
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

Visual Programming with Recursion Patterns in Interaction Nets

Ian Mackie,, Jorge Sousa Pinto and Miguel Vilaça

12 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Visual Programming with Recursion Patterns in Interaction Nets

Ian Mackie1,2, Jorge Sousa Pinto3 and Miguel Vilaça3

1 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France
2 King’s College London, Department of Computer Science, Strand, London WC2R 2LS, U.K.

3 Departamento de Informática, Universidade do Minho , 4710 Braga, Portugal

Abstract: In this paper we propose to use Interaction Nets as a formalism for Vi-
sual Functional Programming. We consider the use of recursion patterns as a pro-
gramming idiom, and introduce a suitable archetype/instantiation mechanism for
interaction agents, which allows one to define agents whose behaviour is based on
recursion patterns.

Keywords: Interaction nets, recursion patterns

1 Introduction

This paper is about visual programming with Interaction Nets, a graph-rewriting formalism intro-
duced by Lafont [Laf90], inspired by Proof-nets for Multiplicative Linear Logic. In Interaction
Nets, a program consists of a number of interaction rules and an initial net that will be reduced
by repeated application of the rules. The formalism combines the usual advantages of visual
programming languages, but with the following additional features:

– Programs and data structures are represented in the same framework, which is useful for
tracing and debugging purposes;

– All aspects of computations, such as duplication and garbage-collection, are explicit.
Interaction Nets have been extensively used for functional programming as an efficient in-

termediate (or implementation) language. In particular, functional programs can be encoded in
Interaction Nets, using one of the many encodings of the λ -calculus. Section 3 reviews how a
functional language can be encoded in Interaction Nets following this approach, without enter-
ing the details of any particular encoding of β -reduction. The focus of this paper will be the
adequate treatment of inductive datatypes, pattern-matching, and recursive function definitions.

The remaining sections of the paper introduce and systematise the use of a functional style
for programming with Interaction Nets with recursion patterns, and introduce a new construct
(the archetype, Section 4) which captures the behaviour of recursion patterns. We claim that this
style is a good choice for defining and executing visual functional programs.

The style of programming we refer to is widely used by functional programmers: it is based on
programs that perform iteration on their arguments, usually known in the field as folds, and (the
dual notion) programs that construct results by co-iteration, unfolds. Among other advantages of
using folds and unfolds for programming, they can be composed to construct complex recursive
programs, and they are particularly adequate for equational reasoning: proofs of equality can be
done using a fusion law instead of recursion.

The body of theoretical work on recursion patterns comes from the field of datatype-generic
programming (see [Gib02] for an introduction), which studies these patterns in a datatype-

1 / 12 Volume 6 (2007)

Visual Programming with Recursion Patterns in Interaction Nets

parameterized way. The examples in the paper use lists, but it is straightforward to generalize
the ideas to arbitrary regular datatypes.

Section 5 introduces interaction net programming with recursion patterns; Section 6 and Sec-
tion 7 then present archetypes for folds and unfolds respectively. Section 8 concludes and dis-
cusses future work.

2 Background

Recursion Patterns. The ideas developed in this paper for Interaction Nets are very much
inspired by Functional Programming. One fundamental aspect that we will use extensively is the
ability to use a set of recursion patterns for each datatype. For instance few Haskell programmers
would write a list sum program with explicit recursion as

sum [] = 0
sum (x:xs) = x + (sum xs)

Most would define sum = foldr (+) 0, where foldr is a recursion pattern encoded as
the following higher-order function:

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

A function like sum is often called a fold. The use of recursion patterns has the advantage
of being appropriate for program transformation and reasoning using the so-called calculation-
based style [Bir84]. To see how less obvious folds can be defined, consider the list append
function:

app :: [a] -> [a] -> [a]
app [] l = l
app (x:xs) l = x:(app xs l)

This is a higher-order fold that iterates over its first argument to produce a function (id is the
identity function): app = foldr (\x r l -> x:(r l)) id.

The dual notion of fold is the co-recursive unfold that allows one to produce lists whose tails
are constructed recursively by the function being defined. For instance the Haskell function

downfrom 0 = []
downfrom (n+1) = (n+1):(downfrom n)

can be written alternatively as downfrom = unfold (==0) id pred where pred is the prede-
cessor function, and unfold is defined as follows

unfold :: (t -> Bool) -> (t -> a) -> (t -> t) -> t -> [a]
unfold p f g x = if p x then [] else f x : unfold p f g (g x)

One of the reasons why unfolds are important [GJ99] is that together with folds they give us back
the power of arbitrary recursion: the composition of a fold with an unfold is a function (known
as a hylomorphism [MFP91]) whose recursion tree is the intermediate structure constructed by
the unfold. In a language with a sufficiently rich type system, most useful recursive functions
can be defined in this way.

Proc. GT-VMT 2007 2 / 12

ECEASST

Interaction Nets. An interaction net system [Laf90] is specified by giving a set Σ of symbols,
and a set R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An occur-
rence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then the agent has n + 1
ports: a distinguished one called the principal port, and n auxiliary ports labelled x1, . . . ,xn.

A net built on Σ is a graph (not necessarily connected) where the nodes are agents. The edges
between nodes of the graph are connected to ports in the agents, such that there is at most one
edge connected to every port in the net. Edges may be connected to two ports of the same
agent. Principal ports of agents are depicted by an arrow. The ports of agents that have no edge
connected are called the free ports of the net. The set of free ports define the interface of the net.

The dynamics of Interaction Nets are based on the notion of active pair: any pair of agents
(α,β) in a net, with an edge connecting together their principal ports. An interaction rule
((α,β) =⇒ N) ∈ R replaces an occurrence of the active pair (α,β) by the net N. Rules must
satisfy two conditions: the interfaces of the left-hand side and right-hand side are equal (this
implies that the free ports are preserved during reduction), and there is at most one rule for each
pair of agents, so there is no ambiguity regarding which rule to apply.

If a net does not contain any active pairs then we say that it is in normal form. We use the
notation =⇒ for one-step reduction and =⇒∗ for its transitive reflexive closure. Additionally,
we write N ⇓ N′ if there is a sequence of interaction steps N =⇒∗ N′, such that N′ is a net in
normal form. The strong constraints on the definition of interaction rules imply that reduction
is strongly commutative (the one-step diamond property holds), and thus confluence is easily
obtained. Consequently, any normalizing interaction net is strongly normalizing.

As an example, we show a system for representing lists of numbers. Lists are inductively
defined by an agent Nil of arity 0 representing the empty list, and an agent Cons of arity 2
representing a cell in the list, containing an element and a tail list. Lists are constructed such that
the principal port of each Cons agent corresponds to the root of the list.

To implement, for instance, list concatenation, we need an additional binary agent app. Con-
catenation is defined recursively on one of the argument lists, as expected. As such, the principal
port of the agent must be used for interacting with this argument. The necessary interaction rules
are given in Figure 1, together with an example net, representing the concatenation of lists [1,2]
and [3,4].

app

Nil

app

Cons app

Cons

app

Cons Cons

1 3Cons

2 Nil

Cons

4 Nil

Figure 1: Interaction rules of agent app and an example net

Thus, an implementation of list concatenation can be obtained by Σ containing {Nil,Cons,app},
with arity 0, 2, 2 respectively, and R consisting of the rules in Figure 1.

3 / 12 Volume 6 (2007)

Visual Programming with Recursion Patterns in Interaction Nets

Related Work: Visual Functional Programming. Work in this area has addressed different
aspects of visual programming. The Pivotal project [Han02] offers a visual notation (and Haskell
programming environment) for data structures, not programs. Reekie’s Visual Haskell [Ree95]
more or less stands at the opposite side of the spectrum of possibilities: this is a dataflow-style
visual notation for Haskell programs, which allows programmers to define their programs visu-
ally (with the assistance of a tool) and then have them translated automatically to Haskell code.
Kelso’s VFP system [Kel02] is a complete environment that allows one to define functional pro-
grams visually and then reduce them step by step. Finally, VisualLambda [DV96] is a formalism
based on graph-rewriting: programs are defined as graphs whose reduction mimics the execution
of a functional program. As far as we know none of these systems is widely used.

Visual Haskell and VisualLambda have in common that functions are represented as boxes
with input ports for the arguments and an output port for the result; the contents of the box
correspond to the body of the function. They differ in that Visual Haskell uses variables to refer
to function arguments, while VisualLambda uses a purely graphical notation based on arrows.

Kelso’s VFP uses a notation without boxes, more inspired by the traditional representations
of functional programs used in implementation-oriented abstract machines (see Section 5). In
particular, it allows for named functions but also for λ -abstractions, and an explicit application
node exists. Variables are used for arguments, as in Visual Haskell.

Higher-order programming is a fundamental feature of functional programming. A function
f can take function g as an argument and g can then applied within the body of f . Expressing
this feature is easy if variables are used as in Visual Haskell and VFP; in VisualLambda a special
box would be used as a placeholder for g (in the body of f) to be instantiated later, and an arrow
would link an input port in the box of f to the box of g.

The work presented in the present paper uses a pure visual representation of programs, without
variables. In this aspect it resembles VisualLambda, however our work differs significantly from
this in that no boxes are used, and all the graph-rewriting operations are local in the sense that
only two nodes of the graph are involved in each step.

A second difficulty arising from the higher-order nature of programs is that a (curried) function
of two arguments may receive only its first argument and return as result a function. In a box-
based representation this means that it must be possible for a box to lose its input ports one by
one—a complicated process. Interaction nets treat this problem naturally as will become clear.
Moreover in this paper we introduce a new notion (the archetype), which captures precisely the
behaviour of many typical curried functions.

3 Visual Functional Programming with Interaction Nets Using Ex-
plicit Abstraction and Application Nodes

In this section we explain how a very simple functional programming language can be encoded in
Interaction Nets. The language has inductive types, pattern-matching on these types, and explicit
recursion.

We first review the basic principle shared by most well-known encodings [Mac04, Mac98,
Sin06] of the λ -calculus into Interaction Nets, and show how this basic language can easily be
extended to cover other features of functional languages.

Proc. GT-VMT 2007 4 / 12

ECEASST

The usual way of representing functional programs with interaction nets is based on a pair
of symbols λ , @ of arity 2, such that a β -reduction step corresponds to an interaction between
an agent λ and an agent @. These representations are based on an explicit depiction of the
λ -abstractions in the program, as well as applications of functions to arguments.

While this may be visually more complicated than the boxes used by some of the systems
reviewed in Section 2, it certainly solves the “higher-order” problem in a natural way, since
function arguments are treated like any other arguments. The definition of the application func-
tion ap f x = f x in Figure 2 (left) illustrates this point.

λ

λ

@

λ

@

Figure 2: ap definition (left) and β rule (right)

We only discuss the features of the linear λ -calculus here, which is shared by all encodings.
It is beyond the scope of this paper to include the details of the non-linear aspects, but refer the
reader to [Mac98, Mac04] for the encodings of the full λ -calculus.

Consider an interaction system containing the symbols {@,λ} as explained above, as well as
the β interaction rule of Figure 2 (right). This system defines the visual programming language
for the linear λ -calculus. A visual functional program consists of this interaction system, to-
gether with a closed functional expression to be evaluated, represented by a net with a single free
port. We now outline how other features can be introduced in the interaction system to enrich
this core language.

The next feature is Inductive Types and Pattern-matching. Consider a datatype T with con-
structors C1 . . .Cn, with arities a1 . . .an . This can be modelled in a straightforward way by an
interaction system containing n agents labelled Ci with arity ai, i = 1 . . .n ; values of type T
correspond to closed trees built exclusively from these agents (in a tree all principal ports are
oriented in the same direction). In a constructor agent, auxiliary ports are input ports, and the
principal port is an output port. An example of this is the datatype of lists with constructors Nil
and Cons, as in Figure 1.

Pattern-matching over an inductive type T can be implemented by a special agent Tcase. For
instance, the ListCase agent has arity 5, and its behaviour is defined by the two rules:

List
Case

Nil

ε ε ε
List
Case

Cons

ε

Here two different nets are connected to the ListCase agent. One is a net to be returned when
the argument list is empty, and the other is a net with three ports, used to combine the head and

5 / 12 Volume 6 (2007)

Visual Programming with Recursion Patterns in Interaction Nets

tail of a non-empty list. Observe that one of these nets is not used in each rule, and must be
erased with ε agents. The interaction of an ε agent with any other agent erases the latter and
propagates new ε agents along its auxiliary ports.

The approach outlined above allows for unnamed functions only. In a visual language one
would like to have the possibility of defining named functions, which would most naturally
correspond to agents in the interaction system. A special agent def can be used for unfolding
named function definitions. For instance a function isEmpty can be defined by the following
interaction rule for the agent def:

List
Case

True

def

is
Empty

λ

Falseεε

The following figure shows the reduction of the visual program corresponding to the application
of isEmpty to the list [1,2].

List
Case

True

def

is
Empty

λ

Falseεε

Cons

1 Cons

2 Nil

@

Cons

1 Cons

2 Nil

@ List
Case

True

Falseεε
Cons

1 Cons

2 Nil

True

False

εε

1 Cons

2 Nil

ε

This agent also allows for a visually appealing treatment of recursion: it suffices that the right-
hand side of interaction rules involving def reintroduces an active pair (the left-hand side of the
rule) as a sub-net.

To sum up, Interaction Nets allow to visually represent functional programs and data struc-
tures in the same very simple formalism; moreover higher-order features, which are a typical
difficulty in the visual setting, are treated in a natural way, and the execution of the program can
be efficiently implemented within the formalism.

4 Agent Archetypes

Although no standard programming language exists as a front-end for programming with Inter-
action Nets, it is generally well accepted that any such language should contain some form of
support for modularity and reusability. In particular, a mechanism should exist to facilitate the
definition of interaction rules that follow identical patterns.

To illustrate, consider again the app agent of Figure 1. It is defined by case analysis on the
structure of the argument, and in fact any other agent defined in this way must have two inter-
action rules with a similar structure to those in Figure 1. We now introduce a concept designed
precisely to isolate this structure, which we designate archetype. The ListCase archetype given
below should be interpreted as follows: any agent f that fits this archetype interacts with both

Proc. GT-VMT 2007 6 / 12

ECEASST

Nil and Cons, and the right hand sides of the corresponding rules are nets to be instantiated, that
will be called respectively N f ,Nil and N f ,Cons.

Archetype ListCase f

f

Nil

Nf,Nil

f

Cons

Nf,Cons

To define a new agent following the archetype, an instance is created, by simply providing the
nets in the right-hand side of the interaction rules. This implicitly includes the agent declaration,
as well as the instantiated interaction rules for this agent, in the interaction system being defined.
As an example, the isEmpty agent (and its behaviour) is defined as an instance of the ListCase
archetype. ε agents are used to explicitly erase the head and tail of the list, which are not used
in the result.

Instance ListCase isEmpty

NisZero,
Nil

NisZero,
 Cons

= True =
False

ε ε

For a second example, take the agent def used in Section 5 for function definitions. We create
an archetype for defined functions, whose only mandatory rule is for interaction with def, with
the right-hand side to be instantiated.

Recursive archetypes are most interesting, and will be very useful in the rest of the paper
(in Section 6 a recursive archetype will be given for the app agent). Although archetypes can
be useful for programming with interaction nets in general, our examples of using them here
concern features of functional programming languages.

The ListCase example shows that archetypes allow for a natural treatment of higher-order
concepts: ListCase can be seen as a function that takes certain arguments (the instantiated nets)
and returns another function (an agent with its own rules) as result.

5 Interaction Net Programming with Recursion Patterns

Section 3 was about using Interaction Nets for encoding functional programs, with the practical
goal of producing efficient functional compilers. From the point of view of visual program-
ming, the drawbacks of this approach are that the introduction of explicit abstraction and ap-
plication nodes complicates the visual representation of programs (the same is true of explicit
case constructs), and also raises the matching duplicators problem. Solving this problem implies
introducing in the system machinery that destroys the clean visual representation of terms.

Our goal in this paper is to propose a number of principles and extensions for direct visual pro-
gramming with Interaction Nets, in a functional style. To see what we mean by direct, consider

7 / 12 Volume 6 (2007)

Visual Programming with Recursion Patterns in Interaction Nets

again the interaction rules given in Figure 1 . It is easy to see that both define a behaviour for the
agent app similar to the standard list concatenation function, which can be written in Haskell as
shown in Section 2.

In both cases, a program consists of a collection of function definitions encoded directly as
interaction rules in a particular interaction system, together with a closed functional expression
to be evaluated in the context of those definitions, represented by a net with a single free port.
While in the second approach a function definition corresponds to interaction rules for a special
agent def, in Figure 1 there is a direct correspondence between the clauses in the definition of
a function f and the interaction rules defining the behaviour of the agent f . A comparison of
both definitions reveals that the first approach is visually simpler, and thus more appropriate for
representing programs, than the second, standard approach.

Naturally, there are important limitations to the class of programs with which the simplified
representation can be used. The example above takes advantage of a fundamental aspect of
Interaction Nets, which is that pattern-matching on the outermost constructor is built-in through
the rule selection mechanism (in the definition of app in Figure 1, only the outermost constructor
is matched). Matching deeper constructors, or matching more than one argument in the same
clause, would force us to use an explicit case agent.

For a certain class of patterns (match-sequential systems [Tha87]) there are known transfor-
mations which result in a system which examines arguments one at a time. We can use this
transformation to obtain an explicit system. We refer the reader to [Ken90] for a detailed presen-
tation of one such transformation.

It will now be shown that the use of a programming style based on recursion patterns allows
precisely for the direct representation to be used, since these operators perform pattern-matching
on a single top-level constructor.

Iteration: Fold Agents. The simplest form of recursion is iteration, which substitutes the
datatype constructors by some given functions. Taking lists as an example, a fold is a function
that combines the head of the list with the result of recursively applying the function to the tail
of the list, to produce the result (a given value is returned at the end of the list).

Since this requires matching on the outermost constructor only, iteration neatly fits the inter-
action paradigm. The following is the definition of the product fold, which computes the product
of all the numbers in a list (it uses an agent ∗ for multiplication of numbers; we assume the
arithmetics to be correctly implemented in the current interaction system).

prod

Nil

prod

Cons prod

*S

0

It is easy to see that other, more powerful recursion patterns on an inductive type can be captured
in the same way. For instance, primitive recursion on a list would allow for the tail of the list
itself to be used as well.

Co-recursion Patterns: Unfold Agents. Co-recursive functions provide structured ways to
construct values of recursive types. Taking lists as an example again, the unfold co-recursion

Proc. GT-VMT 2007 8 / 12

ECEASST

pattern, which is the dual of fold, corresponds to functions that construct lists by giving an
element to be placed at the head position, together with a seed used as an argument to recursively
construct the tail of the list. This is the simplest form of co-recursion.

Let us consider an unfold agent downfrom (df) which interacts with a natural number n to
construct the list containing all the numbers from n down to 1, in this order. Its rules are the
following (where ∂ returns two copies of the given argument):

df df Cons

Nil* df*

0 S

S

∂

6 Fold Archetypes

The rules that characterize the behaviour of a fold agent (on a particular inductive type) can
be described by a recursive archetype, in the sense that the parameterized agent occurs in the
right-hand side of one of the rules.

Taking the case of lists, interaction rules must be defined for f to interact with both Nil and
Cons. The archetype is:

Archetype foldr f

f

Nil

Nf,Nil

f

Cons

Nf,Cons

f

where interaction with Nil results in an arbitrary net, and interaction with Cons sends an f agent
along the tail of the argument list, and a net N f ,Cons then combines the head of the list with the
recursive result. As an example, the agent prod can be alternatively defined as the following
instance:

Instance foldr prod

Nprod,
 Nil

Nprod,
 Cons

=

0

= *
S

The principles developed above can be applied to folds over any regular inductive type.

Higher-order Folds. Our current definition of a fold agent is still not satisfactory, and will
now be generalized. Consider again the list append function. As seen in Section 2, this is a
higher-order function of two arguments, defined by recursion on its first argument. This fold can

9 / 12 Volume 6 (2007)

Visual Programming with Recursion Patterns in Interaction Nets

be defined with Interaction Nets as a binary agent (see Figure 1), which clearly does not match
our current definition of the fold archetype.

Functions of more than one argument defined as folds over one of the arguments lead us to the
generalization of the foldr archetype, as shown in the following figure. This is parameterized by
the number of extra arguments of the fold agent; our previous definition is of course a particular
case of this where k = 0.

Archetype foldr f (k)

f

Nil

Nf,Nil

f

Cons

Nf,Cons

fk k
k

k
khead tail

args

head

rec. result

args
args'

argsargs

The definition of append as an instance of this archetype, for k = 1, can be seen below. The
open wire in the net Napp,Cons corresponds to the fact that the second argument of the fold is
preserved in the recursive call.

Instance foldr app(1)

Napp,
 Nil

Napp,
 Cons

= = Cons

head rec. result

y

y'

y

y'

head rec. resulty y

7 Unfold Archetypes

It is less obvious to define an archetype for unfolds. Consider again the case of lists; it is clear
that there must be two rules (to produce empty and non-empty lists respectively); the contents
of the right-hand side of each interaction rule is also clear (with a parameter net appearing in
the second rule). However, since the arguments of an unfold are arbitrary, the two rules cannot
correspond to interactions between the unfold and its arguments. Instead, we will consider two
special agents that interact with the unfold.

Archetype unfold u

u u

Nu

Cons

c1 c2

uNil

Instance unfold dfu

Ndfu = g

Now observe that an instance of this archetype does not immediately behave as an unfold; it
must be connected to the net Nu. To take downfrom as an example again, this net is in this case

Proc. GT-VMT 2007 10 / 12

ECEASST

simply an agent (see right of previous figure) whose behaviour is given by the rules on the left in
the following figure. Then the following macro (on the right) can be defined:

S

∂

c2g

0

c1

g

S df'
dfu

g

=

8 Conclusions and Future Work

One of our long-term goals is to develop a full environment for interaction net programming—
a tool is currently being developed. We are currently working on the archetype definition and
instantiation mechanism. Subsequently, we plan to incorporate in the programming environment
a mechanism that generates the appropriate archetype for a given user-defined inductive type.

This paper opens a number of other research questions at the theoretical level. One of the
main reasons for using recursion patterns and datatype-generic programming is that this style of
programming is good for reasoning about programs equationally. The work in this paper allows
us to reason about functional programs visually. In [MPV05] we derive a fusion law for the
fold archetype, that already makes it possible to transpose to the visual setting classic program
transformation techniques such as the introduction of accumulators or tupling.

A different approach that we intend to explore is to establish a formal correspondence between
a core functional language with recursion patterns and an interaction system for that language.
This will allows us to be more precise in the study of the calculation laws for visual programs.

At the level of the programming environment, the graphical notation then becomes an alter-
native to writing functional programs textually. The environment should be able to translate
between visual programs and textual programs, and all operations performed on programs at the
visual level correspond closely to the same operations at the expression level.

Acknowledgements: The work of the third author is financed by FCT (SFRH/BD/18874/2004).
This work is partially supported by the British Council Treaty of Windsor Grant: “Visual Pro-
gramming”.

Bibliography

[Bir84] R. S. Bird. The Promotion and Accumulation Strategies in Transformational Program-
ming. ACM Transactions on Programming Languages and Systems 6(4):487–504,
Oct. 1984.
http://dx.doi.org/10.1145/1780.1781

[DV96] L. Dami, D. Vallet. Higher-Order Functional Composition in Visual Form. Technical
report, University of Geneva, 1996.
citeseer.ist.psu.edu/dami96higherorder.html

11 / 12 Volume 6 (2007)

http://dx.doi.org/10.1145/1780.1781
citeseer.ist.psu.edu/dami96higherorder.html

Visual Programming with Recursion Patterns in Interaction Nets

[Fer98] M. Fernández. Type Assignment and Termination of Interaction Nets. Mathematical
Structures in Computer Science 8(6):593–636, 1998.

[FM98] M. Fernández, I. Mackie. Coinductive Techniques for Operational Equivalence of
Interaction Nets. In LICS. Pp. 321–332. 1998.

[Gib02] J. Gibbons. Calculating Functional Programs. In Backhouse et al. (eds.), Algebraic
and Coalgebraic Methods in the Mathematics of Program Construction. LNCS 2297,
chapter 5, pp. 148–203. Springer-Verlag, 2002.

[GJ99] J. Gibbons, G. Jones. The Under-Appreciated Unfold. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98). SIG-
PLAN 34(1), pp. 273–279. June 1999.

[Han02] K. Hanna. Interactive Visual Functional Programming. In Jones (ed.), Proc. Intnl
Conf. on Functional Programming. Pp. 100–112. ACM, October 2002.
http://www.cs.ukc.ac.uk/pubs/2002/1516

[Kel02] J. Kelso. A Visual Programming Environment for Functional Languages. PhD thesis,
Murdoch University, 2002.

[Ken90] J. Kennaway. Implementing term rewrite languages in DACTL. Theoretical Computer
Science 72:225–249, 1990.

[Laf90] Y. Lafont. Interaction Nets. In Conference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages. Pp. 95–108. ACM, Jan. 1990.

[Mac98] I. Mackie. YALE: Yet Another Lambda Evaluator Based on Interaction Nets. In ICFP.
Pp. 117–128. 1998.

[Mac04] I. Mackie. Efficient λ -evaluation with Interaction Nets. In Oostrom (ed.), Rewrit-
ing Techniques and Applications, 15th International Conference (RTA 2004). Lecture
Notes in Computer Science 3091. Springer, June 2004.

[MFP91] E. Meijer, M. Fokkinga, R. Paterson. Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire. In Hughes (ed.), Proceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Computer Architecture (FPCA’91).
LNCS 523. Springer-Verlag, 1991.

[MPV05] I. Mackie, J. S. Pinto, M. Vilaça. Functional Programming and Program Transforma-
tion with Interaction Nets. Technical report 05.05.02, Universidade do Minho, 2005.

[Ree95] H. J. Reekie. Realtime Signal Processing – Dataflow, Visual, and Functional Pro-
gramming. PhD thesis, University of Technology at Sydney, 1995.

[Sin06] F.-R. Sinot. Token-Passing Nets: Call-by-Need for Free. Electr. Notes Theor. Comput.
Sci. 135(3):129–139, 2006.

[Tha87] S. Thatte. A Refinement of Strong Sequentiality for Term Rewriting systems with
Constructors. Information and Computation 72:46–65, 1987.

Proc. GT-VMT 2007 12 / 12

http://www.cs.ukc.ac.uk/pubs/2002/1516

	Introduction
	Background
	Visual Functional Programming with Interaction Nets Using Explicit Abstraction and Application Nodes
	Agent Archetypes
	Interaction Net Programming with Recursion Patterns
	Fold Archetypes
	Unfold Archetypes
	Conclusions and Future Work

