
Electronic Communications of the EASST
Volume 2 (2006)

Proceedings of the
Workshop on Petri Nets and Graph Transformation

(PNGT 2006)

Graph transformation systems, Petri nets and Semilinear Sets: Checking
for the Absence of Forbidden Paths in Graphs

Barbara König

11 pages

Guest Editors: Paolo Baldan, Hartmut Ehrig, Julia Padberg, Grzegorz Rozenberg
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Graph transformation systems, Petri nets and Semilinear Sets:
Checking for the Absence of Forbidden Paths in Graphs

Barbara König1

1 barbara koenig@uni-due.de, http://www.ti.inf.uni-due.de/people/koenig/
Abteilung für Informatik und Angewandte Kognitionswissenschaft

Universität Duisburg-Essen, Germany

Abstract: We introduce an analysis method that checks for the absence of (Euler)
paths or cycles in the set of graphs reachable from a start graph via graph transfor-
mation rules. This technique is based on the approximation of graph transformation
systems by Petri nets and on semilinear sets of markings. An important application
is deadlock analysis in distributed systems.

Keywords: graph transformation systems, Petri nets, static analysis, verification,
deadlock detection

1 Introduction.

Graph transformation systems [17] are a powerful specification formalism that can be used to
model systems with a dynamic evolution, such as mobile and distributed systems. Other typical
examples are evolving object graphs or the heap of a program with its pointer structures. The
power to model features such as infinite state spaces, dynamic creation and deletion of objects
and variable topologies leads to great challenges concerning analysis and verification techniques
for such systems.

In recent years there have been several approaches directed specifically at the verification of
graph transformation systems, for instance [15, 7, 19]. In this paper we continue to develop our
approach [2, 4], which over-approximates graph transformation systems by Petri nets and allows
to use existing techniques in order to analyze the resulting net.

An important issue in this technique is to translate properties of graphs and graph transfor-
mation systems into properties concerning Petri net markings and reachability of markings. We
have so far studied how to handle the following properties:

• Non-reachability of certain subgraphs: given a fixed graph G, show that no reachable
graph in the graph transformation system contains G as a subgraph. This can be done via
coverability checking on the net, by either using coverability graphs [14, 11] or techniques
for well-structured transition systems [9, 1, 10].

• First-order or second-order monadic logic on graphs [5]: given an over-approximating
Petri net, formulas on graphs can be encoded into propositional formulas on markings
using propositions of the form #s ≤ c (the number of tokens in place s is always smaller
than or equal to some constant c).

We have also studied how to interleave first-order quantification with temporal operators
and how to translate these formulas into a temporal logic on Petri nets [3].

1 / 11 Volume 2 (2006)

mailto:barbara_koenig@uni-due.de
http://www.ti.inf.uni-due.de/people/koenig/

Checking for the Absence of Forbidden Paths in Graphs

The aim of this paper is to use deeper results from Petri net theory than the ones employed so
far in order to check for the absence of Euler paths or cycles in graphs, i.e., paths which traverse
every edge of the graph exactly once. For this we need the notion of semilinear sets of markings
of Petri nets and techniques for (approximative) reachability checking [8] in this setting. An
important application is to verify the absence of deadlocks, which often manifest themselves
as cycles. Hence we will study an infinite-state version of the dining philosophers (which first
appeared in [2]) as a running example.

2 Graph Transformation Systems and Petri nets

In this section we describe the notions of graph transformation system (GTS) and Petri net. Here
we will use only directed graphs, but we also plan to generalize the methods presented here to
hypergraphs.

Definition 1 (graphs and graph morphisms) Let Λ be a set of labels. A graph G is a tuple
(VG,EG,sG, tG, lG), where VG is a set of nodes, EG is a set of edges, sG, tG : EG → VG are the
source and target functions and lG : EG→ Λ is the labeling function.

Let G1 and G2 be two graphs. A graph morphism (or simply morphism) ϕ : G1→G2 consists
of a pair of total functions ϕV : VG1→VG2 and ϕE : EG1→ EG2 such that for every e∈ EG1 it holds
that lG1(e) = lG2(ϕE(e)), ϕV (sG1(e)) = sG2(ϕE(e)) and ϕV (tG1(e)) = tG2(ϕE(e)). A morphism
is called edge-bijective (edge-injective) whenever it is bijective (injective) on edges. It is an
isomorphism whenever it is bijective on nodes and edges.

Graphs can be rewritten using rules of the following kind. Since there is a tradeoff between
the complexity of rules and the power of the verification technique, we choose a very simple rule
format.

Definition 2 (rewriting rules and steps) A rewriting rule r is a span of injective graph mor-
phisms L

ϕL← K
ϕR→ R where (i) EL 6= /0, (ii) K is discrete, (iii) ϕL is bijective on nodes, (iv) there

are no isolated nodes in L and each isolated node in R belongs to ϕR(VK).
A match of L in a graph G is given by an edge-injective graph morphism ψ : L→ G.
We say that a graph G can evolve to H (written: G⇒r H) if we can obtain H from G by

applying rule r to a match ψ as specified by the double-pushout approach to graph rewriting [6].

In the following we will assume that the morphisms ϕL,ϕR are inclusions and hence the union
L∪R of the left-hand and right-hand sides is well-defined. Alternatively L∪R can be obtained
as the pushout of ϕL and ϕR.

A graph transformation system (GTS) G = (R,G0) consists of a finite set of rewriting rules
R together with an initial graph G0.

Example 1 As a running example we will use an infinite-state dining philosophers system (see
Figure 1). In order to avoid deadlocks we mix left-handed and right-handed philosophers. There
is a left-handed philosopher which can be in states HL (hungry), WL (waiting for the second fork)
and EL (eating); similarly for the right-handed philosopher. The difference between the two is

Proc. PNGT 2006 2 / 11

ECEASST

1 2 3 1
2

3

1 2 3 1
2

3

1 2

1 2

1 2 3 1 3
2

3 1
2

3

1 2 1

1

2

2
(RepX)

(HungryX)

(EatR)

(WaitR)

(EatL)

(WaitL) WLF ⇒

WL EL⇒

F WR⇒

WR ⇒

F⇒ HX

F

ER

FEX X ∈ {L,R}

Rules:

X ∈ {L,R}EX FHX⇒EX

Start Graph:

F

HL HR

F
HL

F

HR

Figure 1: Dining philosophers system represented by a GTS.

that the left-handed philosopher first picks up the fork to his left (rule WaitL) and then the fork
to his right (rule EatL), whereas the the right-handed philosopher behaves in the opposite way
(rules WaitR, EatR). Finally, both forks can be returned and the philosopher becomes hungry
again (rule HungryX).

In order to obtain an infinite-state system we add a rule for replication which allows an eating
philosopher to reproduce and create another hungry philosopher and a fork (rule RepX), thus
increasing the number of philosophers at the table by one.

In order to approximate GTSs we will employ Petri nets, which, as multiset rewriting systems,
can be seen as a special case of graph rewriting. By approximating with Petri nets we will be able
to preserve nice properties of the GTS model, such as locality (state changes are only described
locally) and concurrency (no unnecessary interleaving of events) in the approximation.

Some basic notation concerning multisets (or markings) is needed in order to deal with Petri
nets. Given a set A we will denote by A⊕ the free commutative monoid over A, whose elements
will be called multisets over A. The monoid operation is denoted by ⊕ and for m ∈ A⊕, k ∈ N0
we write k ·m for m⊕·· ·⊕m (k times). A multiset m can also be written as

⊕
a∈A m(a) ·a.

Given a function f : A → B, by f⊕ : A⊕ → B⊕ we denote its extension to multisets, i.e.,
f⊕(m)(b) = ∑ f (a)=b m(a) for every b ∈ B.

Definition 3 (Petri net) Let ∆ be a finite set of labels. A ∆-labelled Petri net is a tuple N =
(S,T, •(),()•, p), where S is the set of places, T is a set of transitions, •(),()• : T → S⊕ assign to
each transition its pre-set and post-set and p : T → ∆ assigns a label to each transition. A marked
Petri net is a pair (N,mN), where N is a Petri net and mN ∈ S⊕ is the initial marking.

Given a set Θ ⊆ S of places we denote by •Θ the set of all transitions having a place of Θ in

3 / 11 Volume 2 (2006)

Checking for the Absence of Forbidden Paths in Graphs

their post-sets and by Θ• the set of all transitions having a place of Θ in their pre-sets.

3 Approximated Unfolding

In this section we will give a short overview over the approximated unfolding technique de-
scribed in [2]. First we define the notion of Petri graph which will be used to represent an
over-approximation of a given GTS. Note that the edges of the graph are at the same time the
places of the net and that the transitions are labelled with rules of the GTS.

Definition 4 (Petri graph) Let G = (R,G0) be a GTS. A Petri graph (over R) is a tuple
P = (G,N,µ), where G is a graph, N = (EG,TN , •(),()•, pN) is an R-labelled Petri net where the
places are the edges of G and µ associates to each transition t ∈ TN , with pN(t) = (L,R, id), a
graph morphism µ(t) : L∪R→ G such that •t = µ(t)⊕(EL) and t• = µ(t)⊕(ER).

A Petri graph for the GTS G is a pair (P, ι), where P = (G,N,µ) is a Petri graph over R
and ι : G0→ G is a graph morphism. A marking is reachable (coverable) in Petri graph if it is
reachable (coverable) in the underlying Petri net with the multiset ι⊕(EG0) as the initial marking.

We view Petri graphs as symbolic representations of transition systems with graphs as states.
Specifically each marking m ∈ E⊕G of a Petri graph (G,N,µ) can be seen as representation of a
graph, denoted by graph(m), according to the following definition: We take the marked subgraph
of G and duplicate (or multiply) each edge as indicated by the marking. (See also Example 3.)

More formally one can define graph(m) as the unique graph H, up to isomorphism, such
that H has no isolated nodes and there exists a morphism ψ : H → G, injective on nodes, with
ψ⊕(EH) = m.

In order to obtain a Petri graph approximating a GTS, we first need—as building blocks—Petri
graphs that describe the effect of a single rule.

Definition 5 (Petri graph for a rewriting rule) Let r = (L,R, id) be a rewriting rule. By P(t,r) =
(G,N,µ) we denote a Petri graph with G = L∪R and N is a net with places SN = EL∪ER and one
transition t such that pN(t) = r, •t = EL and t•= ER. Furthermore the morphism µ(t) : L∪R→G
is the identity.

Given a GTS G = (R,G0) one can construct an over-approximating Petri graph CG (also called
the covering of G), using the following algorithm. It starts with a Petri graph P0 that consists only
of the start graph and computes CG iteratively. It is based on an unfolding technique which is
combined with over-approximating folding steps which guarantee a finite approximation. Note
that the covering returned is the coarsest over-approximation and there are various ways to refine
it [4, 12].

Algorithm 1 (approximated unfolding) We set P0 = (G0,N0,µ), where N0 contains no transi-
tions, m0 = EG0 and let ι0 : G0 → G0 be the identity. As long as one of the following steps is
applicable, transform Pi into Pi+1 according to one of the possibilities given below (where folding
steps take precedence over unfolding steps).
Unfolding: Find a rule r = (L,R, id)∈R and a match ϕ : L→Gi such that ϕ⊕(EL) is coverable.

Proc. PNGT 2006 4 / 11

ECEASST

EL

F

ER

WR WL

HR

HL

(a) Petri graph

F

F

HR

HL

(b) Graph graph(mN) gener-
ated by the initial marking mN

Figure 2: Petri graph and generated graph for the dining philosophers example

Then choose a new transition t and extend Pi by attaching P(t,r), i.e., take the disjoint union of
both Petri graphs and factor through the equivalence ≡ generated by e≡ ϕ(e) for every e ∈ EL.

Folding: Find a rule r = (L,R, id) ∈R and two matches ϕ,ϕ ′ : L→ Gi such that ϕ⊕(EL) and
ϕ ′⊕(EL) are coverable in Ni and the second match is causally dependent on the transition unfold-
ing the first match. Then merge the two matches by setting ϕ(e) ≡ ϕ ′(e) for each e ∈ EL and
factoring through the resulting equivalence relation ≡.

If neither possibility applies the Petri graph Pi obtained in the last step is returned. The result
is denoted by CG . In [2] it has been shown that the algorithm always terminates with a result
unique up to isomorphism.

This approximated unfolding procedure has been implemented in the verification tool AU-
GUR1, together with support for counterexample-guided abstraction refinement [12].

Example 2 For our running example (dining philosophers), the algorithm above returns the
Petri graph depicted in Figure 2(a). While the graph component is drawn as before, the Petri net
transitions are depicted by small rectangular boxes with dashed lines connecting them to their
pre- and post-sets. Furthermore the initial marking, i.e., the multiset image of the start graph
under ι , is indicated.

The algorithm above can be shown to be correct in the following sense.

Proposition 1 (correctness of the approximated unfolding algorithm [5]) Let G = (R,G0) be
a GTS and let CG = ((G,N,µ), ι) be the covering obtained by Algorithm 1. Then for every graph
G that is reachable in G from G0, there exists a marking m, reachable from the initial marking
ι⊕(EG0) in the net N, such that there is an edge-bijective morphism G→ graph(m).

1 http://www.ti.inf.uni-due.de/research/augur 1/

5 / 11 Volume 2 (2006)

Checking for the Absence of Forbidden Paths in Graphs

Example 3 The initial marking mN of the Petri graph in Figure 2(a) generates the graph
graph(mN) depicted in Figure 2(b). Note that the two tokens in the edge (place) labelled F result
in two parallel F-edges. All edges that are unmarked by mN disappear in graph(mN). Also note
that there is an edge-bijective morphism from the start graph shown in Figure 1 to graph(mN).
This morphism merges the north-west and the south-east node as well as the north-east and the
south-west node of the initial graph.

We will in the following show how to use the information provided by the over-approximation
in order to verify that certain Euler paths or cycles do not appear in any reachable graph.

4 Euler Cycles and Semilinear Sets

Given a graph transformation system and a regular expression r, we now want to show that no
reachable graph admits a (Euler) path such that the sequence of labels on this path is described
by r. That is, the regular expression specifies a set of forbidden paths.

Definition 6 (Euler paths and cycles) Let G be a graph and r a regular expression over the al-
phabet Λ. Then we say that G contains a path corresponding to r if there is a sequence e1 . . .en of
edges such that tG(ei) = sG(ei+1) for i∈ {1, . . . ,n−1} and the word lG(e1) . . . lG(en) is contained
in the language of r. This path is called an Euler path if every edge of G occurs in the sequence
exactly once. The graph G contains an Euler cycle corresponding to r if it contains an Euler path
for which additionally tG(en) = sG(e1) is satisfied.

As a starting point for our method we assume that the given (hyper-)graph transformation
system G has already been approximated by a Petri graph P = (G,N,µ).

Now, given a regular expression r, the idea is to specify a set of markings S⊆ E⊕G of the Petri
graph P such that a marking m is contained in S if and only if graph(m) has an Euler path (resp.
cycle) corresponding to r. Since furthermore the property of having an Euler path is preserved by
edge-bijective graph morphisms, it is sufficient to check that no such marking of S is reachable
in the approximating net.

It will turn out that the set S is always semilinar [16], where semilinearity is defined as follows.

Definition 7 (semilinear sets) Let S ⊆ E⊕G be a set of markings. It is called semilinear if it is
the finite union of sets of the form {m0⊕ k1 ·m1⊕·· ·⊕ kn ·mn | ki ∈ N0}, where m0,m1, . . . ,mn

are markings.

Furthermore S can be computed via products of finite automata as shown in the following
proposition.

Proposition 2 (computing semilinear sets) Let G be a graph and let r be a regular expression.
Then there (constructively) exists a semilinear set Sp

G,r such that for every m ∈ E⊕G

m ∈ Sp
G,r ⇐⇒ graph(m) has an Euler path corresponding to r.

Similarly, such a set Sc
G,r can also be found for Euler cycles.

Proc. PNGT 2006 6 / 11

ECEASST

Proof. For Euler paths, first construct an automaton A = (QA ,Λ,δA ,Q0
A ,FA) accepting the

language of r, where QA is the set of states, Λ is the alphabet, δA : QA ×Λ→P(QA) is the
transition function and Q0

A ,FA ⊆ QA are the sets of initial respectively final states.
Now compute the cross product of G and A where the transitions of the resulting automaton

B are labelled with the edge names of G. In more detail:

QB = VG×QA

ΣB = EG

δB((v,q),e) = {(v′,q′) | sG(e) = v, tG(e) = v′,q′ ∈ δA (q, lG(e))}
Q0

B = VG×Q0
A

FB = VG×FA

The automaton B accepts the set of paths of G that correspond to r. We consider the monoid
morphism α : E∗G → E⊕G from the free monoid E∗G = Σ∗B to the free commutative monoid E⊕G
induced by e 7→ e. Since L(B) (the language generated by B) is a rational set of Σ∗B it holds that
its image Sp

G,r = α(L(B)) is a rational and hence semilinear set of E⊕G .
The easiest way to construct Sp

G,r is to transform B into a regular expression r′ and then to
inductively apply a function α ′ converting r′ to a semilinear set:

α
′(/0) = /0

α
′(ε) = {0} (where 0 is the empty multiset)

α
′(e) = 1 · e (if e ∈ EG)

α
′(r1r2) = {m1⊕m2 | m1 ∈ α

′(r1),m2 ∈ α
′(r2)}

α
′(r1 + r2) = α

′(r1)∪α
′(r2)

α
′(r∗) = {k1 ·m1⊕·· ·⊕ kn ·mn | m1, . . . ,mn ∈ α

′(r),k1, . . . ,kn ∈ N}

With some simplifications one then obtains a semilinear set as in Definition 7.
It remains to check that a marking m is contained in Sp

G,r if and only if the graph generated by
m allows an Euler path corresponding to r:

m ∈ Sp
G,r = α(L(B))

⇐⇒ ∃e1 . . .en ∈ L(B) s.t. m = α(e1 . . .en)
⇐⇒ e1 . . .en is a path in graph G which corresponds to r and each edge e ∈ EG is

visited m(e) times

⇐⇒ e1 . . .en is a Euler path of graph(m)

For Euler cycles take several automata, one for each node v ∈ VG. For each automaton let
{v}×Q0

A be the set of initial states and {v}×FA the set of final states. This ensures that the
accepted path starts and ends in the same node. Then take as Sc

G,r the union of all languages
generated by such automata.

What is basically done in the construction above is to characterize the set of paths in G that
correspond to r and then to enforce commutativity by forgetting about the ordering of edges on a
path. This tells us how many times each edge should be present in order to allow an Euler path.

7 / 11 Volume 2 (2006)

Checking for the Absence of Forbidden Paths in Graphs

Note that it is not particularly surprising that we obtain a semilinear set in this way. In a sense
this can be seen as a corollary of Parikh’s theorem [13] which states that the Parikh image of every
context-free language is semilinear. The Parikh image of a word language over the alphabet Σ

is a set of multisets over Σ, where the order of alphabet symbols is forgotten and only their
multiplicity is remembered. For instance, the Parikh image of the language {aabca,bbc, . . .} is
the set {3 ·a⊕1 ·b⊕1 · c,2 ·b⊕1 · c, . . .}.

The function α ′ used in the proof of Proposition 2 converting regular expressions into semi-
linear sets works similarly: For instance let r′ = ab(b + c)∗ab be a regular expression. Then
α ′(r′) = {(2 ·a⊕2 ·b)⊕ k1 ·b⊕ k2 · c | k1,k2 ∈ N}.

Example 4 We will now exemplify how semilinear sets can be used to verify the absence of
deadlocks in our running example: by inspection of the rules we can observe that all reachable
states are cycles and that furthermore the language of all cycles allowing a rule application is
described by the following regular expression rlhs:

Σ
∗ELΣ

∗+Σ
∗ERΣ

∗+Σ
∗FHLΣ

∗+HLΣ
∗F +Σ

∗HRFΣ
∗+

FΣ
∗HR +Σ

∗WLFΣ
∗+FΣ

∗WL +Σ
∗FWRΣ

∗+WRΣ
∗F.

This regular expression can be obtained by taking the labels of the left-hand sides in Figure 1,
ordering them as indicated by the edge directions and adding Σ∗ in order to indicate other, un-
specified, labels on the cycle.

Then the regular expression r describing forbidden deadlock states, allowing no rule applica-
tion, can be obtained as the complement of rlhs. (We do not give r explicitly, since it is fairly
complex.)

Using the technique explained above we obtain the following semilinear set S for the Petri
graph CG approximating the dining philosophers system (see Figure 2(a)):

S = {k · e(WL) | k ∈ N}∪{k · e(WR) | k ∈ N}

where e(WL) and e(WR) are the only edges in CG labelled WL and WR respectively. This means,
the only way to obtain an Euler cycle allowing no rule applications is to have a cycle consisting
exclusively of WL-edges or exclusively of WR-edges.

It now remains to show that no marking in the set S is reachable in the Petri graph.

5 Analysis of Graph Transformation Systems.

Now if we could show that in the Petri graph no marking contained in Sp
G,r (Sc

G,r) is reachable,
we would have successfully verified that no reachable graph G contains a Euler path (cycle)
corresponding to S. For if this were the case, there would be a reachable marking m and an
edge-bijective graph morphism G→ graph(m). Then, since edge-bijective morphisms preserve
Euler cycles, there would be such a cycle in graph(m), a contradiction to Proposition 2. This can
be summarized in the following theorem.

Proc. PNGT 2006 8 / 11

ECEASST

Theorem 1 Let G = (R,G0) be a GTS and let CG = ((G,N,µ), ι) be the covering obtained by
Algorithm 1. Furthermore let r be a regular expression and let Sp

G,r, Sc
G,r be the semilinear sets

of Proposition 2 (for paths respectively cycles).
If no marking of N, reachable from ι⊕(EG0), is contained in Sp

G,r, then no reachable graph of
G has a path corresponding to r. Furthermore, if no marking of N, reachable from ι⊕(EG0), is
contained in Sc

G,r, then no reachable graph of G has a cycle corresponding to r.

The problem of checking whether a marking of a semilinear set S is reachable in a net N is
decidable, since it is reducible to the reachability problem for Petri nets [16]. However, since
this problem is not known to be primitive recursive and all known algorithms are very complex,
it will usually be necessary to resort to approximative reachability methods based on the mark-
ing equation and traps [8, 18, 20]. In the following we will study how traps can be used for
approximative reachability checks.

Definition 8 (trap) Let N be a Petri net. A trap is a set Θ of places such that Θ• ⊆ •Θ, i.e.,
every transition that removes a token from a trap must also put a token into the trap.

For a trap Θ it always holds that once it is marked, it will always be marked. Hence, if Θ is
initially marked, then a marking m which does not have a token inside Θ can not be reachable.

Example 5 In the dining philosophers system the set Θ = {e(F),e(WL),e(EL)} is a trap. Hence
we can conclude that a marking consisting only of tokens in WR can not be reached. Symetrically
one can show that a marking consisting only of tokens in WL is not reachable. This concludes
the proof that no marking in the set S defined above is reachable, hence the absence of this form
of deadlocks is verified.

Instead of checking for the absence of paths or cycles where every edge is traversed exactly
once, it is often useful to be able to verify the absence of paths where very edge is traversed
at most once. The corresponding set S′ of markings can be easily obtained from S as follows:
replace every set of the form {m0⊕ k1 ·m1⊕·· ·⊕ kn ·mn | ki ∈ N0} by {m | m ≥ m0}, i.e., only
the minimal elements are kept. To check whether a marking of S′ is reachable is a simpler prob-
lem called the coverability problem for Petri nets and can be checked via so-called coverability
graphs, although for efficiency reasons it can also be useful to employ the approximative methods
described above.

6 Conclusion.

We have shown how to use the concept of semilinear sets to verify the absence of certain Euler
paths in all reachable graphs of a GTS. In the future we plan to generalize this technique by
using context-free grammars instead of regular expressions. This should also lead to a broader
applicability of the presented method. We believe that an important application area of this
technique is to check for the absence of deadlocks, which involves structural aspects as well as
quantitative aspects. The structural information can be obtained from the graph underlying the
Petri graph, whereas the quantitative information (i.e., counting the number of edges) can be

9 / 11 Volume 2 (2006)

Checking for the Absence of Forbidden Paths in Graphs

derived from the Petri net component.
On the practical side, checking whether a reachable marking is contained in a semilinear set

can be done by solving linear inequations over the natural numbers in order to find suitable traps.
Apart from traps other invariants (such as the marking equation) can be employed. For this task
efficient tools such as lp solve are available (see also [20] which describes an implementa-
tion).

Acknowledgements: I would like to thank Volker Diekert, Javier Esparza, Paolo Baldan and
Arwed von Merkatz for interesting discussions on the topics of this paper. Furthermore I would
like to thank Vitali Kozioura for developing and maintaining the AUGUR tool.

Bibliography

[1] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general approach
to partial order reductions in symbolic verification. In Proc. of CAV ’98, pages 379–390.
Springer, 1998. LNCS 1427.

[2] Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, pages 381–395. Springer-Verlag, 2001.
LNCS 2154.

[3] Paolo Baldan, Andrea Corradini, Barbara König, and Alberto Lluch Lafuente. A temporal
graph logic for verification of graph transformation systems. In Proc. of WADT ’06 (Work-
shop on Algebraic Development Techniques), pages 1–20. Springer, 2007. LNCS 4409.

[4] Paolo Baldan and Barbara König. Approximating the behaviour of graph transformation
systems. In Proc. of ICGT ’02 (International Conference on Graph Transformation), pages
14–29. Springer-Verlag, 2002. LNCS 2505.

[5] Paolo Baldan, Barbara König, and Bernhard König. A logic for analyzing abstractions of
graph transformation systems. In Proc. of SAS ’03 (International Static Analysis Sympo-
sium), pages 255–272. Springer-Verlag, 2003. LNCS 2694.

[6] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and
Michael Löwe. Algebraic approaches to graph transformation—part I: Basic concepts and
double pushout approach. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars
and Computing by Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific,
1997.

[7] Fernando Luı́s Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi Santos. Verification
of distributed object-based systems. In Proc. of FMOODS ’03, pages 261–275. Springer,
2003. LNCS 2884.

[8] Javier Esparza and Stephan Melzer. Verification of safety properties using integer pro-
gramming: Beyond the state equation. Formal Methods in System Design, 16:159–189,
2000.

Proc. PNGT 2006 10 / 11

ECEASST

[9] Alain Finkel and Phillipe Schnoebelen. Well structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

[10] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, enlarge, and
check - new algorithms for the coverability problem of WSTS. In Proc. of FSTTCS ’04,
pages 287–298. Springer, 2004. LNCS 3328.

[11] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969.

[12] Barbara König and Vitali Kozioura. Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In Proc. of TACAS ’06, pages 197–211. Springer,
2006. LNCS 3920.

[13] Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

[14] Wolfgang Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, Germany, 1985.

[15] Arend Rensink and Dino Distefano. Abstract graph transformation. In Proc. of SVV ’05
(3rd International Workshop on Software Verification and Validation), volume 157.1 of
ENTCS, pages 39–59, 2005.

[16] Christophe Reutenauer. Aspects mathématiques des réseaux de Pétri. Masson, 1989.

[17] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

[18] Claus Schröter. Halbordnungs- und Reduktionstechniken für die automatische Verifikation
von verteilten Systemen. PhD thesis, Universität Stuttgart, 2005.

[19] Dániel Varró. Towards symbolic analysis of visual modeling languages. In Workshop on
Graph Transformation and Visual Modeling Techniques ’02, volume 72 of ENTCS. Else-
vier, 2002.

[20] Arwed von Merkatz. Analyse von Graphtransformationssystemen mit Hilfe von Petrinetzen
und Logiken. Master’s thesis, Universität Stuttgart, July 2006. No. 2442.

11 / 11 Volume 2 (2006)

	Introduction.
	Graph Transformation Systems and Petri nets
	Approximated Unfolding
	Euler Cycles and Semilinear Sets
	Analysis of Graph Transformation Systems.
	Conclusion.

