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Petri Nets and Matrix Graph Grammars: Reachability.
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Universidad Aut́onoma de Madrid (Spain)

Abstract: This paper attempts to contribute in two directions. First, concepts and
results of our Matrix Graph Grammars approach [VL06b, VL06a] such as coher-
ence and minimal initial digraph are applied to Petri nets, especially to reachability
criteria and to the state equation. Second, the state equation and related Petri nets
techniques for reachability are generalized to cover a wider class of graph grammars.

Keywords: Graph Transformation, Petri Nets, Reachability, Boolean Matrix Alge-
bra.

1 Introduction

In this paper analysis techniques from Matrix Graph Grammars (MGGs) [VL06a, VL06b] are
applied to Petri nets [Mur89] and vice-versa. In MGGs, simple digraphs are represented using
a boolean matrix for edges and a boolean vector for nodes. Rules are also represented with
matrices and vectors, specifying the left hand side graph together with the elements that should
be added and removed. Therefore graph rewriting can be represented using boolean operations
only. We have developed some analysis techniques for MGGs, for example, to check whether
a sequence of productions is applicable a priory (assuming a certain identification of nodes and
edges between the rules), which we callcoherence; to find if a permutation of a coherent se-
quence remains coherent; to verify if two sequence permutations yield the same result; or to
calculate the minimal graph necessary in order to be able to apply a sequence (calledminimal
initial digraph).

The main motivation of this work is to take advantage of the similar basis of MGG and the
algebraic view of Petri nets. In the first part of the work, some of the MGG concepts we have
developed are applied to Petri nets. In particular it is possible to investigate for example which
is the minimum marking that enables the firing of a certain transition sequence, and express the
reachability problem in MGG terms (using coherence and the minimal initial digraph). On the
other hand, by using tensor algebra the state equation of Petri nets has been extended for graph
grammars (i.e. by replacing the incidence matrix by an incidence tensor). Both the cases of
DPO-like and SPO-like graph grammars have been considered.

The paper is organized as follows. Section2 gives a brief introduction to MGGs. Section3
introduces some algebraic analysis techniques for Petri nets, in particular the state equation.
In this section we discuss why the equation gives a necessary (but not sufficient) condition for
reachability. Section4 applies MGG techniques to the analysis of Petri nets. Section5 extends
the state equation for DPO-like graph grammars. Section6 deals with the case of SPO-like graph
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grammars. Section7 compares with related work, and finally section8 ends with the conclusions
and future work.

2 Matrix Graph Grammars

In this section we review the MGG concepts which are relevant to Petri nets reachability re-
sults. For an extensive presentation, the reader is referred to [VL06a, VL06b]. The proof of the
theorems can be found in [VL06b].

In our approach, we work with simple digraphs, which can be represented as a tuple(M,N)
with M a boolean matrix for edges andN a boolean vector for nodes. The latter is necessary
as in the rewriting nodes can be added and deleted. Figure1(a) shows an example of a graph
representing a network of three clients and a server, where messages are depicted as self-loops.
Note how we can check for well-formedness of graphs (i.e. no dangling edges) by verifying that∥∥(M∨Mt)¯N

∥∥
1 = 0, where¯ is the boolean matrix product (like the regular matrix product,

but with and andor instead of mutiplication and addition), and‖ · ‖1 being an operation that
results in theor of all the components of the vector. We call this propertycompatibility.

(a) (b)

Figure 1: (a) Simple Digraph Example. (b) “Localsend” Rule.

In our framework we can assign a type to each node by a function from the set of nodesV to
a set of typesT, type: V → T. In Figure1(a), types are represented as an additional column in
the matrices. For edges we use the types of their source and target nodes.

A production, or grammar rule,p : L→ R is a partial injective morphism of simple digraphs.
Using astatic formulation, we can represent a rule by two boolean matrices and two vectors
p =

(
LE,RE;LN,RN

)
, (whereE stands for edges andN for nodes) to characterize the left and

right hand side simple digraphs (LHS and RHS). Productionp is the morphism which identifies
nodes (resp., edges) on the LHS with nodes (resp., edges) on the RHS. The main actions that
can be performed by a rule are deletion and addition of elements. Therefore using adynamic
formulationa rule can be represented byp =

(
(LE,LN);eE, rE;eN, rN

)
, whereeE andeN are the

deletion boolean matrix and vector, whilerE andrN are the addition boolean matrix and vector.
The output of rulep can be calculated byR= r ∨eL, where the formula applies both to nodes
and edges. SuperindicesE andN shall be omitted if the formula applies to both cases. Moreover,
we usually omit the∧ (and) symbol. Figure1(b) shows a rule and its associated matrices.

In order to operate graphs of different sizes, an operation calledcompletion adds extra rows
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and columns with zero elements and rearranges rows and columns so that the identified edges
and nodes of the two graphs match.

Given a collection of productions{p1, . . . , pn}, the notationsn = pn; pn−1; . . . ; p1 defines a
sequence of productions establishing an order in their application, starting withp1 and ending
with pn. Note that we may have the same production in different places of the sequence. A
concatenation is said to becoherent if actions carried out by one production do not prevent the
application of those coming afterwards. Note that we assume a certain identification of nodes and
edges between productions (i.e., the matrices have been completed in some way, which assumes
an overlapping of the rules in the matching in the host graph). Therefore, coherence is calculated
with respect to the given identification.

Theorem 1(Sequence Coherence)The sequencesn = pn; . . . ; p1 is coherent if

n∨

i=1

(
Ri5n

i+1 (ex ry)∨Li4i−1
1 (ey rx)

)
= 0 (1)

where

4t1
t0 (F(x,y)) =

t1∨

y=t0

(
t1∧

x=y

(F(x,y))

)
;5t1

t0 (G(x,y)) =
t1∨

y=t0

(
y∧

x=t0

(G(x,y))

)

Coherence allows the grammar designer to check dependencies between rules, and to realize
possible conflicts, some of which can be solved if the initial host graph provides enough edges
and nodes. This is related to the notion ofminimal initial digraph , which is a graph containing
the necessary nodes and edges for a sequence to be applicable.

Theorem 2(Minimal Initial Digraph) For a coherent concatenation of productionssn = pn; . . . ; p1,
its minimal initial digraph is given by the equation

Mn =5n
1(rxLy) (2)

As in previous theorem, assume we have the coherent concatenationsn with minimal initial
digraphMn, then its image is given by:

sn(Mn) =
n∧

i=1

(eiMn)∨4n
1(ex ry) (3)

see [VL06b] for a proof. To continue our analysis of finite sequences of productions, another
useful operation iscomposition[VL06b]. The main difference between concatenation and com-
position is the generation of intermediate states in the former. If a concatenation is coherent,
then its composition can be defined. Next, we state the conditions under which a permutation
of a coherent sequence remains coherent. In particular, we focus on advancement of the last
production to the front and vice-versa.

Theorem 3(Production Advance and Delay)Consider coherent sequencestn = pα ; pn; pn−1;
. . . ; p2; p1 andsn = pn; pn−1; . . . ; p2; p1; pβ and permutationsφn andδn.
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1. φn+1(tn) is coherent if:eE
α 5n

1

(
rE
x LE

y

)
∨RE

α 5n
1

(
eE

x rE
y

)
= 0

2. δn+1(sn) is coherent if:LE
β 4n

1

(
rE
x eE

y

)
∨ rE

β 4n
1

(
eE

x RE
y

)
= 0

whereφn advances (i.e. moves to the right inside the concatenation) one productionn− 1
positions, i.e., has associated permutationφn = [1 n n−1. . .3 2]. This is a notation for
permutation cycles that means that rule1 (the left-most one) is sent to positionn, then rule in
positionn is moved to positionn−1, and similarly until rule3, which is moved to position2,
and this one to position1. Operatorδn delays one productionn− 1 positions, i.e., hasδn =
[1 2 . . . n−1 n] as associated permutation cycle (i.e. each rule is moved to the right, and rule
n to position1).

G-congruenceguarantees that two coherent concatenations have the same minimal initial
digraphG. The conditions to be fulfilled are known in [VL06b] asCongruence Conditions(CC).
The key point is that a coherent concatenationsn and a coherent permutation of it,σ (sn), which
besides have the same minimal initial digraphG (i.e., which areG-congruent) are sequential
independent. Next theorem present the congruence conditions for advancement and delay of
productions.

Theorem 4 (G-congruence) Given sequencesn, the congruence conditions for rule advance
(φn−1) and delay (δn−1) are given by:

CCn(φn−1,sn) = Ln∇n−1
1 (ex ry)∨ rn∇n−1

1 (rxLy) = 0 (4)

CCn(δn−1,sn) = L1∇n
2(ex ry)∨ r1∇n

2(rxLy) = 0 (5)

3 Algebraic Techniques for Petri Nets: The State Equation

Algebraic techniques for Petri nets are based on the representation of the net with an incidence
matrix A in which columns are transitions (elementAi

j is the number of tokens that transitioni
removes – negative – or adds – positive – to placej). One of the problems that can be analyzed
using algebraic techniques isreachability. Given an initial markingM0 and a final markingMd,
a necessary condition to reachMd from M0 is to find a solutionx for the equationMd = M0+Ax,
which can be rewritten as a linear system

M = Ax (6)

Solutionx – known as Parikh vector – specifies the number of times that each transition should
be fired, but not the firing order. Identity (6) is known as thestate equation[Mur89].

The state equation introduces a matrix, which conceptually can be thought of as associating a
vector space to the dynamic behaviour of the Petri net. It is interesting to graphically interpret the
operations involved in linear combinations: addition and multiplication by scalars, as depicted
in Figure2. The addition of two transitions is again a transitiontk = ti + t j for which input places
are the addition of input places of every transition and the same for output places. If a place
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appears as input and output place intk, then it can be removed. Multiplication by−1 inverts
the transition, i.e., input places become output places and viceversa, which in some sense is
equivalent to disapplying the transition.

Figure 2: Linear Combinations in the Context of Petri Nets.

One important issue is that of notation. Linear algebra uses an additive notation (addition
and substraction) which is normally employed when an abelian structure is under consideration.
For non-commutative structures, such as permutation groups, the multiplicative notation (com-
position and inverses) is preferred. The basic operation with productions is the definition of
sequences (concatenation), for which historically a multiplicative notation has been chosen, but
substituting composition “◦” by the concatenation “;” operation.1

From a conceptual point of view, we are interested in relating linear combinations and se-
quences of productions.2 Note that, due to commutativity, linear combinations do not have an
associated notion of ordering, e.g., linear combinationPV1 = p1 +2p2 + p3 coming from Parikh
vector[1,2,1] can for example represent sequencesp1; p2; p3; p2 or p2; p2; p3; p1, which can be
quite different. The fundamental concept that deals with commutativity is precisely sequential
independence.

Following this reasoning, we can find the problem that makes the state equation a necessary
but not a sufficient condition: some transition can temporarily owe some tokens to the net. The
Parikh vector specifies a linear combination of transitions and thus, negatives are temporarily
allowed (substraction).

Proposition 1 Suffiency of the state equation can only be ruined by transitions firing without
being enabled (i.e., temporarily borrowing tokens from the Petri net).

This proposition does not provide any criteria based on the topology of the Petri net, as theo-
rems 16, 17, 18 and corollaries 2 and 3 in [Mur89], but contains the essential idea in their proofs:
the hypothesis in previously mentioned theorems guarantee that cycles in the Petri net will not

1 This is the reason why [VL06b] introduces “;” to be read from right to left, contrary to the literature. Composition
“◦” has the effect ofsimultaneousapplication, which is different to sequential application. This is important for
example to differentiate sequential and parallel application.
2 Linear combinations are the building blocks of vector spaces, and the structure to be kept by matrix application.
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ruin coherence.

4 Using Matrix Graph Grammars Techniques for Petri Nets

Given a Petri net, we shall consider it as the initial host graph in our matrix graph grammar. One
production is associated to every transition in which places and tokens are nodes and there is an
arrow joining each token to its place. In fact, we represent places for illustrative purposes only,
as they are not strictly necessary, including tokens alone is enough. Figure3 shows an example
in which each production corresponds to a transition. The firing of a transition corresponds to
the application of a rule.

Figure 3: Petri Net with Related Production set.

Thus, Petri nets can be considered a proper subset of graph grammars with two important
properties:

1. There are no dangling edges when applying productions (firing transitions).

2. Every production can be applied only in one part of the host graph.

Properties (1) and (2) somehow allow us to safely “ignore” matchings as introduced in [VL06a].
In addition, we consider Petri nets with no self-loops (i.e., so calledpure Petri nets), that is,
one production either adds or deletes nodes of a concrete type, but there is never a simultaneous
addition and deletion of nodes of the same type. This agrees with the expected behaviour of
MGG productions with respect to nodes (which is the behaviour of edges as well, see [VL06b])
and will be kept throughout the present work, mainly because rules in SPO-like grammars are
adapted depending on whether a given production deletes nodes or not (refer to section6). Hence,
it is necessary that elements in matrices are not relative integers, i.e., a number four must mean
that productionx adds four nodes of typet and not thatx adds four nodes more than it deletes
of typet. If we had one such productionp, a possible way to proceed is to splitp into two, one
owning the addition actions,pr , and the other the deletion ones,pe. Sequentially,p should be
decomposed asp = pr ; pe.

Proc. PNGT 2006 6 / 16



ECEASST

Minimal Marking . The concept of minimal initial digraph can be used to find the minimum
marking able to fire a given transition sequence. For example, Figure4 shows the calculation
of the minimal marking able to fire transition sequencet5; t3; t1 (from right to left). Notice that
(r1L1)∨ (r1L2)(r2L2)∨·· ·∨ (r1Ln) · · ·(rnLn) is the expanded form of equation2.

Figure 4: Minimal Marking Firing Sequencet5; t3; t1.

Reachability. The reachability problem can also be expressed using MGG concepts, as the
following definition shows.

Definition 1 (Reachability) Given a grammarG = (M0,{p1, . . . , pn}), a stateMd is called
reachablestarting in stateM0, if there exists a coherent concatenation made up of productions
pi ∈G with minimal initial digraph contained inM0 and image inMd.

5 Reachability: DPO-Like Matrix Graph Grammars

In this and next sections we shall be concerned with the generalization of the state equation to
wider types of grammars. By aDPO-likematrix graph grammar we understand a grammar as
introduced in [VL06b], but in which rule applications do not generate dangling edges. That is, in
any reachable graph from the initial one, no rule application can generate a dangling edge (i.e. the
dangling condition in classical Double Pushout graph grammars [EEPT06] can be safely ignored
as it can never happen). Property2 in section4 of Petri nets is relaxed because now a single
production may eventually be applied in several different places of the host graph. However,
following the discussion in previous section, we restrict to DPO rules in which nodes (or edges)
of the same type are not rewritten (deleted and created) in the same rule.

In order to perform ana priori analysis it is mandatory to get rid of matches. To this end, either
an approach as proposed in [VL06a, VL06b] is followed (as we did in this paper in section4),
or types of nodes are taken into account instead of nodes themselves. Here, we take this second
alternative, therefore productions, initial state and final state are transformed such that types of
elements are considered, obtaining matrices with elements inZ.

Tensor notation [Sok51] will be used in the rest of the paper to extend the state equation.
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Though it shall be avoided whenever possible, four index may be used simultaneously,E
0A i

j .
Top left index indicates whether we are working with nodes (N) or edges (E). Bottom left index
specifies the position inside a sequence, if any. Top right and bottom right are contravariant and
covariant indices, respectively.

Definition 2 Let G = (0M,{p1, . . . , pn}) be a DPO-like graph grammar andm the number of
different types of nodes inG. The incidence matrix for nodesNA =

(
A i

k

)
wherei ∈ {1, . . . ,n}

andk∈ {1, . . . ,m} is defined by the identity

A i
k =

{
+r if productionk addsr nodes of typei
−r if productionk deletesr nodes of typei

(7)

It is straightforward to deduce for nodes an equation similar to (6):

N
dM i = N

0M i +
n

∑
k=1

NA i
kx

k (8)

The case for edges is similar, with the peculiarity that edges are represented by matrices instead
of vectors and thus the incidence matrix becomes theincidence tensorEA i

jk. Again, only types
of edges, and not edges themselves, are taken into account. Two edgese1 and e2 are of the
same type if their starting and final nodes are of the same type. Initial nodes of edges will be
assumed to have a contravariant behaviour (index on top,i) while terminal nodes (first index,j)
and productions (second index,k) will behave covariantly (index on bottom). See diagram in the
center of Figure6.

Example.¤Some rules for a simple client-server system adapted from [VL06a] are defined in
Figure5. There are three types of nodes: clients (C), servers (S) and routers (R). Messages (self-
loops in clients) can only be broadcasted. In the MGG approach, this transformation system will
behave SPO or DPO-like depending on the initial state. Note that productionp4 adds and deletes
edges of the same type(C,C). By now, the rule will not be split into its addition and deletion
components as suggested in4. See section6.1for an example.

Figure 5: Rules for a Client-Server Broadcast-Limited System.

Incidence tensor (edges) for these rules can be represented componentwise, each component
being the matrix associated to the corresponding production.

EAi
j1 =




0 0 0 C
0 0 1 R
0 1 0 S


 ;EAi

j2 =




0 −2 0
−2 0 −1

0 −1 0


 ;EAi

j3 =




0 2 0
2 0 0
0 0 0


 ;EAi

j4 =




1 0 0
0 0 0
0 0 0



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For space limitations, only inEAi
j1 we have specified which type each row belongs to. Columns

follow the same ordering.¥

Lemma 1 With notation as above, a necessary condition for statedM to be reachable from
state0M is

dM− 0M = EM = EM i
j =

n

∑
k=1

EA i
jkxk

j =
n

∑
k=1,p=k

(EA⊗x
)ip

jk (9)

wherei, j ∈ {1, . . . ,m}.

Proof
¤Consider the construction depicted in the center of figure6 in which tensorAi

jk is represented
as a cube. A product for this object is informally defined in the following way: every vector in
the cube perpendicular to matrixx acts on the corresponding row of the matrix in the usual way,
i.e., for every fixedi = i0 and j = j0 in (9):

E
dM i0

j0
= E

0M i0
j0

+
n

∑
k=1

EA i0
j0kx

k
j0 (10)

Figure 6: Matrix Representation for Nodes, Tensor for Edges and Their Coupling.

Every column in matrixx is a Parikh vector as defined for Petri nets. Its elements specify the
amount of times that every production must be applied, so all rows must be equal and hence,
equation (10) needs to be enlarged with some additional identities





M i
j =

n

∑
k=1

EA i
jkxk

j

xk
p = xk

q

(11)

with p,q∈ {1, . . . ,m}. This uniqueness together with previous equations provide the intuition to
raise (9).

Informally, we are enlarging the space of possible solutions and then projecting according to
some restrictions. To see that it is a necessary condition, suppose that there exists a sequencesn

such thatsn(0M) = dM and that equation (10) does not provide any solution. Without loss of
generality we may assume that the first column fails (the one corresponding to nodes emerging
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from the first node), which produces an equation completely analogous to the state equation for
Petri nets, deriving a contradiction.¥

Example (Cont’d).¤Let’s test whether it is possible to move from stateS0 to stateSd (see
Figure7) with the productions defined in previous example.

Figure 7: Initial and Final States for Productions in Fig.5.

Matrices for the states (edges only) and their difference are:

ES0 =




1 0 0 C
0 0 0 R
0 0 0 S


 ; ESd =




3 1 0 C
1 0 1 R
0 1 0 S


 ; ES= ESd−ES0 =




2 1 0 C
1 0 1 R
0 1 0 S




The proof of proposition2 poses the following matrices:

EAi
1k =




0 0 0 1 C
0 −2 2 0 R
0 0 0 0 S


 ;EAi

2k =




0 −2 2 0 C
0 0 0 0 R
1 −1 0 0 S


 ;EAi

3k =




0 0 0 0 C
1 −1 0 0 R
0 0 0 0 S




These matrices act on matrixx =
(
xp

q
)
, p∈ {1,2,3,4}, q∈ {1,2,3} to obtain

ES1 =
4

∑
k=1

EA1kx
k
1 =




x4
1

−2x2
1 +2x3

1
0




ES2 =
4

∑
k=1

EA2kx
k
2 =



−2x2

2 +2x3
2

0
x1

2−x2
2




ES3 =
4

∑
k=1

EA3kx
k
3 =




0
x2

3−x3
3

0




Recall thatx must satisfy

x1
1 = x1

2 = x1
3; x2

1 = x2
2 = x2

3; x3
1 = x3

2 = x3
3; x4

1 = x4
2 = x4

3.

A contradiction is derived for example with equationsx2
2 = x3

2, −2x2
1 + 2x3

1 = 1, x2
1 = x2

2 and
x3

1 = x3
2. ¥

It is straightforward to derive a unique equation for reachability which considers both nodes
and edges, i.e., equations (8) plus (9). This is accomplished extending the incidence matrixM
from M : E→ E to M : E×N→ E (from Mm×m to Mm×(m+1)), where columnm+1 corresponds
to nodes.
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Definition 3 (Incidence Tensor) Given a grammarG = (0M,{p1, . . . , pn}), the incidence tensor
Ai

jk with i ∈{1, . . . ,m} and j ∈{1, . . . ,m+1} is defined by (9) if 1≤ j ≤mand by (8) if j = m+1.

Note that top left index in our notation works as follows:NA refers to nodes,EA to edges andA
to their coupling. An immediate extension of lemmata1 is:

Proposition 2 (State Equation for DPO-like Matrix Grammars)With notation as above, a nec-
essary condition for statedM to be reachable (from state0M) is

M j
i =

n

∑
k=1

Ai
jkxk (12)

Notice that equation (12) is a generalization of the state equation (6) for Petri nets.

6 Reachability: SPO-like matrix graph grammars

Our intention now is to relax the second property of Petri nets and allow production application
even though some dangling edge might appear (see [VL06a, VL06b]). The plan is carried out
in two stages which correspond to the subsections that follow, according to the classification of
ε-productions in [VL06a].

In our approach, if applying a productionp0 causes dangling edges, the production can be
applied but a new production (a so-calledε-production) is created and applied first. In this way,
we obtain a sequencep0; pε0, with the restriction thatpε0 is applied at a match that includes
all nodes deleted byp0 that produce dangling edges. Productionpε0 deletes the dangling edges
produced byp0, and thenp0 can be applied, without producing dangling edges (see [VL06a] for
details).

Inside a sequence, a productionp0 that deletes an edge or node can have anexternalor internal
behaviour, depending on the identification carried out by the match. Following [VL06a], if the
deleted element was added or used by a previous production, we shall label the production as
internal (according to the sequence). On the other hand, if the deleted element is provided by the
host graph and it is not used untilp0’s turn, thenp0 is an external production. In some sense, their
properties are complementary: while externalε-productions can be advanced and composed to
eventually get a single initial production which adapts the host graph to the sequence, internal
ε-productions are morestatic3in nature. On the other hand, internalε-productions depend on
productions themselves and are somewhat independent of the host graph, opposite to external
ε-productions. Note however that internal nodes can be unrelated if, for example, matchings
identify them in different parts of the host graph, thus becoming external.

6.1 External ε-productions

The main property of externalε-productions, with respect to internalε-productions, is that they
act only on edges that appear in the initial state, so their application can be advanced to the
beginning of the sequence. In this situation, the first thing to know for a given matrix graph

3 Maybe it is possible to advance their application but, for sure, not to the beginning of the sequence.
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grammarG = (0M,{p1, . . . , pn}) with at most externalε-productions when applied to0M, is the
maximum number of edges that can be erased from its initial state. The potential dangling edges
(those with any incident node to be erased) are given by:

e =
n∨

k=1

(
N
ke⊗N

ke
)

(13)

Proposition 3 Given a grammarG = (0M,{p1, . . . , pn}) with externalε-productions only, a
necessary condition for statedM to be reachable (from state0M) is

Mi
j =

n

∑
k=1

(
Ai

jkxk
)

+bi
j (14)

with the restriction0Me≤ bi
j ≤ 0.

Note that equation (12) in proposition2 is recovered from (14) if there are no externalε-
productions.

According to [VL06a], all ε-productions can be advanced to the beginning of the sequence
and be composed to obtain a single production, adapting the initial digraph before applying the
sequence, which in some sense interprets matrixb astheproduction numbern+1 in the sequence
(i.e. the first to be applied). Because it is not possible to know in advance the order of application
of productions, all we can do is to provide bounds for the number of edges to be erased.

Example. Consider the initial and final states shown in Figure8. Productions of previous
examples are used, but two of them are modified (p2 andp3).

Figure 8: Initial and Final States with Amendments to Some Productions of Fig.5.

In this case there are sequences that transform state0S in dS, for example,s4 = p4; p1; p′3; p′2.
Note that the problem is in edge(1 : S,1 : R) of the intial state: router1 is able to receive packets
from server1, but not to send them.

Next, matrices for the states and their difference are calculated. The first three columns corre-
spond to edges (first to clients, second to routers and third to servers), fourth to nodes and fifth
specifies types.

0S=




1 1 0 3 C
2 0 0 2 R
0 2 0 1 S


 ; dS=




2 1 0 3 C
3 0 1 2 R
0 2 0 1 S


 ; S= dS−0S=




1 0 0 0 C
1 0 1 0 R
0 0 0 0 S




Proc. PNGT 2006 12 / 16



ECEASST

The incidence tensors for every production (recall thatp2 and p3 are as in Figure8) have the
form

Ai
j1 =




0 0 0 0
0 0 1 1
0 1 0 0


 ;Ai

j2 =




0
0 −1

0


 ;Ai

j3 =




0 1 0 0
1 0 0 0
0 0 0 0


 ;Ai

j4 =




1 0 0 0
0 0 0 0
0 0 0 0




Though it does not seem to be strictly necessary here, more information is kept and calculations
are more flexible if productionp4 is split in the part that deletes messages and the part that adds
them,p4 = p4r ; p4e. See comments about this in section4

Ai
j4e =



−1 0 0 0 C
0 0 0 0 R
0 0 0 0 S


 ; Ai

j4r =




2 0 0 0 C
0 0 0 0 R
0 0 0 0 S




As in the example of section5, the following matrices are more appropriate for calculations:

Ai
1k=




0 0 0 −1 2
0 0 1 0 0
0 0 0 0 0


;Ai

2k=




0 0 1 0 0
0 0 0 0 0
1 0 0 0 0


;Ai

3k=




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0


;

Ai
4k=




0 0 0 0 0
1 −1 0 0 0
0 0 0 0 0




If (12) is directly applied, we obtainx1 = 0 andx1 = 1 (third row of Ai
2k and second ofAi

3k)
deriving a contradiction. The variations permitted for the initial state are given by the matrix

0Me =




0 α1
2 0 0

α2
1 0 0 0

0 α3
2 0 0


 (15)

With α1
2 ∈ {0,−1}, α2

1 ,α3
2 ∈ {0,−1,−2}. Settingb1

2 = −1 andb3
2 = −1 (one edge(S,R) and

one edge(C,R) removed) the system to be solved is




1 1 0 0
1 0 1 0
0 1 0 0


 =



−x4 +2x4 x3 0 0

x3 0 x1 x1−x2

0 x1 0 0




with solutionx1 = x2 = x3 = x4 = 1, s4 being one of its associated sequences. Note that the
restriction in proposition3 is fulfilled, see (15).

In previous example, as we knew a sequence (s4) answer to the reachability problem, we have
fixed matrixb directly to show how proposition3 works. Although this will not be normally the
case, the way to proceed is very similar: relax matrixM by substractingb, find a set of solutions
{x,b} and check whether the restriction for matrixb is fulfilled or not.
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6.2 Internal ε-productions

Internal ε-productions delete edges appended or used by productions preceding it in the se-
quence. In this subsection we first limit to sequences which may have only internalε-productions
and, by the end of the section, we shall put together proposition3 from subsection6.1with results
derived here to state theorem5 for SPO-like matrix graph grammars.

The way to proceed is completely analogous to that of externalε-productions. The idea is
to allow some variation in the amount of edges erased by every production, but this variation is
constrained depending on the behaviour (definition) of the rest of the rules. Unfortunately, not
so much information is gathered in this case and what we are basically doing is ignoring this part
of the state equation.

Definehi
jk =

[
Ai

jk (e⊗ Ik)
]
+

= max(A(e⊗ I),0), whereIk = [1, . . . ,1](1,k).
4

Proposition 4 Given a grammarG = (0M,{p1, . . . , pn}) with internal ε-productions only, a
necessary condition for statedM to be reachable (from state0M) is

Mi
j =

n

∑
k=1

(
Ai

jk +V
)

xk (16)

with the restrictionhi
jk ≤V i

jk ≤ 0.

In some sense, external productions are the limiting case of internal productions and can be
seen almost as a particular case: asε-productions do not interfere with previous productions they
have to act exclusively on the host graph. The full generalization of the state equation for matrix
graph grammars is:

Theorem 5 (State Equation) With previous notation, a necessary condition for statedM to be
reachable (from state0M) is

Mi
j =

n

∑
k=1

(
Ai

jk +V
)

xk +bi
j (17)

bi
j must satisfy restrictions specified in proposition3 andV those in proposition4.

Strengthening hypothesis, formula (5) becomes those already studied for SPO with internal
ε-productions (b= 0), with externalε-productions (V = 0), DPO-like (from multilinear to linear
transformations) or Petri nets, fully recovering the original form of the state equation.

7 Related Work

Concerning our MGG approach to graph rewriting, in [Val98] an implementation of the DPO cat-
egorical approach to graph transformation was implemented using Mathematica. In that work,
(simple) digraphs were represented with their boolean adjacency matrices. This is the only sim-
ilarity with our work, as our goal is to develop a theory for (simple) graph rewriting based on

4 e⊗ I(k) defines a tensor of type (1,2) wich “repeats” matrixe k times.
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boolean matrix algebra. Other somehow related approach is the relational approaches of [MK95]
and [Kah02]. However, they rely on using category theory for expressing the rewriting.

The recent work [VVE+06] shows a means to encode a graph transformation system into a
Petri net. Then algebraic approaches based on the state equation can be used for analysis. The
approach is similar to ours, as they perform the same abstraction (taking node and edge types).
However, on the one hand, they consider negative application conditions in rules. On the other
hand, we consider both DPO and SPO-like grammars, and we extend the state equation using
tensors, instead of first encoding the transformation system as a Petri net.

8 Conclusions and Future Work.

The starting point of the present paper is the study of Petri nets as a particular case of MGGs.
Next, reachability and the state equation have been reformulated and extended with the language
of this new approach, trying to provide tools for grammars as general as possible. The objective
is almost fulfilled, bearing in mind that the more general the grammar, the less information the
state equation provides. For example, equation (12) is more accurate as long as the rate of the
amount of types of nodes with respect to the amount of nodes approaches one. Hence, in general,
it will be of little practical use if there are many nodes but few types.

Nevertheless, we are in a much better position than we were before. Although the use of vector
spaces (as in Petri nets) and multilinear algebra is almost straightforward, many other algebraic
structures are available to improve the results herein presented. For example, Lie algebras seem
a good candidate if we think of the Lie bracket as a measure of commutativity (recall subsection
3 in which we saw that this is one of the main problems of using linear combinations).

Other concepts and techniques from Petri nets such as invariants, boundedness, liveness, re-
versibility, persistence, etc., can also be extended to more general grammars. Besides, it is
possible as well to get a better insight and understanding of matters by applying matrix graph
grammars techniques (as those in [VL06a, VL06b] and the present paper) to Petri nets. We are
also extending our matrix graph grammars approach to work with multi-graphs. A first line of
attack is to model edges as special nodes (with exactly one incoming and outgoing edge).
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