9] to
allow the modelling of data, data flow and data changes withénnet. In general, an AHL net
denotes a net based on a specificaitin combination with arBP-algebraA, in contrast a net
without a specific algebra is called a schema.

While many types of graphs and graph-like structures aresidh HLR categories, the cate-
gories of elementary nets, place/transition nets as welllls schemas with fixed specification
only satisfy a weaker version of adhesive HLR categorig3(q called weak adhesive HLR
categories. The reason is that the cated®riNetsof place/transition nets has general pullbacks,
but pullbacks in general cannot be constructed componsatm Sets However, pullbacks
along monomorphisms iRTNets can be constructed componentwiseSets This is the key
idea to weaken the concept of adhesive HLR categories uséalk WK squares. In this case,
van Kampen squares ensure the corresponding propertiesmaér stricter requirements on the
morphisms. Nevertheless, the framework of weak adhesivi@ Elitegories is still sufficient to
show under some additional assumptions (which are negeatsr in the non-weak case) as
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Algebraic High-Level Nets as Weak Adhesive HLR Categories @

main results the Local Church-Rosser Theorem, the PasatidTheorem, the Concurrency The-
orem, the Embedding and Extension Theorem and the Local @t Theorem, also called
Critical Pair Lemma. Thus, underlying an adhesive HLR syst&e consider either a weak or a
non-weak adhesive HLR category.

Since this concept of adhesive HLR systems includes alkkifidraphs mentioned above, and
also elementary nets, place/transition nets and AHL schemith fixed specification, adhesive
HLR systems can be seen as a suitable unifying frameworkréphgand Petri net transforma-
tions.

The question arises, if and how different types of AHL schearad nets, where we do not fix
the algebra or the specification, fit into the framework ofesmie HLR systems.

In case of AHL nets with fixed specificati@®P, this category of AHL nets can be shown to be
a weak adhesive HLR category, if the underlying categorylgétarasAlgs(SP), together with
a suitable morphism clas#7, is a weak adhesive HLR category. Generalized AHL schemas,
where the specification may change, can be shown to be a waakiagl HLR category using
an isomorphic comma category construction. In case bottifsgaion and algebra may change,
the corresponding category of generalized AHL nets is a vestilesive HLR category, if the
category of all algebras can be shown to be a weak adhesiveddtdgory. These three results
are the main new contributions of this paper.

This paper is organized as follows:

In Section 2 we introduce weak adhesive HLR categories and systemseaigvin Section 3
that different kinds of Petri nets are weak adhesive HLRgmaies. InSection 4 AHL schemas
and nets are described and shown to be weak adhesive HLRdatednSection 5we present
generalized AHL schemas and nets and prove the properti@zsvebk adhesive HLR category.
At last, in Section 6we give a conclusion and identify future work.

2 Review of Weak Adhesive HLR Categories and Systems

The intuitive idea of (weak) adhesive HLR categories aregm@ies with suitable pushouts and
pullbacks which are compatible with each other. More pedgithe definition is based on so-
called van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout whidtable under pullbacks,
and vice versa that pullbacks are stable under combinedptshnd pullbacks.

Definition 1 A pushout (1) is avan Kampen squayef for any commutative cube (2) with (1)
in the bottom and the back faces being pullbacks holds: théatwe is a pushout if and only if

the front faces are pullbacks. /
p f//A \

A—m—=B c= nt
| | ‘\n/\ glg,/\B’
A S o U
A
C—n—=D C\‘/f d \m\é
n\é/g/

Since not even in the categdBetsof sets and functions each pushout is a van Kampen square,
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for (weak) adhesive HLR categories only those VK squard3edinition 1are considered where
mis a monomorphism.

The main difference between (weak) adhesive HLR categ@sedescribed inEHPPO6
EEPT0§ and adhesive categories introduced irt5Q5 is that a distinguished class” of
monomorphisms is considered instead of all monomorphism#hat only pushouts along/-
morphisms have to be VK squares. In the weak case, only $pedias are considered for the
VK square property.

Definition 2 A categoryC with a morphism class# is a(weak) adhesive HLR categofiy

1. ./ is a class of monomorphisms closed under isomorphisms, asitign (f : A— B €
M,Q:B—Ce . # = gofe.#)and decompositionge f € .#,9e # = | € .#),

2. C has pushouts and pullbacks alang-morphisms and#-morphisms are closed under
pushouts and pullbacks,

3. pushouts irC along.#-morphisms are (weak) VK squares.

For a weak VK square, the VK square property holds for all canative cubes withm € .#
and (f € # orb,c,d € .#) (seeDefinition 1).

The categoriesSets of sets and functionsGraphs of graphs and graph morphisms and
Graphstg of typed graphs and typed graph morphisms are adhesive HieBarées for the class
. of all monomorphisms. Moreover, an important example iscttegory(AGraphsarg ,-#)
of typed attributed graphs with a type grapi G and the class# of all injective morphisms
with isomorphisms on the data part. The categdeiesnNetsof elementary nets arfTNetsof
place/transition nets with the clasg’ of all corresponding monomorphisms fail to be adhesive
HLR categories, but they are weak adhesive HLR categorgsS@ction J.

Both adhesive and weak adhesive HLR categories are clos#sl pnoduct, slice, coslice,
functor and comma category constructions. That means weamsstruct new (weak) adhesive
HLR categories from given ones.

Theorem 1 If (C,.#1) and (D,.#>) are (weak) adhesive HLR categories, then the following
categories are also (weak) adhesive HLR categories:

1. the product categoryC x D, .#1 x .#5),

2. the slice categoryC\X,.#1 N C\X) and the coslice categoryX\C,.#1 N X\C) for any
object X inC,

3. for every categorX the functor category[X, C],.#:-functor transformationg where an
1 -functor transformation is a natural transformatiornt £ — G where all morphisms
tx : F(X) — G(X) are in ./,

4. the comma categorfComCatF,G; . ),.#) with .4 = (/1 % AM2) "MOIcomeatr,G,.#)
and functors F: C — X, G: D — X, where F preserves pushouts alon;-morphisms
and G preserves pullbacks (along>-morphisms).
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Now we are able to generalize graph transformation systgrasymars and languages in the
sense of [Ehr79 EEPTO0§.

In general, an adhesive HLR system is based on productitsascalled rules, that describe in
an abstract way how objects in this system can be transforAedpplication of a production is
called a direct transformation and describes how an olgeattually changed by the production.
A sequence of these applications yields a transformation.

Definition 3 Given a (weak) adhesive HLR categd@,.# ), aproduction p= (L LR R)
(also called rule) consists of three objettsK andR called left hand side, gluing object and
right hand side respectively, and morphism& — L, r : K — Rwith|,r € .Z.

Given a productiorp = (L LR R) and an object with a morphismm: L — G, called
match, adirect transformation G== H from G to an objecH is given by the following diagram,
where (1) and (2) are pushouts. A seque@ge= G; = ... = G, of direct transformations is
called atransformationand is denoted &Gy = Gn,.

|‘_<—|7|‘( r—»l\?
m 1 2 n
i (1) ¢ (2) ;

G=—f—D—9—=H

An adhesive HLR system AHS(C,.#, P) consists of a (weak) adhesive HLR categ@ty.# )
and a set of productior2.

3 Petri Nets as Weak Adhesive HLR Categories

Petri net transformation systems have been first introduceHKP91] for the case of low-level
nets and in[PER93 for high-level nets using the algebraic presentation dfilets as monoids
introduced in MM90]. The main idea of Petri net transformation systems is terekthe well-
known theory of Petri nets based on the token game by gemetatiues which allow to change
also the structure of the nets. IR4d9§, a systematic study of Petri net transformation systems
has been presented in the categorical framework of abfledtnets, which can be instantiated
to different kinds of low-level and high-level Petri nets.

In this section we introduce our notion of elementary nets place/transition nets and re-
capitulate that the respective categorigdemNets.#) and (PTNets.#) are weak adhesive
HLR categories (seeE[P0q). The corresponding instantiations of adhesive HLR systéead
to different kinds of Petri net transformation systems.

Definition 4 An elementary neis given byN = (P, T, pre, post) with a setP of places,T of
transitions, and pre- and post-domain functigme, post: T — 2?(P), where % is the power
set functor.

An elementary net morphism: N — N’ is given byf = (fp : P— P/, f : T — T’) compatible
with the pre- and post-domain functions, i€ o ft = #(fp) o preandpost o fr = Z(fp)o
post

Elementary nets and elementary net morphisms form the agtédemNets
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Corollary 1 The categoryElemNets.#) is a weak adhesive HLR category, whe# is the
class of all injective morphisms.

Proof Idea. The category ElemNets is isomorphic to the comma category
ComCatIDsets ;.7 ), WhereZ : Sets— Setsis the power set functor and’ = {1,2}. Ac-
cording toTheorem 1.4t suffices to note thatSets.#) is a weak adhesive HLR category and
that &2 . Sets— Setspreserves pullbacks along injective morphisms. O

Note, that(ElemNets.#) is not an adhesive HLR category as stateddRIPTO§, since &
only preserves pullbacks along injective morphisms, btibmer general ones.

Definition 5 A place/transition net N= (P, T, pre, post) is given by a seP of places, a se€l of
transitions, as well as pre- and post-domain functipres post: T — P%, whereP? is the free
commutative monoid ove?.
A place/transition net morphism:N — N’ is given byf = (fp: P— P/, fr : T — T') compat-
ible with the pre- and post-domain functions, ipee o fr = f5' o preandpost o fr = 5 o post
Place/transition nets and place/transition net morphiemms the categoryPTNets

Corollary 2  The categoryPTNets,.#) is a weak adhesive HLR category,4f is the class of
all injective morphisms.

Proof Idea. The category PTNets is isomorphic to the comma category
ComCatlIDsgets [09; .#) with .# = {1,2}, where[J¥ : Sets— Setsis the free commutative
monoid functor. According t@heorem 1.4t suffices to note thatSets.# ) is a weak adhesive
HLR category and thdfl® : Sets— Setspreserves pullbacks along injective morphisms. [

The following example shows th&TNets .# ) is not an adhesive HLR category. This is due
to the fact, thaf1® : Sets— Setsdoes not preserve general pullbacks. This would imply that
pullbacks inPTNetsare constructed componentwise for places and transitions.

Examplel In Figure ] the squarél) with non-injective morphismgs, gz, p1, P2 is a pullback
in the categorPTNets where the transition component is not a pullbackéis In the cube,
the bottom face is a pushoutRTNets along an injective morphismm € .7, all front and back
faces are pullbacks, but the top face is no pushout. Henise;ube violates the VK property.

4 AHL Schemas and Nets as Weak Adhesive HLR Categories

In this section, we combine algebraic specifications wittniPets leading to AHL schemas and
nets (seePER9Y). Intuitively, an AHL net is a Petri net, where ordinary,ifomm tokens are
replaced by data elements from the given algebra. Firingrasiiont means to remove some
data elements from the input places and add some data eleroemputed by term evaluation, to
the output places df There could be also some firing conditions to restrict thedibehaviour

of a transition. In addition, a typing of the places restritte data elements which could be put
on each place to that of a certain type.
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Figure 1: The pullbackl) in PTNetsand the cube violating the VK property

Definition 6 An AHL schemaver an algebraic specificati@P, whereSP= (SIG,E, X) has
additional variableX andSIG= (S OP), is given byAS= (P, T, pre, post cond type) with sets
P andT of places and transitiongre, post: T — (Tsig(X) ® P)® as pre- and post-domain func-
tions,cond: T — Z4in(EqngSIG, X)) assigning to eache T a finite setcond(t) of equations
over SIGandX, andtype: P — Sa type function. Note thafsg(X) is the SIGterm algebra
with variablesX and(Tsig(X) @ P) = {(term p) | term€ Tsic(X)iypep); P € P}
An AHL schema morphism:fAS— AS is given by a pair of functiong = (fp: P — P, f1:
T — T’) which are compatible witlpre, post condandtypeas shown below.

pre —m S
oot J—pen (TSIG(X\) F) IT\type\~
Ztin(EANgSIG X)) = fr = (idefe)® o= S
T ond— o ' NG Y /typé
T/fposf+(TSIG(X)®P) =%

Given an algebraic specificatid®P, AHL schemas oveEPand AHL schema morphisms form
the categorAHLSchemagSP).

As shown in EEPTO0§, AHL schemas over a fixed algebraic specificatioR are a weak
adhesive HLR category.

Corollary 3 The categoryAHLSchemag SP),.#) is a weak adhesive HLR category? is
the class of all injective morphisms f, i.e. dnd f; are injective.

Proof Idea. SinceSPis fixed, the construction of pushouts and pullback8iLSchemagq SP)

is essentially the same asRTNets which is already a weak adhesive HLR category. We can
apply the idea of comma categori€®mCatF,G;.#), where in our case the source functor
of the operationgre, post cond typeis always the identityDsets and the target functors are
(Tsic(X) ® -)® : Sets— Setsand two constant functors. In fa¢fsig(X) ® -) : Sets— Sets the
constant functors anid® : Sets— Setspreserve pullbacks along injective functions. Hence also
(Tsic(X) ® -)¥ : Sets— Setspreserves pullbacks along injective functions. O
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To represent the actual data space, we combine AHL scherdadgebras to AHL nets.

Definition 7 An AHL net AN= (SA) is given by an AHL schem& over SP and an
SPRalgebraA.

An AHL net morphism f AN — AN’ is given by a pairf = (fs: S— S, fa: A— A'), where
fsis an AHL schema morphism arfd an SPhomomorphism.

Given an algebraic specificatiddP, AHL nets overSP and AHL net morphisms form the
categoryAHLNets(SP).

Corollary 4 If (Algs(SP),.#) is a weak adhesive HLR category then the category
(AHLNets(SP),.#") is a weak adhesive HLR category#' is the class of all morphisms
f = (fs, fa), where §is injective and £ € .7 .

Proof Idea. The category AHLNets(SP) is isomorphic to the product category
AHLSchemagqSP) x Algs(SP). According to Theorem 1.1 this implies that
(AHLNets(SP),.#") is a weak adhesive HLR category. O

Up to now, it is not clear whether the categakigs(SP) of algebras over an arbitrary spec-
ification SPwith the class# of injective morphisms is a weak adhesive HLR category. This
has been shown iIrEEPTO0§ only for so-called graph structure algebras, where onlgrurop-
erations are allowed. For an arbitrary specification, weussnthe class# of isomorphisms to
obtain a weak adhesive HLR category.

5 Generalized AHL Schemas and Nets as Weak Adhesive HLR
Categories

We get a more powerful variant of AHL schemas, called geim@lAHL schemas, if we do not
fix the specification. This is especially useful for net tfanwations, where we can define rules
based on a (small) specificati®@P, which represents the necessary data, that can be applied to
nets over a (larger) specificati@P.

In this section, we define generalized AHL schemas and netsslaow that they form weak
adhesive HLR categories under certain conditions on thee kat.

Definition 8 A generalized AHL schema GS(SRAS) is given by an algebraic specification
SPand an AHL schemaSover SP.

A generalized AHL schema morphism 8S— GS is a tuplef = (fsp: SP— SP, fp: P —
P, fr: T —T’), wherefspis a specification morphism arfd, fr are compatible wittpre, post
condandtype fis the extension ofspto terms and equations.

Zfin(EQNSIG X)) = cond— | ~ o (Tsig(X)®@P)® T—type»‘s
! \
v@fin(fép) = fr = (fép@fp)%P fp — fsps
y v — pre/ —» v v y
Z1in(EAngSIG, X)) =-cond =T’ 04T (Tsig(X) @ P)® P/ —1typé—>g

Generalized AHL schemas and generalized AHL schema manghi®orm the category
AHLSchemas
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To show that generalized AHL schemas form a weak adhesive EHtBgory, we need an
extension of comma categories, where we loosen the réstiscon the domain of the functors.

Definition 9  Given index sets? and ¢, categorieC; for j € ¢ andX; fori € .#, and for
eachi € . two functorsF : Cyx — Xj, Gj : C;, — X with k,/; € ¢, then thegeneral comma
category GComC&(Cj)jc ~,(Fi,Gi)ics; 7, 7 ) is defined by

e objects((Aj € Cj)jc s, (0p)icr), Whereop : F(Aq) — Gi(A) is a morphism irX;,

o morphismsh: ((Aj),(op)) — ((Aj), (of)) as tuplesh = ((h; : Aj — Aj)jc_~) such that
foralli € .# o oF(hy) = Gi(hy)cop. ‘

We can extend the result froffheorem 1.40 general comma categories, such that the general
comma category is a weak adhesive HLR category under cexaititions.

Theorem 2 A general comma categoi@C = (GComCat(Cj)jc s, (F,Gi)icsr; 7, 7 ), #)
with .# = (xje y .#})NMorgc is a weak adhesive HLR category(@;,.#]) are weak adhe-
sive HLR categories for ¢ ¢, and for all i€ .# F preserves pushouts along),-morphisms
and G preserves pullbacks along/;,-morphisms.

Proof Idea. It is easy to show that7 is a class of monomorphisms closed under isomorphisms,
composition and decomposition since this holds for all congmts. 7.

As in normal comma categories, pushouts alo#gmorphisms are constructed component-
wise in the underlying categories. The pushout object isctiraponentwise pushout object,
where the operations are uniquely defined using the propleaty preserves pushouts along
A.-morphisms.

Analogously, pullbacks along7-morphisms are constructed componentwise, where the oper-
ations of the pullback object are uniquely defined using tioperty thatG; preserves pullbacks
along.#;;-morphisms.

The weak VK square property follows, since in a proper cullepushouts and pullbacks
can be decomposed leading to proper cubes in the underlgitegyaries, where the weak VK
property holds. The subsequent recomposition yields thekwé& property for the general
comma category. O

Also the restriction of a weak adhesive HLR category to a sulbbcategory yields a weak
adhesive HLR category, if the pushouts and pullbacks o#emorphisms are preserved.

Corollary 5 Given a weak adhesive HLR categdfy,.# ), a full subcategory(C’,.#") of C
with .7’ = .#|c is a weak adhesive HLR category,df has pushouts and pullbacks along
#'-morphisms which are preserved by the inclusion functor.

Proof Idea. By precondition, pushouts and pullbacks aloa§-morphisms inC’ exist. Obvi-
ously,.#’ is a class of monomorphisms with the required propertiesceSive only restrict the
objects and morphisms, the weak VK square property is itdeefiomC. O

With these results, we are now able to show that the catedaygreeralized AHL schemas is
a weak adhesive HLR category.
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Theorem 3 The category(AHLSchemas.#) is a weak adhesive HLR category# is the
class of all morphisms £ (fsp, fp, fr), where &pis a strict injective specification morphism
and b, fr are injective.

Proof. The categoryAHLSchemasis isomorphic to a suitable full subcategory of the general
comma categorsC = GComCatCi,Co, (F,Gi)ic.s; &, ) With

e .7 = {pre postcondtype}, 7 ={1,2},

e C; = Specsx Sets C, = Sets X; = Setsfor all i € .7,

e F:Cy— Xforie {pre postcond}, Rype: C1 — Xiype, Gi : C1 — X foralli € .7,
where the functors are defined by

e F =ldsets Gi(SRP) = (Tsic(X) x P)?, Gi(fsp, fp) = (f&s x fp)® fori € {pre, post},

e Feond = ldsets Geond(SRP) = Z4in(EANESIG X)), Geond( fsp, fp) = Prin(fEp),

o Fype(SRP) =P, Rype( fsp, fp) = fp, Giype(SRP) = S, Giype( fsp, fr) = fsps.

Since (Specs.#1) with the class#; of strict injective morphisms an(Sets.#>) with the
class.#> of injective morphisms are weak adhesive HLR categoiiégorem 1.Jimplies that
also(Specsx Sets.#1 x .#>) is a weak adhesive HLR category.

The functords preserve pushouts along-morphisms, which is obvious f®yre, Fpost, Fcond
and shown irCorollary 6for Rype and the functorss; preserve pullbacks along;,-morphisms
as shown inCorollary 7, Corollary 8and Corollary 9 therefore we can applyheorem 2such
thatGC is a weak adhesive HLR category.

Now we restrict the object§ SRP), T, pre, post cond type) in GC to those, where

(1) pre(t), postt) € (Tsig(X)@P)® forallt € T.
The full subcategory induced by these objects is isomor@wHLSchemas Since the condi-
tion (1) is preserved by pushout and pullback constructiorG@ it follows that for morphisms
f,g € AHLSchemaswith the same (co)domain, the pushout (pullback) dgyin GC is also
the pushout (pullback) iIAHLSchemas With Corollary 5we conclude thafAHLSchemas .#)
is a weak adhesive HLR category. O

Corollary 6 The functor H: Specsx Sets— Sets: (SEM) — M, (fsp, fu) — fm preserves
pushouts (along#; x .#/>-morphisms).

Proof. In a product category, a square is a pushout if and only if trapgonentwise squares
are pushouts in the underlying categories. Thugl)ifis a pushout irBpecsx Setsalso(2) is a
pushout inSets which means thatl preserves pushouts.

(Sl%aMO) (fSPﬁfM)A(SH_,Ml) Mo—fM—>M1
\ \ \
(gsp,am) (1) (g5pTi) g‘M (2) dy
' v v v

(SB,Mp) —— (4pfl) —= (SB,M3)  Mp—f,—=M3

O
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Corollary 7 The functor H: Specsx Sets— Sets: (SRM) — S (fsp, fm) — fsps preserves
pullbacks (along#1 x .Z>-morphisms).

Proof. In a product category, a square is a pullback if and only ifdbmponentwise squares
are pullbacks in the underlying categories. Thug3Jfis a pullback inSpecsx Setsalso(4) is

a pullback inSpecs In Specs pullbacks are constructed componentwise on the signaante
(with some special treatment of the equations). Thus, @& a pullback inSets which means
thatH preserves pullbacks.

(SR, Mg) — (fsp.fu) = (SR, M3) S‘Ff)ffsp+s‘|:i S‘)—stS+S‘1 T3|GO(X0)—f§p>TS|Gl(X1)
| \ \ |
(gsng) (3) (9’SF;9’M) gsp (4) g’;p gSVES (5 ges i (6) gép

\J \j Y
(SB,M2) — (f&pfig) = (SB,M3) SB—fs—+=SB S— s> Tsig,(X2) — féem Tsig, (X3)
O

Corollary 8 The functor H: Specsx Sets— Sets: (SEM) — (Tsig(X) x M)® (fsp, fm) —
(f&-x fm)® preserves pullbacks along/; x .#>-morphisms.

Proof. The product functoi preserves general pullbacks and, as showiEHT0§, the func-
tor ® preserves pullbacks along injective morphisms. Thusstsléo show thal : Specs—
Sets: SP— Tgg(X), where we forget the type information of the terms, preseprélbacks.

In Specsthe pullback4) is constructed componentwise on the sorts, operationsaﬁi*abies
which means tha = {(s1,%) | Gsps(S1) = fops(S2)}, OR = {(0p1,0p2) : (s}, 5})...

(51,%2) | Gspop(OPL : SI.--S] = S1) = fdpop(OP2 5.8 — 5) } andXo = {(XLXZ) | gsp,x Xl)
féRx(xz)}. Therefore, the terms iffsig,(Xo) are defined byTsg,s(Xo) = XosU {(c1,C2) |
(€1,C2) :— s€ OR}U{(0p1,0m)(t1,..,tn) | (OP1,0P2) : S1...5v — S€ ORY, 1 € Tsigy 5 (X0) }-

We have to show thafs g, (Xo) is isomorphic to the pullback obje& over f'4, and g%
with P = {(t1,t2) | g%p(t1) = f’&(t2)}. SinceP is a pullback withf'4po gip = gipo f4;
we get an induced morphisin Tsg,(Xo) — P with i(t) t),g&p(t)), which means that
i is inductively defined by(cy,c;) = (¢, ¢2) for constants;(xl,XQ) (xl,xz) for variables and
i((op1,0m)(t1,...,tn)) = (Opr(i(ta)1, .-, 1 (th)1),0P2(i(t1)2, ...,1(tn)2)) for complex terms.

f&p, Osp are specification morphlsms arfd,, g%, are mductively defined on terms. This
means, for a paifty,ty) € P, the termd; andt, have to have the same structure. Definé® —
Tsig,(Xo) inductively by j(c1,C2) = (€1,C2) for constants,j(xg,X2) = (x1,X%2) for variables and
jlopu(tl,....th),0p(t3,...,t8)) = (opr,0p) (j(t1,13),..., j(t],tD)) for complex terms.

By induction, it can be shown that j = idp andjoi = idemU(xo)- This means thdtandj are
isomorphisms an¢6) is a pullback inSets O

Corollary 9  The functor H Specsx Sets— Sets: (SEM) — Z+in(EqQngSIG, X)), (fsp, fm) —
Pin(1Ep) preserves pullbacks along; x .#,-morphisms.

Proof. In [EEPTO4, it is shown that%? preserves pullbacks along injective morphisms. Analo-
gously, this can be shown faP;j,, since if we start the construction for finite sets, this ey
is preserved. Thus, it lasts to show tlEainspreserves pullbacks, which can be proven similar
to the proof for sets of terms iGorollary 8above. O
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think phil sorts: phil, fork
opns: Py, ..., Pn:— phil
t " nietork X f1,..., fn:— fork
pu take . ;
I(x)@r(x)»@—l(x)em I,r: phil — fork
> eqns. I(p)="f Vi=1,..,n

X eat phil X r(pi)=fiya Vi=1...n-1
0 At

Figure 2: The AHL net fon dining philosophers

As previously, we combine generalized AHL schemas and &geio generalized AHL nets.

Definition 10 A generalized AHL net GN- (GSA) is given by a generalized AHL schema
GN over the algebraic specificati@®Pand anSP-algebraA.

A generalized AHL net morphism: iGN — GN' is a tuplef = (fgs: GS— GS, fa: A —
Vio(A)), wherefgsis a generalized AHL schema morphism afadan algebra homomorphism.
Vi, : Algs(SP) — Algs(SP) is the forgetful functor induced bfsp.

Generalized AHL nets and generalized AHL net morphisms fibrencategoryAHLNets.

Corollary 10 If the category(Algs,.#1) of all algebras and generalized homomorphisms is a
weak adhesive HLR category, then also the categdifLNets,.#) is a weak adhesive HLR
category..Z is the class of all injective AHL net morphisms f wighef ..

Proof Idea. The category AHLNets is isomorphic to the full subcategory
(AHLSchemasx Algs)|op, whereOb' = {((SRP,T, pre, post cond type),A) | A € Algs(SP)}.
In this subcategory, the pushout and pullback objects o#emorphisms are the same as in
AHLSchemasx Algs. According toTheorem 1.JandCorollary 5this implies thaf AHLNets,
) is a weak adhesive HLR category. O

Up to now we do not know whether the categdAlgs,.#1) with the class#; of injective
morphisms is a weak adhesive HLR category. But if we restigtto isomorphisms(Algs, .#1)
is a weak adhesive HLR category amt, is already a useful class for rules in net transformation
systems. In many cases, one does not want to change thecgtéaifiand algebra within the rule
(where.#1-morphisms are necessary). But for the match, general rieonghare allowed, thus
we can apply such a rule to nets over different specificatobwith different algebras. Another
possibility is to restrict the algebra part to quotient tedgebras leading to the catega¥igs|ora
with objects(SRTsp) and morphismsf = (fsp, fr) : (SRTsp) — (SP,Tsp) with fsp: SP—
SP and fr : Tsp — Vi, (Tsp) uniquely determinedAlgs|qra is isomorphic to the category of
specifications and thus, together with strict injective piisms, a weak adhesive HLR category.

In the following, we present an example based on the wellwknDining Philosophers Prob-
lem (see BEEOI), where the behaviour of the philosophers is modeled bytawkile the
philosophers themselves are modeled within the data ateict

Example2 Forn philosophers, the AHL net with its specification is giverfigure 2 For the
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L K R
favx) x read phil
D — r— @llb book
think: phil think: phil th|nl<pr;\ —__fav(x)
sorts phil sorts phil sorts phil,book return
opns favphil—book
read: phil
return‘/X lib:book X get SOI’tS: phil, fOfk-, bOOk_
faWX)»C}faV(X)» opns:  py,..., Pn:— phil
X___ thinkphil f1,..., f,) :— fork
[,r: phil — fork
iy fav: phil — book
ablefor .
Put @ ggns: l(p)=fi Vi=1,..,n
I(x)r(x »@— ew .
~— r(pi)=fiy1 vi=1,..,n-1
€at phil r(pn) =f1

Figure 3: The production and the result of the direct tramsédion

data part, we use the quotient term algebra. Each philosqutteas a left forkf; and a right
fork fi,1, exceptp, with the right forkf1, and needs these two forks to eat. In the AHL net, this
condition is assured by the pre- and post-domain functions.

In the top ofFigure 3an examplary production is shown, where we extend the pedsihav-
iour of the philosophers. We introduce a library, where dgsioppherp; may go to and get his
favourite bookfav(p;) to read. Due to our developed theory, this very simple rutebeaapplied
to all kinds of nets, independent from the number of philéswp. In the bottom, the application
of this rule to the AHL net inFigure 2is shown, where the library has been introduced. Note
that also the specification has changed, since the news@okiand the operatiomav have been
added. Now a thinking philosophers may go to the library bydithe new transitioget

6 Conclusion and Future Work

In this paper we have shown that all kinds of algebraic hayell schemas and nets are weak
adhesive HLR categories. This means, that we can apply #dwtor graph transformations
developed in EEPTO0§ also to different kinds of net transformations based on Addhemas
and nets.

At the moment, the available data structure underlying thtAets is restricted to a few,
but still interesting cases. More work is needed in the afeglgebras, where the categories
Algs(SP) of algebras over a certain specificati®RandAlgs of generalized algebras and homo-
morphisms should be verified to be weak adhesive HLR categdikely under some restrictions
on the specification arZ-morphisms. The categowlgs is equivalent to a Grothendieck cat-
egory (see TBG91]) indexed over the categorgpecs Grothendieck categories have general
pushouts and pullbacks, if so have the underlying categjdvigt they have not been shown to be
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weak adhesive HLR categories. A step towards this has beda mg&OP0§, where also some
restrictions to the morphism clasg’ are discussed which could lead to a suitable weak adhesive
HLR category.
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