
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

Generic Search Plans for Matching Advanced Graph Patterns

Ákos Horv́ath, Gergely Varŕo and D́aniel Varŕo

12 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Generic Search Plans for Matching Advanced Graph Patterns

Ákos Horváth1, Gergely Varró2 and Dániel Varr ó3

1 ahorvath@mit.bme.hu
3 varro@mit.bme.hu

Department of Measurement and Information Systems
Budapest University of Technology and Economics,

H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

2 gervarro@cs.bme.hu
Department of Computer Science and Information Theory

Budapest University of Technology and Economics,
H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

Abstract: In the current paper, we present search plans which can guide pattern
matching for advanced graph patterns with edge identities, containment constraints,
type variables, negative application conditions, attribute conditions, and injectivity
constraints. Based on a generic search graph representation, all search plan oper-
ations (e.g. checking the existence of an edge, or extending a matching candidate
by navigating along an edge) are uniformly represented as special predicates with
heuristically assigned costs. Finally, an executable search plan is defined as an ap-
propriate ordering of these predicates. As a main consequence, attribute, injectiv-
ity, and negative application conditions can be checked early (but not unnecessarily
early) in the pattern matching process to cut off infeasible matching candidates at
the right time.

Keywords: graph pattern matching, search plan

1 Introduction

While nowadays model-driven system development is being supported by a wide range of con-
ceptually differentmodel transformation tools, nearly all of these tools have to solve a common
problem: the efficient query and manipulation of complex graph-like model structures. Tools
based on the rule and pattern-based formal paradigm ofgraph transformation (GT)[Roz97,
EEKR99] already integrate research results of several decades. In these tools, a matching of the
left-hand side (LHS) of a graph transformation rule is being sought by some graph pattern match-
ing algorithm, which might be invalidated by valid matchings of negative application conditions
(NAC) [HHT96]. Finally, the engine performs some local modifications to add or remove graph
elements to the matching pattern.

Graph pattern matching leads to the subgraph isomorphism problem that is known to be NP-
complete in general [Ata99], which means that highly time-consuming computations are ex-
pected for the worst-case scenario from theoretical aspects. However, practical model transfor-
mation problems rather have a regular and sparse graph structure, which drastically reduces the

1 / 12 Volume 6 (2007)

mailto:ahorvath@mit.bme.hu
mailto:varro@mit.bme.hu
mailto:gervarro@cs.bme.hu


Generic Search Plans for Matching Advanced Graph Patterns

execution time of graph pattern matching. In order to provide acceptable performance in real-
world application scenarios, graph transformation tools apply sophisticated pattern matching al-
gorithms, which are mostly based on either constraint satisfaction (like AGG [ERT99]) or local
searches driven by search plans (like PROGRES [Zün96], Dörr’s approach [Dör95], FUJABA
[FNTZ98] or GReAT [AKN+06]). As a commonality, all such algorithms have to appropriately
order elementary operations (such as navigations and edge existence checks) in advance by using
tool-specific heuristics, which later guide the pattern matching process itself.

Research [Zün96, GSR05, GBG+06, VVF05] has been focusing so far on the performance
optimal ordering of elementary pattern matching operations like (i) the enumeration of objects
and links of a certain type, (ii) the navigation along links of a given type, and (iii) the existence
checks for links. On the other hand, the ordering of (iv) attribute, (v) injectivity and (vi) NAC
constraint checking operations has been hard wired into the graph transformation engines by
using some simple heuristics.

For instance, in case of NAC checking operations, two wiring strategies are known in GT tools.
The “as soon as possible” (ASAP) style positioning (used by Fujaba) places the NAC checking
operation to the first possible location where all its arguments are bound. Intuitively, when the
size of the NAC pattern is small compared to the unexplored part of the LHS pattern, a quickly
retrieved matching for the NAC may significantly reduce the search space by avoiding the un-
necessary traversal of the remaining part of the LHS. On the other hand, when the NAC is large,
the corresponding check operation can be time consuming, so a delayed execution may provide
better overall performance for the pattern matching of the LHS. This idea is implemented by the
“as late as possible” (ALAP) strategy (used by PROGRES), which executes NAC checking only
when a complete matching for the LHS has been found.

These best engineering practices are acceptable for performing cheap checks like checking
attribute and injectivity constraints, but when a single search plan operation represents a complete
pattern matching process like in case of checking a NAC or calling native external libraries (as
in AGG or VIATRA 2), hard-wired positioning may cause performance degradation as (a) it lacks
flexibility and extensibility and (b) it ignores the complexity of the actual search plan operation.
However, checking NAC is critical to model transformation problems in order to forbid multiple
application of a rule on the same matching.

This is a common situation in case of model-specific search plans [VVF05, GBG+06] where
the cost of search plan operations depends on the actual graph being transformed. However,
even in the case of (traditional) metamodel-specific search plans (like in FUJABA, GReAT or
PROGRES), the bindings of input parameters of rules may have a huge impact on the optimal
ordering of complex search plan operations. Intuitively, if many input parameters are passed to a
rule, the ASAP strategy can be too expensive for complex NACs.

In the current paper, we propose a general framework for uniformly representing a large variety
of search plan operations by expressing them as cost-weighted predicates. As an appropriate
ordering of these predicates defines an executable search plan, this approach is able to uniformly
guide the pattern matching process for advanced graph patterns regardless of how we assign
the actual costs to different search plan operations. As a result, better performance is expected,
especially, for checking negative application conditions, which avoids the previous problems.

The main practical advantages of our approach are modularity, flexibility, and extensibility.
The different phases of pattern matching (e.g. cost assignment, generation of search plans, exe-

Proc. GT-VMT 2007 2 / 12



ECEASST

cution of search plans etc.) are fully separated and independent, thus they can be adapted to very
different graph transformation engines and strategies (metamodel-based vs. model-based search
plans). Furthermore, new types of predicates can be introduced easily by assigning appropriate
costs without altering the algorithms for search plan generation.

The rest of the paper is structured as follows. First, Section2 briefly introduces a combined
graph-based representation for models and metamodels used in the paper (and in the VIATRA 2
framework). Then Section3 proposes our unified predicate based framework for driving pattern
matching processes. Related work is discussed in Section4, while Section5 concludes our paper.

2 Background

2.1 Models and Metamodels

Metamodeling is a fundamental part of model transformation design as it allows the structural
definition (i.e., abstract syntax) of modeling languages.

In the paper, we use a unified hierarchical and directed graph representation which stores
metamodels and models in a combined model space. Intuitively, the morphisms from instance
nodes (and edges) to their respective node (edge) types are stored explicitly in our graph model.
This unified graph representation serves as the underlying model of the VIATRA 2 framework.

This way, graph nodes (called entities in VIATRA 2) uniformly represent MOF packages,
classes, or objects on different metalevels, while graph edges with identities (called relations
in V IATRA 2) denote MOF association ends, attributes, link ends, and slots in a uniform way.
As a summary, nodes represent basic concepts of a (modeling) domain, while edges represent
the relationships between other model elements. Nodes are arranged into a strict containment
hierarchy (to denote model element containment either on the metamodel or model-level).

There are two special relationships between graph elements: thesupertypeOf (inheritance,
generalization) relation represents binary superclass-subclass relationships between nodes or
edges, while theinstanceOf relation represents type-instance relationships (to explicitly rep-
resent the meta-levels).

By using explicitinstanceOfrelationship, metamodels and models can be stored in the same
model space in a compact way. Furthermore, this allows the use of so-calledgeneric patterns
in transformation rules (see later in Figure2), which capture common graph algorithms (e.g.
transitive closure, graph searches, etc.) independently of a certain metamodel.

Example1 Figure 1 presents the joint representation of a simplified UML metamodel and an
instance model. The metamodel is contained in the UMLMeta element. Both the classes of the
metamodel (such as Package, Assoc, etc.) and the objects of the instance model (such as jar,
jarEntry, etc.) uniformly appear as nodes (entities). Instance-of relation between nodes is also
represented by dotted edges (for easier readability not all edges are illustrated). This example
illustrates the joint graph representation and also the V IATRA 2 representation.

3 / 12 Volume 6 (2007)



Generic Search Plans for Matching Advanced Graph Patterns

// metamodel
entity (UMLMeta){

entity (Package){
relation (EOA,Package,Assoc);
relation (EOC,Package,Class);
relation (SUB,Package,Package);}

entity (Class);
entity (Assoc){

relation (CF,Assoc,AssocEnd);
supertypeOf (Assoc,Class);}

entity (AssocEnd){
relation (STF,AssocEnd,Class);}

}
// instance model

Package(java);
Package.SUB(sub1,java,lang);
Package(lang);
Package.SUB(sub2,lang,jar);
Package(jar);
Package.EOC(eo1,jar,jarEntry);
Package.EOC(eo2,jar,jarFile);
class(jarEntry); class(jarFile);

Figure 1: VPM example

2.2 Graph Patterns

Graph transformation (GT) is a rule and pattern-based paradigm frequently used for describing
model transformation. A graph transformation rule contains a left-hand side graphLHS, a right-
hand side graphRHS, and (one or more) negative application condition graphsNAC connected
to LHS. A negative application condition [HHT96] is a graph morphism, which maps theLHS
pattern to aNAC pattern. The application of a rule to ahost (instance) modelM replaces a
matching of theLHS in M by an image of theRHS.

Graph patterns(precondition pattern) consist of theLHS pattern, theNAC pattern, and the
mapping between them. They represent conditions (or constraints) that have to be fulfilled by
a model in order to execute transformation steps on the model. The most critical step of graph
transformation is graph pattern matching, i.e., to find such a matching of theLHS pattern in the
model space that is not invalidated by a matching of the negative application condition graph
NAC, which prohibits the presence of certain combinations of nodes and edges. So we restrict
our current investigations only to graph patterns and graph pattern matching.

Example2 An example graph pattern is depicted in Figure 2, where the left side illustrates
the graph representation and the right side shows the V IATRA 2 representation, which is detailed
in [BV06]. This pattern is our running example through the paper, as it contains all advance graph
pattern elements (e.g., attribute check, nac, etc.), and requires a generic graph representation.

TransitiveC pattern is a generic implementation of the transitive closure, which can be used
with any metamodel MM passed as a parameter, where NT is matched to the Node Typeand ET

Proc. GT-VMT 2007 4 / 12



ECEASST

to the Edge Type, which runs between NT type nodes (with a restriction on the name attributes).
X represents the inspected element for the transitive closure and Z expresses the closure nodes.
The injectivity constraints define that all variables are matched to different elements and the
negative application condition expresses that there is no edge R3 between the X and Z nodes.
For easier readability the explicit ”instance of” edges (dotted lines) are only depicted between
the NT type element and the X, Y and Z nodes.

pattern transitiveC(X,Z,MM) ={ // meta model
entity (NT) in MM;
relation (ET,NT,NT);
check(name(NT)!= " CLASS" && name(ET)!= " EOC" );
// instance model nodes
entity (X); instanceOf (X,NT);
entity (Z); instanceOf (Z,NT);
entity (Y); instanceOf (Y,NT);
X!=Y; Y!=Z; X!=Z;
// instance model edges
relation (R1,X,Y); instanceOf (R1,ET);
relation (R2,Y,Z); instanceOf (R2,ET);
R1!=R2;
// nac check

neg nac1(X,Z,ET)={
entity (X); entity (Z);
relation (R3,X,Z); instanceOf (R3,ET);}

}

Figure 2: The pattern graph oftransitiveC(X,Z,MM)

2.3 Graph Pattern Matching

Each variable of a graph pattern is bound to a constant node in the model such that thismatching
(binding) is consistent with edge labels, and source and target nodes of the model. Amatching
for a precondition patternis a matching for itsLHS pattern, provided that no matching should
exist for itsNAC pattern.

To drive the pattern matching process, the generation of search plans is a frequently used
concept. Informally, a search plan defines the order of traversal (a search sequence) for the nodes
of the instance model to check whether the pattern can be matched. The model is traversed
according to a specific search plan.

Example3 For instance, a matching of the pattern transitiveC of Figure 2 in model Figure 1
with UMLMetaas the input of MM is the following: X = java, Y = lang, Z = jar, R1 = sub1, R2
= sub2, ET = SUBand NT = Package(MM = UMLMeta). Where a possible traversal order for
the pattern is: (0) MM (it is an input parameter),(1) NT, (2) ET, (3) X, (4) Y, (5) Z, and for the
nac1 negative application condition is: (1) ET, (2) X, (3) Z.

5 / 12 Volume 6 (2007)



Generic Search Plans for Matching Advanced Graph Patterns

3 Unified Search Plan Representation

This section introduces our approach on handling advanced graph patterns. First Subsection3.1
presents the concept ofsearch graphs, which can handle complex constraints on the graph
patterns (e.g., containment, generic type parameters etc.). Then Subsection3.2 introduces the
adornment constraints, followed by Subsection3.3which proposes our complex constraint cost
approximation, and finally, Subsection3.4 introduces the revised representation of search plans
based on the elementary steps of a pattern matching process (search operations).

3.1 Search Graph

A search graphis a joint representation of pattern graph elements and operation constraints that
drives the pattern matching process. In our interpretation a search graph is ahypergraphrepre-
senting aconstraint net, where graph nodes reflect variables, and hyperedges express constraints
(predicates) between the variables. A search graph is directly derived from the pattern graph as
follows:

1. Pattern variable: Each element (node or edge) of the pattern graph is mapped to apattern
variable. These elements (depicted by grey ovals, e.g.,X in Figure3) represent the arguments of
the constraints.

2. Operation Constraint: Each constraint on the pattern graph (containment, connectivity
etc.) is mapped to an n-ary (usually binary) operation predicate, (illustrated by rectangles in our
figures, e.g.,trg in Figure3) that has to be fulfilled during the matching process. The constraints
used in our approach are the following (however, the actual set of constraints can be extended
easily):

1. Simple predicatesrepresent core constraints between two pattern variables.

• A source constraintsrc(Src,E) expresses that nodeSrc is the source of edgeE in the
pattern graph.

• A target constrainttrg (Trg,E) expresses that nodeTrg is the target of edgeE in the
pattern graph.

• An ’instance of’ constraintinst(A,Type) means thatA is an instance ofType, where
both elements are represented in the model space.

• A containment constraintin(A,Container) expresses thatContainer containsA.

2. Complex predicatesare defined between an arbitrary number of pattern graph elements.

• Theinjectivity constraintinj (A1, ...,An) means that theAi must be matched to differ-
ent graph elements (injective matching).

• Thenegative application conditionnacj(A1, ...,An) expresses that the check ofnacj

should be initiated with the given input parameters.

Proc. GT-VMT 2007 6 / 12



ECEASST

• Theattribute check constraintattr (A1, ...,An) evaluates a Boolean expression check-
ing, based on the attributes of the pattern nodes, which are accessed by variables
A1, ...,An.

Example4 The search graph of Figure 2 is illustrated in Figure 3 (including some parts of the
pattern graph itself to improve readability). The search graph contains eight pattern variables;
MM, ET and NT represent the metamodel part of the pattern graph, while variables X, Y, Z, R1
and R2 represent the nodes and edges of the instance model. The operation predicates directly
define the constraints of the pattern graph: src, trg define the source and target node of an edge.
For example, X is the source of edge R1, in defines that ET and NT should be contained directly
by node MM, nac1 represents the negative application condition with input parameters ET, X
and Z, inj defines the injectivity check between its input variables like between X, Y, and finally
inst represents the direct instance of relations (e.g., between R1 and ET).

Figure 3: Search graph of GT pattern transitiveC(X,Z,MM)

3.2 Adornment

An operation constraint may represent different concrete search operations depending on the
binding of its arguments.

7 / 12 Volume 6 (2007)



Generic Search Plans for Matching Advanced Graph Patterns

An adornment(see in [Ull89]) consists of a string, composed of lettersB (bound) andF (free).
The meaning of letterB in an adornment is that the variable must be bound to a value in that
position. The meaning of the letterF in an adornment is that the variable is not bound in that
position.

A search operationconsists of a constraint and an adornment, they are the atomic units of
pattern matching and represents a single step in the matching process. A search operation is
either anextendtype operation which extends the matching by a new element (e.g match the
target node along an edge), or achecktype operation used for checking constraints between
pattern elements (e.g., whether an edge runs between two nodes). For example, if adornments
FB or BF are attached to a simple constraint, then they represent an extend type search operation,
and in case ofBB it is a check type operation.

Though 2n different adornments can be assigned to each n-ary operation constraint in theory,
only a subset of these adornments are used, which respect elementary complexity consideration.

Usually for the simple constraints the permitted adornments areFB; BF; BB , while FF
represents a far too expensive operation, as we need to cumulate all pairs of elements in the
model.

For complex constraints only theB...B adornments are permitted, as all variables must be
bound to an element in case of injectivity checking, NAC checking and Boolean term evaluation.

In Figure3, permitted adornment values are illustrated with small tables near the constraints.
The table has two columns, which show the adornment and the cost of the operation (which is
discussed in Subsection3.3), respectively.

3.3 Cost of Search Operations

At this point, a joint representation of search constraints is available. In order to generate efficient
search plans cost functions (weights) have to be defined for the operations. Due to space limita-
tions in the paper we are using the more common meta-model based (compile time) weighting
and the number values are only used to illustrate the order of magnitude of operation costs, but
it is important to mention that the approach is also capable of handling model (runtime) based
weighting. The only differences are in case of runtime weighting are (i) the usage of runtime
statistics collected from the instance model, (ii) and the more precise weighting ofsimple extend
type predicates (e.g., the weight of an’instance of’ constraintis based onactual numberof the
instance elements in the model), andnac checkpredicates, where the cost can be directly derived
from the pattern graph of thenac.

Weighting thesimple operationfollows the guidelines of edge multiplicity based cost func-
tions (e.g., if an edge multiplicity is one-to-many, then its cost is higher then if it is one-to-one)
with the following restriction: the lowest cost is assigned to theBB adornments (checktype op-
eration), and there is no difference between the cost ofFB and theBF (extendtype operation).
Among the constraints we use the cost ordering based on our earlier transformation experiments
and [VSV06]: in << trg = src<< inst

In case of complex constraints, assigning costs to operations is easier on one hand as they have
only one permitted adornmentB...B , but on the other hand better cost prediction is possible
using a priori knowledge. In case ofinj and attr constraints the number of input parameters
provides a good prediction for complexity, while in case of anacconstraint the wholenacpattern

Proc. GT-VMT 2007 8 / 12



ECEASST

graph matching cost can be evaluated at compile time. The cost functions are the following:

• For inj andattr constraint the cost function is linear in the number of parameters.

• For nac constraint the cost function is proportional to the number of constraints in the
search graph of thenacpattern. The idea behind this selection is that anaccheck may cut
the search space significantly when thenacpattern is small.

3.4 Search Plans

A search planis a totally ordered list of search operations (one possible traversal of the search
graph). As the atomic operations already have cost values attached, we can evaluate the cost of a
whole search plan.

Thecost of a search plan(denoted byw(P)) is defined by the formulaw(P) = ∑n
i=1 ∏i

j=1w j ,
wherew j is the weight of thejth operation according to the order defined by the search plan, and
n is the number of operation constraints in the original search graph. As described in [VVF05],
this formula is an estimation for the size of the search space that has to be traversed during pattern
matching, if model-specific search graphs are used and the weightw j expresses the expected
number of iterations performed during the execution of thejth operation. As a consequence, the
search plan with the minimum costw(P) will have the best expected run-time performance. If the
weights are fixed and determined at compile-time, this cost function is still an acceptable choice
as the search plan that is optimal wrt.w(P) prefers the early execution of low cost operations.
For generating the actual search plans, only minor modifications to the techniques described
in [VVF05] are needed.

Example5 The following example shows two search plans of the running example pattern
graph: Figure 4(a) represents the search plan where X,Z and MM parameters are bound, while
Figure 4(b) shows the search plan where only X and MM are the fixed input parameters.

In case of Figure 4(a), the nac1 is in the first quarter of the search plan, which means it is an
ASAP like positioning, and checks the negative application condition before the extend operation
towards the R1,R1 and Y variables. While in case of the search plan depicted in Figure 4(b) the
nac1 check is in the end as in case of an ALAP like ordering.

This simple example shows, that the joint search plan representation is capable of handling
different positioning for advance constraints, which (like in case of checking a NAC) could result
better search plans, compared to hard-wired positioning.

4 Related work

All graph transformation tools use some clever strategies for pattern matching. Since an intensive
research has been focused to graph transformation for a couple of decades, several powerful
methods have already been developed. First we focus on the three most advanced compiled
approaches that use search plan guided and local search based algorithms.

Fujaba [KNNZ00] performs local search starting from the node selected by the system de-
signer and extending the matching step-by-step to neighbouring nodes and edges. Fujaba fixes

9 / 12 Volume 6 (2007)



Generic Search Plans for Matching Advanced Graph Patterns

constraint type comment

in jBB(Z,X) check Z not equals to X
inFB(NT,MM) extend NT under MM
instBB(X,NT) check X is instance of NT
instBB(Z,NT) check Z is instance of NT
trgFB(ET,NT) extend target of ET is NT
srcBB(ET,NT) check source of ET is NT

nacBBB
1 (X,Z,ET) check nac1 check

attrBB
1 (ET,NT) check attr1 is evaluated

trgFB(R2,Z) extend target of R2 is Z
instBB(R2,ET) check R2 is instance of ET
srcBF(R2,Y) extend source of R2 is Y
instBB(Y,NT) check Y is instance of NT
in jBB(Y,Z) check Y not equals to Z
in jBB(X,Y) check X not equals to Y
trgFB(R1,Y) extend target of R1 is Y
srcBB(R1,X) check source of R1 is X

instBB(R1,ET) check R1 is instance of ET
in jBB(R1,R2) check R1 not equals to R2

(a) X,Z and MM are fixed input parameters

constraint type comment

inFB(NT,MM) extend NT under MM
instBB(X,NT) check X is instance of NT
trgFB(ET,NT) extend target of ET is NT
srcBB(ET,NT) check source of ET is NT
attrBB

1 (ET,NT) check attr1 is evaluated
srcFB(R1,X) extend source of R1 is X

instBB(R1,ET) check R1 is instance of ET
trgBF(R1,Y) extend target of R1 is Y
instBB(Y,NT) check Y is instance of NT
in jBB(X,Y) check X not equals to Y
srcFB(R2,Y) extend source of R2 is Y

instBB(R2,ET) check R2 is instance of ET
in jBB(R1,R2) check R1 not equals to R2
trgBF(R2,Z) extend target of R2 is Z
instBB(Z,NT) check Z is instance of NT

in jBB(Y,Z) check Y not equals to Z
in jBB(Z,X) check Z not equals to X

nacBBB
1 (X,Z,ET) check nac1 check
(b) X and MM are fixed input parameters

Figure 4: Search plans of transitiveC

a single traversal strategy at compile-time for each rule by automatically generating Java code
for the pattern matching process. During code generation Fujaba places attribute, injectivity and
NAC checks to the earliest allowed location. As a consequence, the corresponding run-time op-
erations are executed immediately after all the necessary variables have been fixed, which means
that this engine implements a hard-wired as soon as possible strategy.

PROGRES [Zün96] uses the advanced concept of operation graphs for representing structural
constraints on the ordering of basic operations, which are similar to search graphs in the current
paper. Costs of search plan operations are defined by using a very sophisticated application do-
main independent cost model. PROGRES can assign weights to attribute checking operations,
which enables their proper scheduling in search plans. On the other hand, injectivity and NAC
checks are excluded from the cost model, which results in their hard-wired positioning at run-
time. Injectivity constraints are tested as soon as all its arguments are known, while negative
application conditions are checked late, i.e., when a complete matching for the pattern has been
found. Compared to our approach, PROGRES supports navigation along indexed attributes in
addition to attribute checking.

The pattern matching engine of GReAT [AKN+06] only allows injective matchings whose
corresponding constraints are checked in an ’as soon as possible’ style just like attributes, which
are tested immediately whenever a new partial matching has been calculated as a result of an ex-
tension of a smaller matching. In GReAT, negative application conditions can only be expressed
by zero cardinality edges, which normally restricts the size and complexity of NACs, but reduces
expressiveness obviously.

Algorithms that handle pattern matching as a constraint satisfaction problem (CSP) like [LV02]

Proc. GT-VMT 2007 10 / 12



ECEASST

in AGG [ERT99] do not directly involve the concept of search plans as stated in [VSV06]. How-
ever, the underlying constraint solver engine has to define a variable binding order, which can
be considered as a search plan derived dynamically at run-time. As a consequence, CSP-based
graph transformation engines by their nature support that dynamicity that has been achieved by
our approach for local search based algorithms. However, as constraint solver implementations
typically use the first-fail principle for determining the variable binding order, this technique still
schedules the attribute, injectivity and NAC checking operations to the earliest possible location.

Altogether, we believe that our current contribution is in the increased generality and modu-
larity of the search graphs, and in the more flexible handling of negative application conditions.
This way, the current paper is complementary to (and can be integrated with) the recent advances
in model-specific search plans (as in GrGen [GBG+06] or [VVF05]).

5 Conclusion

In the current paper, we have presented a general framework for uniformly representing search
plan operations. The essence of the approach is to express the operations as cost weighted predi-
cates and assign the weights based on the binding of their input parameters. We used adornments
to capture binding constraints on the predicates and introduced a compile-time weighting for a
variety of advance pattern graph elements. The implementation based on these techniques will
be available in the new VIATRA 2 release.

In the future, it will be interesting to apply our solution on recursive graph patterns, where
recursive call represents a new predicate in the search graph, which does not have any restrictions
on its adornment, making cost assignment complicated.

Acknowledgements: The paper is partially supported by the SENSORIA European IP (IST-
3-016004).

Bibliography

[AKN +06] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo. The Design of a Language for
Model Transformations.Software and Systems Modeling5(3):261–288, September
2006.

[Ata99] M. J. Atallah (ed.).Algorithms and Theory of Computation Handbook. CRC Press,
1999.

[BV06] A. Balogh, D. Varŕo. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. InProc. of the 21st ACM Symposium on Applied Computing.
Pp. 1280–1287. ACM Press, Dijon, France, April 2006.

[Dör95] H. Dörr. Efficient Graph Rewriting and Its Implementation. LNCS 922. Springer-
Verlag, 1995.

11 / 12 Volume 6 (2007)



Generic Search Plans for Matching Advanced Graph Patterns

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.).Handbook on Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer.In [EEKR99] . Chapter The AGG-Approach: Lan-
guage and Tool Environment, pp. 551–603. World Scientific, 1999.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Z̈undorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels and Rozenberg (eds.),
Proc. of the 6th International Workshop on Theory and Application of Graph Trans-
formation. LNCS 1764, pp. 296–309. Springer Verlag, 1998.

[GBG+06] R. Geiß, V. Batz, D. Grund, S. Hack, A. M. Szalkowski. GrGen: A Fast SPO-Based
Graph Rewriting Tool. InProc. of the 3rd International Conference on Graph Trans-
formation. 2006. Accepted paper.

[GSR05] L. Geiger, C. Schneider, C. Reckord. Template- and Modelbased Code Generation
for MDA-Tools. In Giese and Z̈undorf (eds.),Proc. of the 3rd International Fu-
jaba Days. Pp. 57–62. Paderborn, Germany, September 2005.ftp://ftp.upb.de/doc/
techreports/Informatik/tr-ri-05-259.pdf.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions.Fundamenta Informaticae26(3/4):287–313, 1996.

[KNNZ00] T. Klein, U. Nickel, J. Niere, A. Z̈undorf. From UML to Java And Back Again.
Technical report, University of Paderborn, 2000.

[LV02] J. Larrosa, G. Valiente. Constraint Satisfaction Algorithms for Graph Pattern Match-
ing. Mathematical Structures in Computer Science12(4):403–422, 2002.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph Trans-
formation. Volume 1: Foundations. World Scientific, 1997.

[Ull89] J. D. Ullman.Principles of Database and Knowledge-Base Systems. Volume II: The
New Technologies. Computer Science Press, 1989.

[VSV06] G. Varŕo, A. Scḧurr, D. Varŕo. Experimental Evaluation of Optimization Techniques
in Graph Transformation Tools by Benchmarking.Software and Systems Modeling,
2006. Submitted paper.

[VVF05] G. Varŕo, D. Varŕo, K. Friedl. Adaptive Graph Pattern Matching for Model Trans-
formations using Model-sensitive Search Plans. In Karsai and Taentzer (eds.),Proc.
of Int. Workshop on Graph and Model Transformation (GraMoT’05). ENTCS 152,
pp. 191–205. Tallinn, Estonia, September 2005.

[Zün96] A. Zündorf. Graph pattern-matching in PROGRES. InProc. 5th Int. Workshop on
Graph Grammars and their Application to Computer Science. LNCS 1073, pp. 454–
468. Springer-Verlag, 1996.

Proc. GT-VMT 2007 12 / 12

ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf
ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf

	Introduction
	Background
	Models and Metamodels
	Graph Patterns
	Graph Pattern Matching

	Unified Search Plan Representation
	Search Graph
	Adornment
	Cost of Search Operations
	Search Plans

	Related work
	Conclusion

