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Abstract: Triple Graph Grammars (TGGs) allow the specification of high-level
rules modelling the synchronized creation of elements in two graphs related through
a correspondence graph. Low-leveloperationalrules are then derived to manipulate
concrete graphs. However, TGG rules may become unnecessarily verbose when el-
ements have to be replicated from one graph to the other, and their actual derivation
cannot exploit the presence of reoccurring patterns. Moreover they do not take ad-
vantage from situations in which a normal creation grammar for one of the graphs
exists, from which TGG operational rules can be derived to build the other graph.

We present an approach to generating TGG operational rules from normal ones,
reducing the information needed to derive them, through the definition ofTriple
Patterns, a high-level, compact, declarative, and visual notation for the description
of admissible structures in a triple graph. Patterns can be expressed with respect to
classes defined in a meta-model, and instantiated with derived classes at the model
level, thus exploiting the inheritance hierarchies. The application of the generated
rules results into the (synchronized or batch) creation of the structures specified
in the patterns. We illustrate these concepts by showing their application to the
synchronized incremental construction of visual models and of their semantics.

Keywords: Graph Transformation, Triple Graph Grammars, Visual Languages.

1 Introduction

Model transformation is becoming increasingly popular with the advent of model-driven devel-
opment technologies, such as MDA [MSUW04], where model-to-model transformation plays a
central role. In such transformations, an input modelMA conforming to a meta-modelMMA is
transformed into an output modelMB conforming to a (possibly different) meta-modelMMB.
Several scenarios are of interest here. For example, in a syntax directed visual modelling tool
with separate models for concrete syntax and for semantic interpretation (which contains the
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Triple Patterns

relevant semantic roles, see [BDD+04]), one would like to model the synchronized evolution
of both models (although a batch update of the semantic model could also make sense). For
tool integration applications, a (bi-)directional – batch or incremental – transformation is desir-
able [Sch94]. Finally, one could be interested in checking the consistency of two given models.

Triple Graph Grammars (TGGs) [Sch94] were proposed by Schürr as a means to model the
transformation of two graphs (source and target) related through a correspondence graph (whose
nodes have morphisms to elements in the other two graphs). The main idea is to model the
synchronized evolution of the two graphs, as well as the correspondence graph relating both,
by means of triple rules. From thesecreation triple rules, algorithms were given to produce
operationalrules to perform a translation in either direction (from source to target or vice versa),
to create the correspondence graph given two already existing source and target graphs, or to
check the validity of the correspondence graph.

In the aforementioned scenario of a syntax directed visual modelling tool, the use of TGGs
may be too cumbersome. In these environments, one models by means of rules the possible
user editing actions. This brings advantages in cases when one has to model complex editing
actions, where many elements are created in the concrete syntax, but requires the designer to
define complex TGG creation rules as well. It is however possible to identify patterns for such
situations, whereby certain elements in the concrete syntax always play the same role in the
semantic model. Therefore, we propose an approach in which the designer has to provide the
creation grammar for the concrete syntax only, and some triple patterns specifying admissible
relations between concrete syntax elements and semantic roles. We have defined a collection
of algorithms which exploit these patterns to produce sets of TGG operational rules that either
do a batch translation from concrete syntax to the semantic model, or produce the synchronized
evolution of both. This reduces the amount of information that the designer has to input, since
many triple patterns can be “applied” to a normal graph transformation rule.

The approach we present is suitable for integration in meta-modelling environments, as the
algorithms explicitly take into account the inheritance hierarchies of the meta-models. Although
the presented examples are taken from the Visual Languages area, these ideas are readily ap-
plicable to general model-to-model transformations.

Paper Organization. Section2 introduces TGGs, and some of the extensions we have pro-
vided to the underlying graph model [GL07]. Section3 presentstriple patternsand the algo-
rithms for generating operational triple rules. In Section4, we take into account the inheritance
hierarchy of the meta-model, presenting the concept ofabstract triple patterns. Section5 com-
pares with related research, and Section6 discusses conclusions and future work.

2 Triple Graph Grammars

Triple graphsare made of three graphs: source, target and correspondence ones. Correspondence
graph nodes are used to relate elements in source and target graphs. Triple graphs are depicted

as p : psrc
ps←− pcorr

pt−→ ptar, wherepsand pt are morphisms from the nodes in graphpcorr to
nodes in the source and target graphs. The structure of each graphpX (for X ∈ {src,corr, tar})
is given bypX = (VX,EX,srcX : EX →VX, tarX : EX →VX), whereVX is the set of vertices,EX

is the set of edges, andsrcX andtarX are functions defining the source and target nodes of every
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edgee∈ EX. Labels for nodes and edges can also be given.
In [GL07], we extended the underlying triple graph structure originally proposed in [Sch94]

with attributes for nodes and edges, and a typing by a type triple graph (or meta-model triple)
which may contain inheritance relations between nodes or edges. Moreover, we made the relation
between the source and target graphs more flexible, by allowingpartial morphisms from nodes
in the correspondence graph to nodes and edges in the other two graphs.

Figure1(a) shows an example meta-model triple taken from the area of visual modelling lan-
guages. The lower part (source graph) contains a simplified meta-model with the base classes for
the concrete syntax of a visual language [BG04]. Briefly, in a diagrammatic language, signifi-
cantspatial relationsexist amongidentifiable elements. The latter are recognizable entities in the
language, to which a semantic role can be associated, and which are univocally materialized by
means of a complex graphic element. Each such element is composed in turn of simpler graphic
elements, each possessing one or more attach zones, which define its availability to participating
in different spatial relations, such as containment or touching.

post−conditions
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GraphicElement

Complex

GraphicElement

AttachZone

Hybrid

<<final>> DotTouchesTouches Contains

SpatialRelation
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Container Connection
Entity

Role

SemanticRole

Token TransitionElementHolder

pre−conditionsdecorates

post−conditions

ReferrableElement

Tok2Sem Pl2Sem Tr2Sem

Role

PlaceSem TransSem

Identifiable

Element

Place ArcTP ArcPT Transition

Container EntityConnection

Token

1

1..*

1..*

Syntax

2

1

1..*

1

1

*

*

Correspondence

Semantics

(a) (b)

target

source0..1
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Figure 1: (a) Meta-Model Triple for the Syntax and Semantics of Visual Languages (b) Special-
ized Meta-Model for Petri Nets.

The upper part (target graph) contains a meta-model that describes the possible abstract roles
for a transition-based (i.e. token-holder) semantics (i.e. semantics in the style of Petri nets,
UML 2.0 activity diagrams and automata). The correspondence graph assigns semantic roles to
syntactic elements. When a meta-model for a new visual language is defined, the newly defined
concrete syntax concepts inherit from the classes in the syntax meta-model. If the language has a
transition-based semantics, then the designer can create concrete roles by subclassing the classes
in the semantics meta-model. Thus, predefined, customizable model transformation libraries
implementing the operational semantics can be reused for the new language. Figure1(b) shows
the definition of the syntactic and semantic roles for Petri nets (we have omitted arc weights for
simplicity of presentation). The significant spatial relations are refined (by means of a creation
graph grammar, with some rules shown in Figures2(a) and3) to be theTouchesrelation between
instances ofArcPT (ArcTP) and a sourcePlace(Transition) or a targetTransition(Place), and
theContainsrelation, between instances ofPlaceandToken. Note that aPlacecan play both the
role of anEntity, in relation to the arcs which refer to it, and that of aContainer, in relation to
theTokensit holds.

TGG rules model the transformation of triple graphs. In [GL07] we adapted TGG rules to
the Double Pushout approach (DPO) [EEPT06], in which rules are modelled using three com-
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ponents,L, K andR, where:L (the left hand side, LHS) contains the elements to be found in the
host graph where the rule is applied;K contains the elements preserved by the rule application;
andR (the right hand side, RHS) contains the elements that should replace the part identified by
L in the host graph. The DPO approach has been lifted to work with any (weak) adhesive HLR
category [EEPT06] (such as those for graphs, Petri nets, etc.). In [GL07] we showed that the
categoryTriAGraph TriATG of attributed typed triple graphs (short triple graphs) and morphisms
is an adhesive HLR category. Therefore, in our case,L, K andRare triple graphs.

t1 : Token : Contains
: target

: Touches : ArcTP : source

p2: Place
: target

: Touches : ArcTP : Touches

t1: Transition

: source
: source

t1: Transition
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: target

: Touches
: target
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tr1: Tr2Semts1: Tok2Sem

trs1: TransSemtks1: TokSem
: post−conditions

: post−conditions

addTwoOutPlaces

ps1: Pl2Sem

: decorates

pls1: PlaceSem

ps2: Pl2Sem

pls2: PlaceSem

: Touchesp1: Place

Figure 2: (a) Rule Modelling an Editing Action. (b) Triple Rule Modelling the Synchronized
Creation of Semantic Roles.

The motivation for this work is the following. Given a normal graph grammar modelling
the possible editing actions in a modelling environment (i.e. working in the concrete syntax
only), how can we obtain triple rules that update or build synchronously the semantic model?
As an example, Figure2(a) shows a rule modelling a complex editing action by which, given an
existing transition, two places are created, connected with arcs from the transition to the places,
and a token is inserted into one of the places. Figure2(b) illustrates the desired corresponding
triple rule that synchronously creates the semantic elements together with the syntactic ones,
designating the created places as post-conditions for the transition. We could build by hand a
TGG rule for each single syntax editing rule. However, this task is repetitive, as elements in the
concrete syntax are related in the same way to elements in the semantic model (as specified in
the meta-model triple), i.e. a reoccurring pattern can be identified in the triple rules.

3 Triple Patterns

In this section we present the concept ofTriple Pattern, together with an algorithm that, given a
rule (like the one in Figure2(a)) and a set of patterns, generates an operational TGG rule (like the
one in Figure2(b)). For simplicity of presentation, we assume the simple graph structure men-
tioned in the first paragraph of Section2 (i.e. untyped graphs, with nodes in the correspondence
graph having two morphisms: one to a node in the target and one to a node in the source graph,
like in [Sch94]). The adaptation of the algorithm to more complex graph models is straightfor-
ward. Assuming that the input rule acts on the source graph only, the algorithm generates a TGG
rule that synchronously creates the necessary elements in the target graph. Symmetrically, the
input rule could act on the target graph, and the generated TGG rule would complete the source
graph. Moreover, as in [Sch94], it is also easy to generate slightly different TGG rules: batch
rules (i.e. rules assuming that the source elements are already created, and which then create
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the target graph elements), rules for creating the correspondence graph, assuming that the source
and target graphs are created, and rules for checking the validity of the correspondence graph.

A triple patternp : psrc
ps←− pcorr

pt−→ ptar is a triple graph conformant to a meta-model triple.
Formally, given a triple patternp and a triple graphG, we say thatG satisfiesp (written G |= p)
if an injective triple graph morphismm : p→G exists.

Example. We first start by giving an intuition of the algorithm through an example. In this
paper, we use triple patterns in order to specify in a visual, high level, acausal notation the kind
of configurations we want to find in our semantic models when certain syntactic configurations
are met (or the other way round). Thus, our triple patterns are triple graphs conforming to the
meta-model of Figure1. Figure3 shows a triple pattern depicting the needed structure in the
syntactic model for a holder to have a token in the semantic model. In this case, aPlacein the
syntactic model has an associatedPlaceSemrole (a subclass ofHolder) in the semantic model.
Similarly, aTokenin the syntactic model has aTokSemrole in the semantic model (a subclass
of classTokenof the semantic meta-model). In the semantic model, a tokendecoratesa holder,
while at the syntactic level the placecontainsthe token.
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Figure 3: Applying a Pattern to a Rule.

Figure3 also shows a syntactic editing rule (“addToken”) modelling the creation of a token
inside a place in the syntactic model. The objective of the algorithm (“Apply”) is to obtain the
triple rule shown in the figure, where information about the actions to be done at the seman-
tic level has been incorporated, together with the mapping between the syntactic and semantic
models. Roughly, we first try to find a match from the pattern to the rule’s RHS. Then we glue
the pattern and the RHS of the syntactic rule through the matching, to obtain the triple rule’s
RHS. Finally, we construct the triple rule’s LHS by taking the elements in the correspondence
and semantic graphs (of the RHS) which are related to elements which were already present in
the syntactic rule’s LHS.

The following algorithm describes the application of a set of patterns to a non-deleting normal
rule, resulting in one triple rule. Later, we show how the algorithm can be easily modified for its
application to deleting (and non-creating) rules.

Apply(P: SetOfTriplePatterns, rl: Rule): TripleRule

Let P = {pi}i∈I be a set of triple patterns of the formpi : pi
src

psi

←− pi
corr

pti−→ pi
tar andrl a non-

deleting normal rulerl : L
l←− K

r−→ R with L = K, and which therefore can be written as
rl : L

r→ R. The application ofP to rulerl results in a triple rulerl ′ as follows:
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1. Initialize the triple rulerl ′, copying rulerl in the source part ofrl ′. The resulting triple

rule is written asrl ′ : Lrl ′
r ′→ Rrl ′ , wherer ′ is a triple graph morphism (see Figure4).

Ltar = /0
r ′tar= /0 // Rtar = /0

rl ′ = Lcorr = /0
r ′corr= /0 //

lt= /0

OO

ls= /0
²²

Rcorr = /0

rt= /0

OO

rs= /0
²²

Lsrc = L
r ′src=r // Rsrc = R

Figure 4: Initialization of Triple Rulerl ′.

2. ∀pi : pi
src

psi

←− pi
corr

pti−→ pi
tar ∈ P:

(a) ∀pi
src

mi
j→ Rsrc, with mi

j an injective match from the source part ofpi (i.e. pi
src) to the

source part ofRrl ′ (i.e. Rsrc):

i. if ∃pi
src

m′ij→ Lsrc with mi
j = r ′src◦m′i

j then do nothing (as no elements in the source
part of the rule have been newly created for this match)else

ii. ∀O : (Osrc = pi
src)

os←−Ocorr
ot−→Otar such that the diagram of Figure5(a) com-

mutes, and that@O′
x|Ox ⊂O′

x ⊆ pi
x, x∈ {corr, tar}:
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rs′

²²

pi
src

mi
j{{ww
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(b)

Figure 5: (a) Glueingpi with the Right Hand Side ofrl ′. (b) Building the Pushout.

A. replaceRrl ′ : Rsrc
rs←− Rcorr

rt−→ Rtar with the pushout object of the previ-
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ous diagram, i.e.Rrl ′ = PushOut(Rrl ′ ,O, pi) 1. The pushout is shown in
Figure5(b).

B. Add appropriate nodes to L
[ 1] ∀n∈VRsrc // Check if we have to copy the correspondence node toL
[ 2] Newtar = Newcorr = Newunconn= /0 // Sets with newly added nodes toL
[ 3] if (∃n′ ∈VLsrc s.t. r ′src(n′) = n) then // n is also inL
[ 4] // seek correspondence nodes which are not inL
[ 5] ∀c∈VRcorr s.t. rs(c) = n∧@c′′ ∈VLcorr s.t. r ′corr(c

′′) = c
[ 6] // add correspondence node to L
[ 7] VLcorr = VLcorr ]{c′} and setls(c′) = n′, r ′corr(c

′) = c
[ 8] Newcorr = Newcorr ]{c′} // add it to the set
[ 9] // check for nodes in the target graph ofR which are not inL
[10] if (∃n′′ ∈VRtar |rt (c) = n′′∧@o∈VLtar |r ′tar(o) = n′′) then
[11] // add node to target graph ofL and toNewtar set
[12] VLtar = VLtar ]{n′′′} and setlt (c′) = n′′′, r ′tar(n′′′) = n′′

[13] Newtar = Newtar ]{n′′′}
[14] ∀n∈Newtar// Add nodes to target graph for which no correspondence exists
[15] ∀m∈VRtar s.t. (@m′ ∈VLtar s.t. r ′tar(m

′) = m∧∃pathU (r ′tar(n),m))2

[16] VLtar = VLtar ]{m′}, setr ′tar(m
′) = m, Newunconn= Newunconn]{m′}

[17] Newtar = Newtar ]Newunconn

C. Add appropriate edges toLX (for X ∈ {corr, tar}):
[1] ∀n∈ NewX // visit all new nodes...
[2] // check if some edge stems fromr ′X(n) and ends in a node∈ L
[3] if (∃e∈ ERX ,m′ ∈VLX s.t. sourceRX (e) = r ′X(n)∧ targetRX (e) = r ′X(m′)∧
[4] @e′ ∈ ELX s.t. r ′X(e′) = e) then
[5] // Add the edge toL
[6] ELX = ELX ]{e′}, r ′X(e′) = e, sourceLX (e′) = n, targetLX (e′) = m′

Note that in step ii, we look for a total match frompi
src to Rsrc, and partial matches from

pi
corr and pi

tar. Thus, the triple graphO models the domain of such partial matches. With the
pushout, we add the part ofpi which was not matched to the rule. In stepii .B we copy the
necessary correspondence nodes to the LHS, if they were added to the RHS by the pushout and
the RHS node they refer to also belongs to the LHS. More than one correspondence node can be
connected to a source or target graph node (line [5]). We also allow nodes in the target graph
which are not connected with any correspondence graph node (added to the RHS by the pushout,
and appropriately copied to LHS by lines [14-17]). These are useful if we want to model a source
graph node related with many elements in the target graph, or “composite” connections in the
target graph.

The application of a set of patterns to a rule acting on the target graph simply requires substi-

1 The pushout of triple graphs [GL07, Sch94] is built component-wise, where in addition all the faces of the two
cubes commute. Examples are shown in Figures5(b) and6
2 PredicatepathU (a,b) is true if a path froma to b exists (without taking into account the edge direction) where
no node in the path receives a morphism from correspondence graph nodes, excepta. Moreover,b should not be
connected (directly or indirectly) with a newly created node, i.e. a nodep s.t.@p′ ∈VLtar with r ′tar(p′) = p.
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tuting src by tar in the previous algorithm. It is also easy to apply patterns to deleting rules (i.e.
rules which delete elements but do not create anything), by substitutingL by R in the algorithm.

Example (continued). Figure6 shows some details about the execution of steps2.a.ii.Band
2.a.ii.C of the algorithm in the case of the rule and the patterns shown in Figure3. The upper
part shows how the pushout is performed, and the lower part also shows how the new elements
c’ andn”’ are added toL in the generated TGG rule. Note that thePlaceSemobject associated
with thePlacebelongs toL, as thePlaceobject also belongs toL (step B in the algorithm).
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: Token
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Figure 6: Steps in the Application of the Pattern in Figure3.

Figure7 shows additional patterns for the Petri nets example. According to the left pattern,
output places of a transition in the syntactic graph are post-conditionPlaceSemobjects for the
TransSemobject associated with the transition. The pattern to the right models the correspon-
dence for input places. By applying the three patterns to the rule in Figure2(a) (twice the pattern
for post-conditions, and once that for tokens), we obtain the operational triple rule in Figure2(b).
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Figure 7: Additional Patterns for the Example.

The advantage of these patterns is that they are specified once, and can then be applied to
complex syntactic rules. The visual language designer does not have to modify by hand each
syntactic rule to add the semantic information, but only has to specify the patterns once. More-
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over, the patterns do not have to take into account which elements are created and which are
already existing, as this is specified in the normal rules to which patterns are applied. Thus,
the pattern may be used in several ways (i.e. in parts of the rule which are newly created or in
existing ones).

4 Abstract Triple Patterns

We consider now patterns with “abstract objects” and their application to rules also containing
“abstract objects” (i.e. abstract rules). When looking for a match from an abstract pattern to a
rule, abstract objects in the pattern can be matched with objects of more concrete classes in the
rules. An abstract rule is equivalent to the set of concrete rules resulting from the valid substitu-
tions of the abstract objects by instances of the subclasses of the abstract object class [BELT04].

In order to illustrate these concepts, we introduce a new example, which models the concrete
syntax and the semantic roles for a visual language of arithmetic expressions. The meta-model
triple is shown in Figure8(a). The language is made of blocks (abstractBlockclass), which can
be interconnected through data flows (DataFlowclass). Blocks contain data values (Dataclass),
which are propagated through the data flows and processed by the blocks. There are four types
of blocks: constants (i.e. blocks which store non-modifiable data values), displays (blocks that
output a value), inputs (blocks which capture a value from outside the system), and operators.
The latter manipulate data values, and can be adders, subtractors, multipliers and dividers. Data
flows contain the argument position, which is needed for non-commutative operations.

*

Entity

Constant Display

Contains
Identifiable

Element

Value: Float

Data

DataSem

Value: Float

DataToken

Token

OpSem
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preHolder

order: Int

postHolder
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Sem.

Corr.

:Display

:BlockHolder

{new}

createDisplay

Pattern for Blocks

:Block
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:BlockHolder

Syntax

Sem.

Corr.

Syntax

:BlockSem

Resulting TGG rule

{new}

:Display

A
p
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Figure 8: (a) Meta-Model Triple for an Arithmetic Expressions Language. (b) Application of an
Abstract Triple Pattern.

In the semantic level, blocks are considered holders, data is considered a token (with value),
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and operators are transitions. Differently from the Petri net case, operators have both the roles of
transitions and holders (for the value resulting from the operation).

Before presenting the algorithm, we show the intuition using simple examples. Figure8(b)
shows an abstract pattern to the left. The pattern shows the desired relation between blocks (any
kind of block, asBlock is an abstract class) at the syntactic level andBlockHolderobjects in
the semantic graph. The syntactic rule to the right models the creation of a display object. The
application of the pattern to the rule results in a triple rule where the block object in the triple
pattern has been matched to a display object, as display has a more concrete type.

Consider now the situation depicted in Figure9. The left part shows two patterns. The first one
describes that aBlockHolderis a post-condition for anOperatorTransitionobject at the semantic
level when anOperatorobject is connected through aDataFlowto aBlockabstract object. This
pattern is abstract, and would be equivalent to four patterns, resulting from the substitutions
of the Block object by objects of each one of its subclasses. The second pattern associates an
OperatorTransitionobject with anOperatorobject.

:Operator

Transition

Type = t

:Operator

Type = t

Syntax

Corr.

Sem.

:postHolder

order = n

:BlockSem

:BlockHolder

:Block

:Touches:DataFlow

paramNo = n

:OpSem

:Operator

Transition

:Touches

:Operator

:source

Corr.

Syntax

Sem.

b :Block

:DataFlow

paramNo = x

d: Display

b: Display

:Touches :DataFlow :Touches

:Touches
:target

d: Display

Pattern for OperatorsPattern for post−holders

:target

:source :target

{NAC}

{NAC}

paramNo = 1{new}

Connect2Display syntactic rule

:OpSem

Figure 9: Abstract Triple Patterns and Abstract Rule.

The syntactic rule shown to the right models the connection of a block to a display and forbids
the connection of two displays. In principle, the first pattern cannot be applied to the rule because,
although theBlockobject in the pattern can get instantiated to theDisplayobject in the rule, class
Operatoris more concrete than classBlock. However, there are cases when aBlockis an operator.
Therefore what we have to do is to consider all concrete rules equivalent to the abstract one, and
then apply the patterns. Here, we want to distinguish the case when an object is both aBlockand
anOperator, and the case where the object is aBlockand not anOperator.

In order to define the construction of concrete rules from abstract patterns, we rely on the
partial order¹ induced by the inheritance relationship on the set of classes in the meta-model,
so thatA¹ B if A inherits, even indirectly, fromB, or if A is equal toB.

The following algorithm describes the previous processes.

AbstractApply(P: SetOfTriplePatterns, rl: Rule): SetOfTripleRules

Let P = {pi}i∈I be a set of triple patterns of the formpi : pi
src

psi

←− pi
corr

pti−→ pi
tar andrl : L

l←−
K

r−→ R a non-deleting rule withL = K, and thereforerl : L
r→ R. The application ofP to rl

results in a set of triple rulesR′rl = {rl ′j} as follows:

1. SetR′rl = /0.
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2. Let Rrl = {rl k}∪{rl } be the set of concrete rules equivalent torl (see [BELT04]) and rl
itself.

3. ∀rl k ∈ Rrl , R′rl = R′rl ∪Apply(P, rl k). That is, we apply the patterns to each rule. Note that
we allow a match from a pattern to a rule if a structural match is found, and if all types in
the rule are more concrete or equal to the corresponding types in the abstract pattern.

4. ∀rl ′ ∈ R′rl : if ∃rl ′′ ∈ R′rl s.t. rl ′ is more concrete thanrl ′′ (rl ′ ¹ rl ′′) thenR′rl = R′rl \{rl ′}.
That is, we eliminate rules “subsumed” by others (same structure, equal or more concrete
types).

5. ∀rl ′ ∈R′rl : if ∃rl ′′ ∈R′rl s.t. rl ′′src¹ rl ′src then add a NAC torl ′ with all the nodes inrl ′′ that
are refinements of nodes ofrl ′, whererl ′src is the normal rule resulting by taking the source
graphs of triple rulerl ′.

Figure10 shows the result of applying the patterns in Figures8(b) and9 to the abstract rule
in Figure9. The first rule considers the case whenBlockobjects are notOperators. The second
considers the case when objects areOperators. Note how, due to the NACs, the application of
these rules is mutually exclusive
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Figure 10: Generated Operational TGG rules.

5 Related Work

Our approach is inspired by the seminal work in [Sch94] and aims at providing an efficient way
to obtain TGG operational rules, whenever a grammar for one of the graphs already exists. In
this scenario, patterns do not need to specify which elements should be created and which should
already exist in one of the graphs, as this is expressed in the normal rule to which the pattern is
applied. When specifying a declarative TGG rule, one has still to indicate which elements should
be present, and which ones are new. Thus, patterns may be used in several ways, which makes
them more flexible and declarative than normal TGG rules as defined in [Sch94].

In addition, we have taken advantage of meta-models with the concept of abstract patterns.
These are more compact than normal patterns, as they are equivalent to a number of concrete
patterns resulting from the substitution of each object by instances of subclasses of the former
object class. The concept of inheritance in TGG rules is of course not new, as existing TGG
approaches based on meta-models such as [KS06] and [BGN+04] already consider inheritance.
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Our contribution in this aspect is the observation that abstract patterns can be applied to rules with
more abstract typing, and that a set of operational triple rules is generated which discriminates
the right types by using negative application conditions. In addition, the concepts of triple rules
with inheritance is fully formalized in the DPO approach in [GL07].

Due to lack of space, we have only presented the algorithms for translating in both directions;
however generating operational rules for the scenarios described in [KS06] is also possible. In
particular, it is possible to produce rules for creating the correspondence graph (assuming the
source and target graphs already exist), to check the validity of the correspondence graph and
for incremental updates. Further developments of TGGs can also be taken into account. For
example, in [GW06], an efficient algorithm for incremental transformation was suggested, by
relating the created nodes in the correspondence graph. Our patterns can also be used to create
such relations.

A precedent to this work can be found in [G7̈9], where G̈ottler describes a programming
language as a triple with the syntax, the semantics and a functionφ describing how the semantic
model is built from the syntactic one. In addition, he proposes meta-rules that modify either
syntactic or semantic standard rules. In our case, we use triple patterns instead of meta-rules.
Our triple patterns generate triple rules that are used to build the semantic model. Thus, they
play the role of theφ function in G̈ottler’s approach.

We believe this work is also relevant for the QVT community [QVT], as some efforts have
been made to formalize QVT using TGGs. The most immediate similarities are found in the
QVT relations, however attempts to formalize also the QVT Core have also been made[Gre06].

With respect to the application area of visual languages, Baar has proposed the use of TGGs
to connect concrete and abstract syntax, so as to make it possible the static verification of the
compliance between both [Baa06]. His proposal is however related to the structure of the visual
sentence, and not to its operational interpretation. Moreover, it does not exploit inheritance, and
requires the presence of display managers, relating the abstract and the concrete syntaxes.

6 Conclusions and Future Work

In this paper we have presentedTriple Patternsas a compact means to obtaining operational
TGG rules starting from normal graph grammar rules. We have shown that the approach is
suitable for its combination with meta-modelling by considering the inheritance hierarchy in the
meta-models. We have applied these ideas to the synchronized evolution of syntax and semantic
models, improving previous work in [BDD+04].

There are several open issues. The first one is to study to which degree patterns can be au-
tomatically derived from the meta-model triple. In general this process cannot be fully auto-
mated. However, for our particular application case, it could be possible, as we just model three
kinds of structures at the semantic level:TokensdecoratingHolders, andHoldersbeing pre- and
post-conditions forTransitionElements. We could take the information of which classes in the
semantic meta-model inherit from the base classes, and to which classes they are related in the
syntax graph. However, for general applications, only an approximation can be derived.

Although not explicitly mentioned, our abstract patterns can only have abstract objects in the
source graph, as, typically, concrete elements in the target graph are created. One can however
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extend the notion of abstract rule [BELT04] to allow abstract nodes also inR and in the target
graph. For our application, this would allow the designer to include predefined patterns in the
semantic level (using only predefined classesToken, HolderandTransitionElement), thus helping
towards the automatic generation of the triple patterns from the meta-model triple.

Up to now we have not considered problems related to the manipulation of attributes, which
is up to future work. In addition we have only considered positive patterns, but we are currently
working to extending this approach with patterns containing also negative conditions. The al-
gorithms we have presented assume that the syntactic rules are “bigger” than the patterns. The
study of the opposite case is still an open problem. In principle, by considering partial matches
from patterns to rules, one could devise ways to generate additional triple rules with extended
context. It is also worth studying whether we can extend the application of a pattern to general
rules (i.e. not only deleting or non-deleting). A first line of attack might consider the splitting of
a general rule into a sequence of one deleting and one non-deleting rule.

Finally, we are considering the application of the notion of triple graph grammars and meta-
rules to the generation of operational semantics, for example the token game in the case of Petri
nets.
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