
Electronic Communications of the EASST
Volume 7 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

Ensuring Containment Constraints in Graph-based Model
Transformation Approaches

Christian Köhler, Holger Lewin, Gabriele Taentzer

12 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Ensuring Containment Constraints in Graph-based Model
Transformation Approaches

Christian Köhler1, Holger Lewin2, Gabriele Taentzer3

1 christian.koehler@cwi.nl
Department of Software Engineering,

CWI Amsterdam, The Netherlands

2 kinscher@cs.tu-berlin.de
Department of Software Engineering and Theoretical Computer Science

Technical University of Berlin, Germany

3 taentzer@mathematik.uni-marburg.de
Department of Mathematics and Computer Science

Philipps-University Marburg, Germany

Abstract:

Within model driven software development, model transformation has become a key
activity. A number of transformation approaches for metamodel-defined modeling
languages have been developed in the past years and are going to be established
in research and industry. None of these have made it to a standard yet. There is
a demand for correct model transformation in various senses. Formal methods are
helpful for showing correctness issues of model transformations. As one approach,
graph transformation has been applied to the field of model transformation and is a
perspective for achieving provable correct model transformations. We show in this
paper, that containment associations as proposed by the OMG are an integral part
of MOF-based languages and imply a couple of constraints which must be ensured
in model transformation approaches. Based on a double-pushout approach to graph
transformation, conditions are stated that ensure these containment constraints. This
is an important step for achieving formal transformation semantics for modeling
languages based on MOF, or specifically EMF.

Keywords: Model Transformation, Graph Transformation, MOF, EMF

1 Introduction

Model driven engineering is an emerging approach to software engineering aiming at fast de-
velopment of high-quality software. The central entities in the terminology of model-driven
software development are of course the models. Relations between these models are basically
of two kinds: instantiations of so-called metamodels by models and model transformations be-
tween models typed by the same metamodel. A metamodel defines the common structure of all
possible instantiations and therefore can be seen as some kind of language definition.

1 / 12 Volume 7 (2007)

mailto:christian.koehler@cwi.nl
mailto:kinscher@cs.tu-berlin.de
mailto:taentzer@mathematik.uni-marburg.de

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

In this paper we consider a special kind of models, which are called structural data models.
These models do not include any definition of behavior, but structural aspects only. Therefore,
they are mainly used to specify domain specific languages. The two most popular modeling
languages for structural data models are the Meta Object Facility (MOF) [OMG06] and the
Eclipse Modeling Framework (EMF) [EMF]. While MOF is a slightly richer language, EMF
comes with powerful code generation facilities. The key concepts in both languages are classes
with inheritance and attribution and associations with multiplicity and containment properties.
EMF can generate Java code which supports the creation, modification, storage, and loading of
model instances. Moreover, it provides generators to support the editing of instance models.

It is possible to interpret these structures as graphs and define model transformations formally
through graph transformations. Attribution of nodes and edges [EEPT06], node inheritance
[EEPT05] and multiplicity constraints for nodes and edges [TR05] have already been studied
in this area. An important property that has not been considered in this context are containment
or composite associations.

Containment associations define an ownership relation between objects. Thereby, they induce
a tree structure in model instantiations. In UML 2, ownership does not only occur in the form
of composite associations between classes, but also at various other points, like components and
their subcomponents or states and substates in state charts. In MOF and EMF, the tree structure
induced by containment associations is further used to implement a mapping to XML, known as
XMI (XML Metadata Interchange).

Containment always implies a number of constraints for model instantiations that must be
ensured at run-time. The MOF specification [OMG06] states as semantical constraints for con-
tainment edges the following:

• ”An object may have at most one container.”

• ”Cyclic containment is invalid.”

As mentioned earlier, EMF provides full implementations of their models. These implemen-
tations always ensure these constraints. In fact, the MOF specification also says how such a
constraint should be ensured, e.g.:

• ”If an object has an existing container and a new container is to be set, the object is
removed from the old container before the new container is set.”

However, there is no suggestion how to avoid a cyclic containment of objects. Being a part of
the MOF specification, these two properties are essential for valid models and therefore must be
always ensured. This is especially the case when it comes to defining transformations for these
models. A model transformation approach for MOF and EMF has to deal with these issues, i.e.
must ensure that the result of a model transformation conforms to these constraints. We consider
in this paper a graph transformation approach with formal semantics. The way of ensuring
the containment constraints as stated in the MOF specification is not applicable in this context,
since it would break the formal transformation semantics and therefore make existing results on
termination and confluence of graph transformations invalid.

Therefore, we consider containment associations explicitly in the following and apply their
properties in the context of a graph-based model transformation approach.

Proc. GT-VMT 2007 2 / 12

ECEASST

This paper is structured as follows: Section 2 gives a short introduction to model transfor-
mation by algebraic graph transformation. In Section 3, we consider graphs with containment
relations and define the necessary containment conditions which have to be fulfilled by graph
transformations. Section 4 gives a short description of related work in this area. At last, Section
5 contains a conclusion and refers to possible future work in the field of model checking and
model transformation.

2 Model Transformation by Graph Transformation

Model transformations define relations between model instances. The most common scenario
is a mapping from a source model to a target model. In this situation, an instance of the target
model can be either completely constructed from scratch or updated incrementally. Transforma-
tions are usually defined through transformation rules. Basing model transformation on graph
transformation, rules consist of one positive pattern, an arbitrary number of negative patterns and
a description of the in-place modifications that should be performed. To apply a rule, it is nec-
essary to either specify or automatically find a pattern match in the model instance that should
be transformed. Thereafter, the existence of negative patterns has to be checked. If they are
fulfilled, the in-place modifications can be applied.

In the graph transformation approach, patterns are given through graphs, while transformations
of graphs are usually defined through pushout constructions. Here, we use the double-pushout
approach (DPO) where a transformation rule is given by a span of injective graph homomor-
phisms (L l← K r→ R). Such a rule can be applied w.r.t. a given match m into a source model
instance. See the following figure:

L K R

M C N

Source Target

(PO) (PO)

loo r //

m

��

c

��

n

��goo h //h //

Trans f ormation
//

The input should be a graph corresponding to a valid model instance according to the MOF
specification / EMF implementation. Therefore it must fulfill the containment constraints stated
in the introduction. The aim is now to ensure that the result is also not violating the containment
constraints. We achieve this goal by restricting the possible transformations. A rule application
w.r.t. a given match is allowed, if the result does not violate the containment constraints. This is
crucial for working with MOF and EMF models, especially for ensuring semantical properties
like termination and confluence of transformations. For this purpose, we now introduce graphs
with distinguished containment edges and use the double-pushout approach for defining transfor-
mations between them. Of course, other model constraints like multiplicities, have to be ensured,
too, but are outside of the scope of this paper. For more details see [TR05].

3 / 12 Volume 7 (2007)

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

3 Graphs with Containment Edges

Classes and associations can be interpreted as nodes and edges in a model graph. Accordingly,
objects and links can be seen as nodes and edges in an instance graph. The ’instance of’-relation
between these two graphs is achieved through a typing graph homomorphism, assigning to each
object (each link) of an instance graph, a class (an association) in the corresponding model graph.

Definition 1 (Graph with containment edges) A graph with containment edges is a tuple G =
(V,E,C,source, target) consisting of a set of nodes V , a set of edges E, a distinguished set of
containment edges C ⊆ E and two functions source, target : E → V assigning a source and a
target node to each edge. The containment edges induce the following transitive binary relation:

• contains1 = {(x,y) ∈V ×V | ∃e ∈C : (source(e) = x∧ target(e) = y) } ∪
{(x,y) ∈V ×V | ∃z ∈V : (x contains z∧ z contains y)}

The containment edges must have the following properties:

• e1,e2 ∈C : target(e1) = target(e2) ⇒ e1 = e2 (at most one container).

• (x,x) /∈ contains for all x ∈V (no cycles).

This definition ensures that there are no containment cycles and that an object has at most one
incoming containment edge, i.e. not more than one container. Accordingly, a homomorphism
for graphs with containment edges is a usual graph homomorphism that preserves containment
edges and their order properties.

Definition 2 (Homomorphism for graphs with containment edges) Given two graphs with con-
tainment edges G1, G2, a pair of functions (hV ,hE) with hV : V1→ V2 and hE : E1→ E2 forms
a valid homomorphism h : G1→ G2 for graphs with containment edges, if it has the following
property:

• e ∈C1 ⇒ hE(e) ∈C2 (containment edges are preserved).

These two definitions induce the category of graphs with containment edges, which will be
denoted as CGraphs in the following.

As already mentioned above, typing is accomplished by a graph homomorphism from an in-
stance graph to a model graph. It is important to note that the constraints for containment edges
as stated in Definition 1 apply to instance graphs only, not to model graphs. As shown in Fig-
ure 1, model graphs can have containment cycles, being the substates relation in this example.
However, an instance of this model must not violate these constraints. Correspondingly, the con-
straints in the MOF specification apply to objects and links only, not to classes and associations.

Since we use the DPO approach to transform graphs with containment edges, it is necessary
to show that the category of graphs with containment edges has pushouts2 [EEPT06]. Pushouts

1 If there is no confusion, we use infix notation for contains, e.g. (x contains y) instead of (x,y) ∈ contains.
2 Analogously for the category of graphs with containment edges typed over a fixed metamodel graph.

Proc. GT-VMT 2007 4 / 12

ECEASST

:StateMachine

:State

:State

:StateMachine

:State :State

:Transition

targetsource

states

states

statesstates

:State

subStates

StateMachine

Transition State

source

target

subStates

typed by typed by

Figure 1: A model graph (top), two instance graphs (bottom) and a typed graph homomorphism.

of plain graphs are constructed as in Set (componentwise for nodes and edges). Given a span
of graph homomorphisms (G1←G0→G2), the pushout result can be constructed by gluing the
graphs G1,G2 over the interface graph G0. Transformation rules in the DPO approach are spans
of injective graph homomorphisms. Applying such a transformation rule consists of two steps.
At first, a pushout complement graph and then a usual pushout graph has to be constructed. This
construction is now considered for graphs with containment edges.

Containment edges can be seen as a conservative extension of plain graphs. A pushout of
graphs with containment edges must also be a valid pushout of plain graphs, forgetting the con-
tainment properties of the edges. Given a span of valid graphs with containment edges, the
question arises whether the pushout result as constructed for plain graphs also is a valid graph
with containment edges. The pushout morphisms must be valid homomorphisms for graphs with
containment edges respectively (preserve the containment edges).

As shown in Figure 2, the result graph does not necessarily have the designated order proper-
ties. Although graphs G0, G1 and G2 are valid graphs with containment edges, the ’at most one
container for each object’-property in the pushout result G3 is violated. The second example
in Figure 3 shows, that there might also appear a containment cycle in the pushout result. This
gives rise to state a condition under which a pushout in the category Graphs is also a valid graph
with containment edges, i.e. has no containment cycles and each node has at most one container.
Therefore, we introduce first the notions of so-called newly contained points and cyclic contained
points.

5 / 12 Volume 7 (2007)

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

:StateMachine

:State :State

G0

:StateMachine

:State :State

G1

:StateMachine

:State :State

G2

:StateMachine

:State :State

G3

f1

f1’

f2 f2’

subStates subStates

states states states

states states states

Figure 2: Invalid pushout of graphs with containment edges. A State node in the result graph G3
has two containers.

:State

:State :State

G0

:State

:State :State

G1

:State

:State :State

G2

:State

:State :State

G3

f1

f1’

f2 f2’

:State

:State

:State

:State

subStates

subStates

subStates

subStates

subStates

subStatessubStates

subStates

Figure 3: Invalid pushout of graphs with containment edges The pushout result G3 has a con-
tainment cycle.

Proc. GT-VMT 2007 6 / 12

ECEASST

Definition 3 (Newly contained points) For a homomorphism between graphs with containment
edges h : G0→ G1, the set of newly contained points NCPh ⊆V0 is defined as

• NCPh = {x ∈V0 | ∀y ∈V0 : (y,x) /∈ contains0 ∧ ∃z ∈V1 : (z,hV (x)) ∈ contains1}3

Definition 4 (Cyclic contained points) For a span of homomorphisms between graphs with

containment edges (G1
f1← G0

f2→ G2), the set of cyclic contained points CCPf1, f2 ⊆ V1 ∪V2 is
defined as

• CCPf1, f2 = {x ∈V1∪V2 | ([x]≡, [x]≡) ∈ t(R) }

where t(R) is the transitive completion of R = { ([x1]≡, [x2]≡) | (x1,x2)∈ contains1 ∪ contains2 }
and [x]≡ denotes the equivalence class of an x ∈ V1 ∪V2 w.r.t. the equivalence relation ≡ =
t(s(r(∼))), with ∼= {(f1(x0), f2(x0)) | x0 ∈V0}.

Given a homomorphism h : G0→ G1 of graphs with containments, NCPh is the set of nodes
in G0 that do not have a container in G0, but do have one in G1. The definition of the set of
cyclic contained points CCPf1, f2 is more complex. It is based on the equivalence relation ≡ that
states which nodes of G1 and G2 have a common source in the interface graph G0 and which are
therefore glued together in the pushout result G3. The relation t(R) is the transitive closure of
the containment relations of G1 and G2, based on the equivalence classes induced by ≡. Cyclic
contained points are those nodes for which this relation is reflexive, i.e. ([x]≡, [x]≡) ∈ t(R).
These nodes must form a containment cycle in the pushout result G3 by construction.

These two definitions of newly contained points and cyclic contained points induce the condi-
tion under which a pushout of graphs with containment edges exists.

Definition 5 (Containment condition) Given a span of graphs with containment edges (G1
f1←

G0
f2→ G2), where f1 and f2 are valid homomorphisms for graphs with containment edges, the

containment condition is stated as:

• NCPf1 ∩NCPf2 = /0 and

• CCPf1, f2 = /0

If the newly contained points of f1 and f2 are disjoint, as stated in the first condition, each
node in the result graph has at most one container. For ensuring that there is no containment
cyclic in G3 the set of cyclic contained points must be empty.

Theorem 1 (Pushouts of graphs with containment edges) Given a span of homomorphisms

between graphs with containment edges (G1
f1← G0

f2→ G2), the pushout result in the category of

graphs (G1
f ′2→ G3

f ′1← G2) forms also a valid pushout in CGraphs, if and only if the containment

condition holds for the span (G1
f1← G0

f2→ G2).
3 contains0 and contains1 are the induced containment relations of graphs G0 and G1 .

7 / 12 Volume 7 (2007)

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

Proof. At most one container. Let a ∈ NCPf1 ∩NCPf2 , then:

• f1(a), f2(a) have incoming containment edges e1 ∈C1,e2 ∈C2 that have no origin in G0.

• b := f ′2 ◦ f1(a) = f ′1 ◦ f2(a) ∈V3. The images of a are glued together by construction.

• b has two incoming containment edges f ′1(e2) 6= f ′2(e1).

Conversely, consider b ∈V3 with two incoming containment edges:

• Without loss of generality, the containment edges can be written as f ′2(e1) and f ′1(e2) with
e1 ∈C1 and e2 ∈C2. If both had an origin in G1 for instance, G1 would already violate the
containment properties.

• There is a∈V0 with f ′2 ◦ f1(a) = b = f ′1 ◦ f2(a). The node b must have origins in V1, V2 and
finally a ∈ V0 because there must be target nodes of e1 and e2 and these must have been
glued together to the node b ∈V3.

• Node a has no incoming containment edge. Otherwise this edge would have images in G1
and G2 and there would be only one incoming containment edge for b in G3. Therefore, a
is a is a newly contained point, both of f1 and f2.

No cycles. The idea of the proof is the construction of a sequence of nodes a0, ...,an in G1∪G2
that corresponds to a containment cycle in the pushout graph G3. Every cycle in G3 consists of
edges from G1 and G2. Since G1 and G2 are cycle free, the cycle in G3 emerges from gluing of
edges by identifying certain nodes. Nodes from G1∪G2 are identified, iff they are in the same
equivalence class w.r.t. equivalence relation ≡. So every containment cycle in G3 corresponds
to a sequence a0, ..,an s.t. there is either a containment edge from ai to ai+1 or ai and ai+1 are
identified in G3. Furthermore a0 and an are identified in G3.

If there is a x3 ∈V3 : x3 contains3 x3, then exist a0, ...,an ∈ V1∪V2 with:

• i ∈ [0,n] : ∃ (ai,ai+1) ∈ contains1 ∪ contains2. If there is a path of containment edges
in G3, the path consists of containment edges that have preimages in E1 ∪E2. We write
this path as list of ai ∈ V1 ∪V2. At least one of the ai is container for ai+1, since every
containment path consists of at least one edge.

• (ai,ai+1) /∈ contains1∪contains2⇒ [ai]≡ = [ai+1]≡. If there is no containment edge from
ai to ai+1, both are in the same equivalence class w.r.t. the pushout construction, i.e. they
will be identified in G3. These are the points where the subpaths from G1 and G2 are glued
to the containment path in G3.

• [a0]≡ = [an]≡. Without loss of generality, the path begins and ends at nodes which are
glued.

• f ′1/2(a0) = f ′1/2(an) = x3, with f ′1/2(ai) = f ′1(ai) if ai ∈V1 and f ′1/2(ai) = f ′2(ai) if ai /∈V1.

So in the transitive completion t(R) exists a tuple (r1,r2), r1 = [a0], r2 = [an] with r1 = r2.

Proc. GT-VMT 2007 8 / 12

ECEASST

Conversely, if there is a pair (r1,r2) ∈ t(R) with r1 = r2, there exist a0, ...,an ∈ V1∪V2 with

• i ∈ [0,n] : ∃ (ai,ai+1) ∈ contains1∪ contains2. (r1,r2) ∈ t(R) implies a containment path
consisting of at least one containment edge of E1∪E2.

• (ai,ai+1) /∈ contains1 ∪ contains2 ⇒ [ai]≡ = [ai+1]≡. If ai does not contain ai+1, they
denote the points where the subpaths from G1 and G2 are glued in G3.

• [a0]≡ = r1 = r2 = [an]≡.

So there is at least one containment edge in G3 s.t.:

• (f ′1/2(ai), f ′1/2(ai+1)) ∈ contains3

• (f ′1/2(ai), f ′1/2(ai+1)) /∈ contains3⇒ f ′1/2(ai) = f ′1/2(ai+1)

• f ′1/2(a0) = f ′1/2(an)

So there is a containment cycle in G3: (f ′1/2(a0), f ′1/2(an)) ∈ contains3.

Using the DPO approach to graph transformation, we can state the conditions under which a
match is valid for a given rule now. That means the result has a valid graph structure (no dangling
edges) and all containment constraints are fulfilled. The first constraint is ensured by checking
the gluing condition [EEPT06] before constructing the pushout complement. When constructing
the pushout complement, edges and nodes may be deleted from the input graph. Containment
constraints cannot get violated in this phase, because containment cycles or multiple containers
for an object can only appear if containment edges are added to a valid model instance. After
computing the pushout complement, the containment condition must be verified to construct the
actual transformation result through a pushout of graphs with containment edges.

4 Related Work

Graphs with additional order structure are also discussed in [DSLO04], where the nodes and
edges are labelled using partially ordered sets. However, this partial order is an additional fea-
ture and not induced by the graph structure. Therefore, one injective morphism in a span is
already enough for ensuring the existence of a pushout in the category of these so called Poset
labelled graphs. Moreover, these graphs are applied in the area of architectural design of soft-
ware components.

Further, graphs with additional containment relations are also considered in the context of
hierarchical graph transformation (see e.g. [BKK05]). Similarly, each graph item may have
at most one container and the containment relation has to be acyclic. But in contrast to our
approach, each node and edge (except of the root) must belong to a container in most kinds of
hierarchical graphs. Thus, a typical hierarchical graph forms a special case of our graphs with
containment edges which does not require that all graph items are contained and that a unique
root does exist. For graphs with containment relations as well as for hierarchical graphs, graph
transformation has to be defined accordingly to the kind of graphs considered. That means the

9 / 12 Volume 7 (2007)

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

pushout construction being the basic building block of algebraic graph transformation, is defined
such that the result graph is an object of the corresponding category.

So called ownership types are an object oriented model for containment. An extensive intro-
duction to ownership types can be found in [Cla01]. This approach is based on an extension
of Abadi and Cardelli’s object calculus with subtyping. A so called containment invariant is
introduced to prove the soundness of ownership types systems.

5 Conclusion and Future Work

The extension of the graph-based approach to model transformation by graphs with containment
edges better reflects transformations of MOF, EMF and UML 2 models. The containment con-
dition stated above ensures that a transformation rule can only be applied to a model instance, if
the result does not violate any containment constraints.

In the case of EMF, the implementations generated from a model ensure at run-time that these
containment constraints are always satisfied. If EMF detects a violation of these constraints at a
certain point, it deletes containment edges that produce the problem. This behavior breaks the
formal semantics that was achieved through the graph transformation approach. Therefore, it is
important to first check whether the result of a transformation step would be valid. Only if this
is ensured, the rule can actually be applied. By that, we can avoid the problems of invalid model
instances, ensuring formal transformation semantics.

Even though it can be argued, that this approach is conservative (since it restricts the possible
applications of a transformation rule), it has the advantage of avoiding situations where an invalid
model instance has to be repaired, by deleting edges for instance. Especially, the naive strategy of
applying a transformation first, without any restrictions and repairing the model in the end might
lead to unexpected results. Moreover, it is not obvious how to resolve problems like containment
cycles in a canonical way.

The containment condition can be used in model transformation frameworks to ensure well-
defined transformation semantics. The gluing condition together with the containment condition
are the basis for semantical analysis of MOF/EMF model transformation, e.g. termination and
confluence (critical pair analysis) [EEPT06].

Further work should lead to notions of consistency of model transformations which might
not only be limited to basic model constraints, but also high-level properties of models and
model transformations formulated in OCL for instance. A translation of OCL constraints into
the language of graph transformation has been started in [WTEK06]. Consistency checks are
probably going to play an important role in the field of model driven engineering in the future. A
comprehensive theoretical foundation can lead to an improved tool support to check the quality
of models and model transformations.

Bibliography

[BKK05] G. Busatto, H.-J. Kreowski, S. Kuske. Abstract Hierarchical Graph Transformation.
Mathematical Structures in Computer Science 15(4), pp. 773-819., 2005.

Proc. GT-VMT 2007 10 / 12

ECEASST

[BRST05] J. Bezivin, B. Rumpe, A. Schürr, L. Tratt. Model Transformation in Practice Work-
shop Announcement. 2005.
http://sosym.dcs.kcl.ac.uk/events/mtip/

[CH03] K. Czarnecki, S. Helsen. Classification of Model Transformation Approaches.
OOPSLA 03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, 2003.

[Cla01] D. Clarke. Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering University of New South Wales, 2001.
http://citeseer.ist.psu.edu/468103.html

[DSLO04] M. Denford, A. Solomon, J. Leaney, T. O’Neill. Architectural Abstraction as
Transformation of Poset Labelled Graphs. Journal of Universal Computer Science,
vol. 10, no. 10, 1408-1428, 2004.
http://www.jucs.org/jucs 10 10/architectural abstraction as transformation/
Denford M.pdf

[EEL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, S. Varró-Gyapay. Termination
Criteria for Model Transformation. Proc. Fundamental Approaches to Software En-
gineering (FASE), Lecture Notes in Computer Science, ISSN 0302-9743, Springer
Verlag, 2005.
http://www.springerlink.com/content/dkpvlnfgrn3k8xp7/

[EEPT05] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Formal Integration of Inheritance with
Typed Attributed Graph Transformation for Efficient VL Definition and Model Ma-
nipulation. Proc. of IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05), IEEE Computer Society, 2005.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation, EATCS Monographs, ISBN 3-540-31187-4, Springer Verlag. 2006.
http://www.springer.com/3-540-31187-4

[EMF] Eclipse Modeling Framework (EMF) Homepage.
http://www.eclipse.of/emf

[EMT] Eclipse Model Transformation (EMT) Project Homepage at TU-Berlin.
http://tfs.cs.tu-berlin.de/emftrans

[Koe06] C. Koehler. A Visual Model Transformation Environment for the Eclipse Modeling
Framework. Diploma thesis, Technical University of Berlin. 2006.
http://tfs.cs.tu-berlin.de/emftrans/papers/06-ChristianKoehler.pdf

[KS06] A. Königs, A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
Electronic Notes in Theoretical Computer Science 148, 113-150, 2006.

[KSW04] J. M. Kuester, S. Sendall, M. Wahler. Comparing Two Model Transformation
Approaches. Proc. of OCL MDE, 2004.

11 / 12 Volume 7 (2007)

http://sosym.dcs.kcl.ac.uk/events/mtip/
http://citeseer.ist.psu.edu/468103.html
http://www.jucs.org/jucs_10_10/architectural_abstraction_as_transformation/Denford_M.pdf
http://www.jucs.org/jucs_10_10/architectural_abstraction_as_transformation/Denford_M.pdf
http://www.springerlink.com/content/dkpvlnfgrn3k8xp7/
http://www.springer.com/3-540-31187-4
http://www.eclipse.of/emf
http://tfs.cs.tu-berlin.de/emftrans
http://tfs.cs.tu-berlin.de/emftrans/papers/06-ChristianKoehler.pdf

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/papers/6-kuster sendall
wahler.pdf

[OMG06] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification
Version 2.0. 2006.
http://www.omg.org/technology/documents/modeling spec catalog.htm#MOF

[TEB+06a] G. Taentzer, K. Ehrig, E. Biermann, G. Kuhns, E. Weiss, C. Koehler. Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. Model
Driven Engineering Languages and Systems, Lecture Notes in Computer Science
4199, Springer Verlag, 2006.
http://www.springerlink.com/content/t681013811w30537/

[TEB+06b] G. Taentzer, K. Ehrig, E. Biermann, G. Kuhns, E. Weiss, C. Koehler. EMF Model
Refactoring based of Graph Transformation Concepts. To appear in the Electronic
Communications of the EASST, 2006.

[TEG+06] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky,
U. Prange, D. Varró, S. Varró-Gyapay. Model Transformation by Graph Trans-
formation: A Comapartive Study. Model Transformations in Practice Workshop,
MoDELS 2005, 2006.
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/

[TR05] G. Taentzer, A. Rensink. Ensuring Structural Constraints in Graph-Based Models
with Type Inheritance. Fundamental Approaches to Software Engineering, Lecture
Notes in Computer Science 0302-9743, Springer Verlag, 2005.
http://www.springerlink.com/content/98tey0jerhy7pryn

[WTEK06] J. Winkelmann, G. Taentzer, K. Ehrig, J. M. Küster. Translation of Restricted OCL
Constraints into Graph Constraints for Generating Meta Model Instances by Graph
Grammars. To appear in GT-VMT 2006, Electronic Notes in Theoretical Computer
Science, 2006.

Proc. GT-VMT 2007 12 / 12

http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/papers/6-kuster_sendall_wahler.pdf
http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/papers/6-kuster_sendall_wahler.pdf
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF
http://www.springerlink.com/content/t681013811w30537/
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/
http://www.springerlink.com/content/98tey0jerhy7pryn

	Introduction
	Model Transformation by Graph Transformation
	Graphs with Containment Edges
	Related Work
	Conclusion and Future Work

