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Abstract: Application of graph transformations for software verification and model
transformation is an emergent field of research. In particular, graph transformation
approaches provide a natural way of modelling object oriented systems and seman-
tics of object-oriented languages.

There exist a number of tools for graph transformations thatare often specialised in
a particular kind of graphs and/or graph transformation approaches, depending on
the desired application domain. The main drawback of this diversity is the lack of
interoperability.

In this paper we show how (typed) multigraph production systems can be translated
into (typed) simple-graph production systems. The presented construction enables
the use of multigraphs with DPO transformation approach in tools that only support
simple graphs with SPO transformation approach, e.g. the GROOVE tool.

Keywords: graph transformations, graph transformation tools, tool interoperability,
multigraphs, simple graphs

1 Introduction

Application of graph transformations for software verification and model transformation is an
emergent field of research. In particular, graph transformation approaches provide a natural way
of modelling object oriented systems and semantics of object-oriented languages [KKR06] or
graphical modelling languages such as the UML [OMG05], see for instance [Hau06].

For performing the actual graph transformations, different approaches are around ranging from
hyperedge replacement approach (see e.g. [DKH97]), logic based approach (see e.g. [Cou97])
to different algebraic approaches such as Single Pushout (SPO) [EHK+97] and Double Pushout
(DPO) [CMR+97] approach. These different approaches all have specific application areas in
which their features are used in an optimal fashion.

Another difference is the use of either multigraphs or simple graphs for modelling the applica-
tion domain. Whereas the former is more general, the latter suites better when using graphs for
representing relations between objects in order to reason about these objects using (first-order)
logical formulae [Ren04b]. While SPOcan be applied for both multigraphs and simple graphs,
DPO is not defined for simple graphs in general.
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Simulating Multigraph Transformations

For most tools performing graph transformations, the graphrepresentation formalism and the
transformation approach are determined by the targeted application domain. For instance, the
GROOVE tool [Ren04a] is designed for modelling dynamic systems and verifying properties
about their behaviour by generating all possible system configurations. GROOVE uses sim-
ple graphs and performsSPO based graph transformations. Another example is the AGG tool
[TER99] which handles multigraphs withSPOand is used e.g. for independence and termination
analysis on graph grammars.

The main drawback of this diversity in tools is their poor interoperability. One attempt to
bridge this gap is the introduction of a common language usedfor exchanging models among
tools, called the Graph eXchange Language (orGXL for short) [SSHW]. In order to extend this
work for also exchanging the transformation specifications, GTXL [Tae01] has been proposed.
However, since every implementation of a specific approach is not aware of details of other
approaches, it is very difficult to include all the features in one common standard and thereby
enable tools to perform semantically equivalent transformations.

In a previous work [HKM06] we have proposed translations of graph production systems
between GROOVE and AGG, but these translations were too specific and are not applicable in
a more general context. Moreover, these translations were not invertible.

In the current paper, we generalise these translations to a context that is tool independent. We
show how one can encode typed multigraph production systemsinto simple-graph production
systems, and simulateDPO transformations of multigraphs withSPO transformations on simple
graphs. Then we shortly discuss howDPO transformations for multigraphs can be handled by a
tool supporting onlySPOon simple graphs. These results should allow, for instance,to use the
GROOVE tool (or any other tool using simple graphs) with multigraphs. As a further extension,
we believe that it would be possible to apply the theory of Subobject Transformation Systems
[CHS06] in GROOVE.

Running Example. Throughout this paper we will clarify our ideas and results using a simple
example. In the example we model the dynamic behaviour ofLists andObjects that can be
elements of some specificLists. OneObject may occur in aList several times. We assume that
Objects can be created instantly by the environment (which we do notmodel in this example).
OnceObjects are around, different actions can be performed onLists andObjects, like adding
Objects toLists and moving, removing or copyingObjects.

Fig. 1 depicts a possible configuration with twoLists: one containing a singleObject and
another having two entries referring to the sameObject. In each configuration we assume that
all List- andObject-instances have their own identity, although we do not show these identities.

entryentry

Object Object

entry

List List

Figure 1: Example configuration ofLists andObjects.
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Organisation of the Paper. The remaining of the paper is structured as follows. In Section 2
we provide a formal basis for the rest of the paper. In Section3 we define our translation of multi-
graphs to simple graphs and prove the equivalence ofDPO transformations on multigraphs on the
one hand, andSPO transformations on (special) simple graphs on the other hand. In Section4
we describe how this equivalence can be extended to typed/labelled graphs. Then, in Section5
we describe howDPO transformations on multigraphs can be handled by tools implementing the
SPO transformation approach, such as the GROOVE tool. Finally,in Section6 concludes and
gives some hints on the way we would like to use the results of this work for improving state
space exploration in GROOVE.

2 Background

2.1 Graphs and Graph Morphisms

Graphs are a very powerful means of modelling systems and their behaviour. As will become
clear in this paper, in some cases it is very important which notion of graphs is used, since the
theory applied may depend on this choice quite heavily.

Thegraph concept is differently interpreted by people working in different domains or even
in the same domain. Graphs can e.g. bedeterministic, directedor labelled. In this paper we will
explicitly distinguish between what we callmultigraphsandsimple graphs.

Definition 1 (multigraph, multigraph morphism) Amultigraphis a tupleG= 〈VG,EG,srcG,tgtG〉
where:

• VG is a set ofnodes(or vertexes);

• EG is a set ofedges;

• srcG,tgtG : EG→VG aresourceandtarget functions.

A multigraph morphism f: G→H is a pair〈 fV , fE〉, where fV : VG→VH and fE : EG→EH

are functions compatible withsrc andtgt functions, i.e.

• fV ◦ srcG = srcH ◦ fE;

• fV ◦ tgtG = tgtH ◦ fE. �

Definition 2 (simple graph, simple graph morphism) LetLab be a finite set of labels. Asimple
graph labelled overLab is a tupleG = 〈VG,EG〉 where

• VG is a set ofnodes(or vertexes);

• EG⊆VG×Lab×VG is a set ofedges.

The source and target functionssrcG,tgtG : EG→VG are defined for any edgee= (v, l ,v′) ∈ EG

by srcG(e) = v andtgtG(e) = v′.
A simple graph morphism f: G→H is a pair〈 fV , fE〉, where fV : VG→VH and fE : EG→EH

are functions compatible withsrc andtgt functions and with labelling, i.e. for any edge(v, l ,v′)∈
EG, fE((v, l ,v′)) = ( fV(v), l , fV(v′)). �
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In the sequel we will call a graph morphismf : G→H total if its componentsfV and fE
are total functions, andpartial if its components are total functions fromG′ to H, whereG′ is
some subgraph ofG. An injectivemorphism is a morphism induced by injective functions. We
will denote the set of multigraphs asMG and the set of simple graphs overLab asS G (Lab).
Hereafter, we will use the termgraph to designate either a multigraph or a simple graph.

In our formal definitions we use unlabelled multigraphs and labelled simple graphs. We start
with unlabelled multigraphs in order to keep proofs simple.However, all results of the paper can
be extended to labelled graphs, as it will be discussed in Section 4. Therefore, our examples will
already freely use labels on both nodes and edges.

2.2 Graph Transformations

When modelling system states as graphs, the dynamics of the system can be specified by graph
transformations. The changes of states are then described by graph productions, also called
graph transformation rules.

Definition 3 (graph production) Agraph production pconsists of two graphsL andR, being
its left-hand-sideandright-hand-side, respectively, together with a partial graph morphism from
L to R, called therule morphism.

We often denote a graph productionp as p: L→R, also usingp when referring to the rule
morphism. When combining a graphG with a setP of graph productions, we get agraph pro-
duction system GPS= 〈G,P〉. In a graph production system,G is called thestart graph. By
applyinggraph productions toG we canderiveother graphs. The applications of graph produc-
tions are defined on categories in which the objects are multigraphs or simple graphs and the
arrows are the corresponding graph morphisms. For an introduction to category theory, see e.g.
[BW95]. Whether a rule is applicable and to what resulting graph a derivation leads depends on
the particular graph transformation approach being applied. In this paper we distinguish between
the Single Pushout (SPO) [EHK+97] and the Double Pushout (DPO) [CMR+97] approach. For
applying a production in theSPOapproach, we only need an occurrence of the left-hand-side of
the graph production. When the application of a graph production would delete a node but not all
of its adjacent edges, thosedangling edgeswill also be removed. Furthermore, if the application
prescribes one node (or edge) to be both deleted and preserved, this conflict is solved in favour
of deletion. These conflicts are resolved in theDPO approach by forbidding such applications of
productions, i.e. theDPO approach requires additional conditions on the applications which are
called thedangling edge conditionand theidentification condition(together referred to as the
gluing condition).

In the DPO approach, a graph productionp: L→R is depicted as a spanL
l
← K

r
→ R of total

graph morphisms, such thatK = L∩R, l : dom(p)→L, andr : dom(p)→R. To be determin-
istic, it is necessary that either rule morphisms or matchings are injective. We will now define
applications of graph productions and the corresponding derivations for bothSPOandDPO.

Definition 4 (derivation) Given a graph productionp: L→Rand a graphG, a total graph mor-
phismm: L→G is calledmatching. Thedirect derivationfrom a graphG to a graphH through
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the productionp via matchingm, denotedG =
p,m
=⇒ H, is constructed:

(SPO) as the pushout ofp andm in the category of graphs and partial graph morphisms (see
Fig. 2(a));
(DPO) by taking, in the category of graphs and total graph morphisms, first the pushout comple-
mentD (with k: K→D andl∗ : D→G) of l andm, if it exists (ensured by the gluing condition),
and then the pushout ofr andk (see Fig.2(b)). �

L
p

/

m
��

(PO)

R

m∗
��

G p∗
/ H

(a) SPO

L

m
��

(PO)

K
loo r //

k
��

(PO)

R

m∗
��

G D
l∗

oo
r∗

// H

(b) DPO

Figure 2: GraphH as the result of anSPOand aDPO derivation.

Intuitively, applying a graph productionp to a graphG can be seen as a sequence of two
actions: find an occurrence (matching) ofL in G and thenreplacethat occurrence byR. This
then results in the graphH. An example direct derivation is shown in Fig.4.

An important difference betweenSPOandDPO is the fact thatDPO does not work on simple
graphs with arbitrary matchings, because in some cases the required pushout construction is not
unique or does not exist. In this paper we do applyDPO on simple graphs, but then ensure that
we restrict to a special class of matchings and/or morphisms. This issue will be discussed in
Section3.

2.3 Back to the Example

Now that we have introduced the notion of graphs and the graphtransformation technique, we
can recall the example and give a formal description of the actions. In Fig.3 we specify some of
the actions from the example as graph transformation rules by showing their left-hand-side and
right-hand-side graph. The rule morphisms in Fig.3 are defined by the placing of the elements.

entry

ListList

R

Object

p

L

Object

(a)add

p

L

Object

List

entry

List

R

Object

entry

List

entry

List

(b) copy

Figure 3: Graph transformation rules for some of the actionsin the example.

In Fig. 4 we show a single (SPO) rule application in which we apply thecopy-rule (Fig.3(b))
on a graphG consisting of twoLists each containing oneObject, also showing the resulting
graphH.
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List

entry

List

entry

List

entry

List

entry

List

entry

List

Object

List

entry entry

m

p*

m*

p

G H

RL

entry

Object Object ObjectObject

Object

List

Figure 4: An example direct derivation.

3 From Multigraphs to Simple Graphs and back again

In this section we describe our translation between multigraphs and simple graphs. At a categor-
ical level we will show that these translations are functorswhich are isomorphisms, moreover
being each others inverse.

3.1 From Multigraphs to Simple Graphs

Consider the set of labelsLMG = {s,t}. The functionSim maps multigraphs fromMG into
simple graphs inS G (LMG) as follows: every edgee in the multigraph with source nodevs

and target nodevt becomes a special node (this we call aproxynode) with two outgoing edges
(e,s,vs) and(e,t,vt). Thus, we will usee as a variable ranging over edges of multigraphs and
proxy nodes in simple graphs. Fig.5 shows an example applying theSim function.

Formally, let G = 〈VG,EG,srcG,tgtG〉 be a multigraph. ThenSim(G) is the graphH =
〈VH ,EH〉 with

• VH = VG∪EG, that is, edges ofG are nodes inH;

• EH =
⋃

e∈EG
{(e,s,srcG(e)),(e,t,tgtG(e))}.

TheSim function can be extended on graph morphisms. That is, ifG andH are multigraphs
andm: G→H is a morphism, thenSim(m) : Sim(G)→Sim(H) is the morphism defined by1:

• for all v in VSim(G) (i.e. v∈VG∪EG), (Sim(m))(v) = m(v);

• for all (e, l ,v) in ESim(G), (Sim(m))((e, l ,v)) = (m(e), l ,m(v)).

Note that the definition ofSim(m) on edges ofSim(G) ensures thatSim(m) is indeed a simple
graph morphism.

1 In this definitionm is supposed to be a total morphism. This is not a restriction as a partial morphism is a total
morphism on a subgraph.
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t

s

s

t

Figure 5: Encoding of a multigraph (on the left) into simple graphs with proxy nodes (on the
right) by theSim function.

3.2 From Simple Graphs to Multigraphs

Let S G M G be the set of bipartite simple graphs overLMG satisfying the following conditions:
G = (V,E) ∈S G M G if

1. V = Vn∪Ve whereVn andVe are two disjoint sets;

2. E = Es∪Et whereEs andEt are disjoint sets andEs⊆Ve×{s}×Vn, andEt⊆Ve×{t}×Vn;

3. any nodee in Ve has exactly two adjacent edges(e,s,v′n)∈Es and(e,t,v′′n) for somev′n,v
′′
n ∈

Vn.

We now define the functionSim−1 : S G M G →MG as follows: ifG = 〈Vn∪Ve,EG〉 where
Vn andVe are as in the description ofS G M G stated above, thenH = Sim−1(G) is the graph
〈V,E,src,tgt〉 such thatV = Vn, E = Ve, and for anye∈ E, src(e) = vs andtgt(e) = vt, where
vs,vt ∈Vn are the nodes such that(e,s,vs),(e,t,vt)∈EG. We know by condition3of the definition
of the set of graphsS G M G that the nodesvs andvt exist and are unique.

TheSim−1 function can also be extended on graph morphisms. Ifm: G→H is a simple graph
morphism, thenSim−1(m) : Sim−1(G)→Sim−1(H) is the multigraph morphism such that for
anyx in VG, (Sim−1(m))(x) = m(x). We now show thatSim−1(m) defined this way is indeed a
multigraph morphism.

Let G′ = Sim−1(G), H ′ = Sim−1(H) andm′ = Sim−1(m). Then for any edgee∈ EG′, (m′ ◦
srcG′)(e) = m(vs) wherevs is the unique node inG such that(e,s,vs) is an edge ofG. As m is
a simple graph morphism,(m(e),s,m(vs)) is an edge inH. On the other hand,(srcH′ ◦m′)(e) =
srcH′(m(e)) is the unique nodev′s in H such that(m(e),s,v′s) is a edge inH. We deduce then that
both(m(e),s,v′s) and(m(e),s,m(vs)) are edges inH. By uniqueness ofv′s, necessarilyv′s = m(vs),
som′ ◦ srcG′ = srcH′ ◦m′. We can see in a similar way thatm′ ◦ tgtG′ = tgtH′ ◦m′.

It is not very hard to see thatS G M G is exactly the set of simple graphs that are images of
multigraphs by theSim function, and that the functionSim−1 is the inverse of the functionSim.
This will be formally stated in the following section.

3.3 Categories for Multigraphs and Simple Graphs

In this section we define the categoriesMG and SGMG (LMG) on which DPO transformation
is defined for multigraphs and for simple graphs that are encodings of multigraphs. We show
also that the functionsSim andSim−1 define free functors fromMG to SGMG (LMG) and from
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SGMG (LMG) to MG respectively. This will guarantee that performingDPO transformations on
multigraphs can be simulated byDPO transformations on simple graphs that belong toS G M G ,
as stated in Theorem1. The reader who is not familiar with category theory will probably only
be interested in the result of this theorem.

Definition 5 (categoriesMG , SG(L), andSGMG(LMG)) MG is the category whose objects are
elements ofMG and whose arrows are multigraph morphisms.SG(L) is the category whose
objects are simple graphs over the set of labelsL and whose arrows are simple graph morphisms.
Finally, SGMG(LMG) is the category whose objects are elements ofS G M G and whose arrows
are simple graph morphisms.

Note thatSGMG (LMG) can be equivalently defined as the full subcategory ofSG(LMG) in-
duced byS G M G .

Recall that a functorf = 〈 fo, fm〉 from a categoryC to a categoryD is a function withfo (resp.
fm) associating objects (resp. morphisms) ofD with objects (resp. morphisms) ofC and such
that f preserves morphisms, identities and composition.

The following lemma easily follows from the definitions.

Lemma 1 It holds that

1. Sim is a functor fromMG to SGMG (LMG) and

2. Sim−1 is a functor fromSGMG(LMG) to MG ;

3. the functorsSim andSim−1 are isomorphisms:

Sim◦Sim−1 = IDSGMG (LMG) and Sim−1◦Sim = IDMG .

Graph morphisms are called edge reflecting if edges are reflected along their boundary, i.e.
whenever there is an edge between two nodes in the image of themorphism, there should be an
edge between the pre-images of these nodes in the domain of the morphism (see next lemma).

Lemma 2 All morphisms f: G→ H in SGMG (LMG) are edge reflecting, i.e.

if ( f (x), l , f (y)) ∈ EH then (x, l ,y) ∈ EG.

Proof. It is enough to show thatSim translates to edge reflecting morphisms, because the cat-
egories are isomorphic. By definition,Sim translates edges to special nodes with two outgoing
edges to other nodes. Nodes inMG are connected via structured edges inSGMG (LMG), thus
edges connect an original node with a proxy node. Letf be a graph morphism inMG . If Sim( f )
reaches a proxy node,f has to map to the original edge. Therefore, also the adjacentedges are
reached bySim( f ) and thus,Sim( f ) is edge reflecting.

3.4 Multigraph versus Simple Graph transformations

In the sequel we combine the graph categoriesMG , SGMG(LMG) andSG(LMG) with the trans-
formation approachesSPOandDPO. We will denote such combinations withMG+DPOetc. The

Proc. GT-VMT 2007 8 / 14



ECEASST

aim of this paper is to translateMG+DPO into SG(LMG)+SPO. This is achieved in two steps:

MG+DPO → SGMG (LMG)+DPO → SG(LMG)+SPO

The first step consists in encoding multigraphs and production rules using theSim function, thus
obtaining simple graphs inS G M G and simple graph morphisms. The second step consists in
encoding theDPO rules intoSPO rules. In [HHT96] (Proposition 3.5) it has been shown that
it is possible to translate the application conditions of aDPO derivation (i.e. dangling edge
and identification condition) inMG to equivalent negative application conditions (NACs) for
performingSPOderivations inMG . In Theorem1 we show that the initialDPO transformations
in MG can be simulated by the translatedSPOtransformation inSG(LMG).

Remark1 (Uniqueness of derivations)To be deterministic for given graph production and
matching,DPO derivations need the uniqueness of pushout complements. Inadhesive categories
this is the case if the rule morphisms are, or the match is, monomorphic (see Lemma 15 in
[LS04]), meaning injective in the categoryGraph. In our setting, the categoryMG is adhesive
and therefore alsoSGMG (LMG) is, because it is isomorphic. The monomorphisms in the lat-
ter one are also equalisers by their property of being edge reflecting and thus, they are regular
monomorphisms.

Given a DPO rulep = L
l
← K

r
→ R, we useSim(p) to denoteSim(L)

Sim(l)
← Sim(K)

Sim(r)
→

Sim(R), and we denote bySim∗(p) the translated rule equipped with additionalNACs, as de-
scribed in [HHT96]. For the following lemma we interpret graphs ofSGMG (LMG) as graphs in
MG by forgetting all labels. This allows us to show that pushouts are not only translated to those
in a different category, but also remain pushouts in the original category of multigraphs, after
applyingSim. An extension ofMG with labels is direct and only adds information, which does
not interfere with the pushout construction.

Lemma 3
A //

��

(PO)

B

��

C // D

in MG implies

Sim(A) //

��

(PO)

Sim(B)

��

Sim(C) // Sim(D)

in MG up to label information.

Proof. (sketch) Pushouts inMG are constructed component-wise for the sets of edges and nodes
by building the disjoint union and factorising along the equivalence generated by the span of
morphisms. The definition ofSim is compatible with the standard pushout construction, i.e.
Sim(D) = Sim(B+AC)∼= Sim(B)+Sim(A) Sim(C).

Theorem 1(simulation) Given a rule p= L
l
← K

r
→ R and a match m: L→G in MG , where

l is injective, the following three are equivalent:

1. G=
p,m
=⇒DPO G′ in MG ;

2. Sim(G) =
Sim(p),Sim(m)
========⇒DPO Sim(G′) in SGMG (LMG);
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3. Sim(G) =
Sim∗(p),Sim(m)
=========⇒SPOSim(G′) in SG(LMG).

Furthermore, if a rule in 2 or 3 is applicable, then the resultis always a graph inSG(LMG).

Proof. 1⇔ 2 SimandSim−1 are isomorphisms by Lemma1and hence, they preserve all Limits
and Colimits. Sincel is injective theDPO-derivations are unique up to isomorphism.

2⇒ 3 The derivation in 2 can be considered as a derivation inMG up to labels, according to
Lemma3. Then using [HHT96], it is equivalent to anSPOderivation withNACs in MG
with resultSim(G′), that is,Sim(G′) is the pushout ofp andm in MG . But, asSim(G′) is
a simple graph, it is also the pushout ofp andm in SG(LMG), up to labels. Because of the
strict relation between the labels in graphs inS G M G and their structure, it is not difficult
to see thatSim(G′) is also the pushout ofp andm in SG(LMG) without ignoring the labels.

3⇒ 2 Let H ′ be the result of the derivation(a) Sim(G) =
Sim∗(p),Sim(m)
=========⇒SPO H ′ in MG . By

[HHT96] we know that then(b) Sim(G) =
Sim(p),Sim(m)
========⇒DPO H ′ is a derivation inMG . Since

Sim(p), Sim(m) are morphisms inSGMG (LMG), by Lemma2 we know that they are edge
reflecting, and this allows to deduce that the graphH ′ is a simple graph, that is, an object
of SG(LMG). Now, asSG(LMG) is a full subcategory ofMG and by(a), we have thatH ′ is
the pushout ofSim∗(p) andSim(m) in SG(LMG). By uniqueness of this pushout and the
derivation in point3 we deduce thatH ′ = H, thus(b) is a derivation inSG(LMG). Finally,
one can see thatH ′ and the context graph in(b) are also objects ofSGMG (LMG) because
the translated rule will only produce and delete complete structured edges by definition of
Sim. Hence, no garbage (i.e. proxy nodes with either an outgoings-edge or at-edge, but
not both) will occur. Thus,(b) is also a derivation inSGMG(LMG).

Result H ∼= Sim(G′) is a direct consequence of the last part of the proof for the previous item.

4 Extensions

Theorem1 immediately extends to rules with negative application conditions, because they con-
tain just additional graphs and morphisms of the same kind. Thus, we will not describe this
aspect in more detail.

We are also confident that the results from this paper can be extended in a straightforward
manner to hypergraphs [Kön02], which differ from multigraphs in not having source and target
functions, but rather a single functionends : EG→V∗G that associates with every edge astring
of nodes. Hypergraphs can be translated to simple graphs using precisely the same technique of
encoding edges as proxy nodes, with in this case as many auxiliary edges (to nodes) as there are
elements inends(e).

Up to now we have only considered unlabelled and untyped multigraphs, but all the results that
we have shown can be easily extended to typed multigraphs, and hence to labelled ones, since
labelling can be insured by typing; see, e.g., [EEPT06]. Fig. 6 shows how one of our example
labelled multigraphs would be encoded into a simple graph.
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entry t

s tentry

s
List Object

entry

entry
List Object

Figure 6: Encoding of a labelled multigraph.

A typed graph〈G,m〉 is a graphG together with a morphismm : G→ TG to some graphTG
called the type graph. A typed graph morphismf : 〈G,m〉 → 〈G′,m′〉 is a morphism for which
m= m′ ◦ f . Transformations of typed graphs should involve only typedgraph morphisms. It is
equivalent to consider transformations in aslice category. That is, typed transformations inC
w.r.t. the type graphTG are equivalent to transformations in the slice categoryC ↓ TG, whereC
is eitherMG or SGMG (LMG) andTG is a multigraph or simple graph, respectively. Now, asMG
andSGMG (LMG) are isomorphic withSim as isomorphism functor, it is trivial to see that the
slice categories are also isomorphic. Thus, there is a pushout in MG ↓ TG if, and only if, there is
a pushout inSGMG(LMG) ↓ Sim(TG). Then the simulation result stated in Theorem1 also holds
for a typed transformation.

However, in this case, an additional translation step is still required to translate to untyped
simple graphs. Then we have to extend the labels to encode thetyping; hence, the translation is
from [SGMG (LMG) ↓ Sim(TG)]+SPO to [SGMG (LMG× (VTG∪ETG))]+SPO. We are convinced
that this translation is straightforward, but we have not given the proof.

5 Simulation in SPO Tools

Tools performing graph transformations often implementSPOsince this requires only one pushout
construction whether forDPO an additional pushout complement construction is needed. Prob-
lems arise when performing rule applications usingSPOthat do not satisfy the gluing condition.
In the running example such a situation would occur when applying thedelete rule on anObject

that is contained in more than oneList.
In order still to be able to performDPO transformation, there are basically two alternatives:

1. restrict rule applications by checking the gluing condition after searching for matchings;

2. encode the gluing condition using additional negative application conditions in the trans-
formation rules.

Choosing the first alternative requires that the tool performs an additional gluing check on
the found matches. This gluing check means that for all identifications in the matching and
for all node deletions we need to ensure that there is no preserve-delete conflict (identification
condition) and that the node-deletions do not cause dangling edges (dangling condition), respec-
tively. The AGG tool’s kernel implementsSPOand uses a similar mechanism for handlingDPO

transformations.
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The second alternative is based on Theorem1, in which we show that it is possible to sim-
ulateDPO on our special simple graphs by adding additional negative application conditions as
described in [HHT96].

Let us now briefly describe how one can use the GROOVE tool (or some other tool support-
ing simple graph transformations withSPO) for performingDPO transformations on multigraphs.
Given a (multi-) graph production system (GPS)T = 〈G,P〉, one first has to create the produc-
tion systemSim(T) by encoding the graphG and all graphs and morphisms that are parts of the
productions inP in the manner described in Section3. Note that if some productions include
negative application conditions, these conditions together with the morphisms that relate them
to the corresponding production are encoded just as normal graphs and morphisms. Now, if
the tool offers the possibility to check for the gluing condition (choice1 above), then the GPS
Sim(T) can be submitted to the tool, specifying that the check for the gluing condition has to
be performed. Otherwise (choice2 above), one has to construct the production systemSim∗(T)
by augmentingSim(T) with additionalNACs for encoding the gluing condition inSim(T). The
GPSSim∗(T) is then submitted to the tool as a normal (simple) graph production system. Any
derivation results obtained by the tool (e.g. graphs that can be derived from the start graph or the
actual rule applications) can be transformed back to multigraphs using theSim−1 mapping. This
forth and back translation can be used, for instance, for exchanging results between different
graph transformation tools.

6 Conclusion and Future Work

We have proposed a method for performingDPO multigraph transformations using tools han-
dling SPOsimple graph transformations. Compared to previous work [HKM06], this method is
generic, i.e. has been proved correct on categorical level and does not depend on the tools to be
used.

Pushing theory to work in practise. Tool interoperability is one major motivating point to
translate graph transformation systems using multigraphsand DPO to equivalent systems with
simple graphs andSPOderivations. On the more fundamental level it is even more interesting to
have the possibilities of applying a wide range of theoretical results and implementing them in the
tool of favour. During the last three decades, a lot of theorywas developed usingDPO and multi-
graphs. One special new technique is the analysis of derivations using Subobject Transformation
Systems (STS) presented in [CHS06]. Since the GROOVE tool performs graph derivations to
verify systems, the translation presented in this paper could give the possibility of combining
the power of both (which was not possible before, becauseSTS are not defined forSPO). And
indeed, this idea already has a concrete structure: basically one can exploit the possible results of
dependencies using a translation toSTSs and furthermore, the branching derivations of the state
space can be folded into one summary object. Thus, only a small number of derivation steps will
have to be performed to construct an abstraction of a much bigger state space. The idea is then
to use the abstraction equipped with anSTS to deliver only effective states and perform model
checking on these states and their concrete successors.
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