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Abstract: Application of graph transformations for software verifioa and model
transformation is an emergent field of research. In padriggraph transformation
approaches provide a natural way of modelling object ceigistystems and seman-
tics of object-oriented languages.

There exist a number of tools for graph transformations dinabften specialised in
a particular kind of graphs and/or graph transformationregghes, depending on
the desired application domain. The main drawback of thisrdity is the lack of
interoperability.

In this paper we show how (typed) multigraph productionesyst can be translated
into (typed) simple-graph production systems. The preskoonstruction enables
the use of multigraphs with DPO transformation approachafstthat only support
simple graphs with SPO transformation approach, e.g. th@@Fe tool.

Keywords: graph transformations, graph transformation tools, toi@roperability,
multigraphs, simple graphs

1 Introduction

Application of graph transformations for software verifioa and model transformation is an
emergent field of research. In particular, graph transftionapproaches provide a natural way
of modelling object oriented systems and semantics of dlgjgented languages<KRO06] or
graphical modelling languages such as the UMIMGO0Y5, see for instanceHau0q.

For performing the actual graph transformations, diffeesproaches are around ranging from
hyperedge replacement approach (see é&¢H97]), logic based approach (see e.q.ou97)
to different algebraic approaches such as Single Puske@ {EHK"97] and Double Pushout
(pPo) [CMR"97] approach. These different approaches all have specifiticafipn areas in
which their features are used in an optimal fashion.

Another difference is the use of either multigraphs or segrbphs for modelling the applica-
tion domain. Whereas the former is more general, the latliégsbetter when using graphs for
representing relations between objects in order to realsontdhese objects using (first-order)
logical formulae Ren04/. While spocan be applied for both multigraphs and simple graphs,
DPOis not defined for simple graphs in general.
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For most tools performing graph transformations, the graphesentation formalism and the
transformation approach are determined by the targetelicafdpn domain. For instance, the
GROOVE tool Ren044is designed for modelling dynamic systems and verifyingperties
about their behaviour by generating all possible systenfigarations. GROOVE uses sim-
ple graphs and perfornrsPo based graph transformations. Another example is the AGG too
[TER99 which handles multigraphs witbPoand is used e.g. for independence and termination
analysis on graph grammars.

The main drawback of this diversity in tools is their pooreiaperability. One attempt to
bridge this gap is the introduction of a common language fisedxchanging models among
tools, called the Graph eXchange Languagedyr for short) [SSHW. In order to extend this
work for also exchanging the transformation specificatiamxL [Tae0] has been proposed.
However, since every implementation of a specific approachot aware of details of other
approaches, it is very difficult to include all the featurasohe common standard and thereby
enable tools to perform semantically equivalent transfdioms.

In a previous work HKMO6] we have proposed translations of graph production systems
between GROOVE and AGG, but these translations were todfigpaied are not applicable in
a more general context. Moreover, these translations warewvertible.

In the current paper, we generalise these translations@ataxt that is tool independent. We
show how one can encode typed multigraph production systetmsimple-graph production
systems, and simulatro transformations of multigraphs witbpotransformations on simple
graphs. Then we shortly discuss howo transformations for multigraphs can be handled by a
tool supporting onlyspoon simple graphs. These results should allow, for instaiacese the
GROOVE tool (or any other tool using simple graphs) with ngu#phs. As a further extension,
we believe that it would be possible to apply the theory of &jict Transformation Systems
[CHS0§ in GROOVE.

Running Example. Throughout this paper we will clarify our ideas and resufling a simple
example. In the example we model the dynamic behaviourisaté andObjects that can be
elements of some specifigsts. OneObject may occur in d.ist several times. We assume that
Objects can be created instantly by the environment (which we donaatel in this example).
OnceObjects are around, different actions can be performed.ists andObjects, like adding
Objects toLists and moving, removing or copyir@bjects.
Fig. 1 depicts a possible configuration with twasts: one containing a singl®bject and

another having two entries referring to the sa@igect. In each configuration we assume that
all List- andObject-instances have their own identity, although we do not stimsgéd identities.

‘ List ‘ ‘ List ‘

entry entry entry
\ 4 Y VY

‘ Object ‘ ‘ Object ‘

Figure 1: Example configuration afsts andObjects.
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Organisation of the Paper. The remaining of the paper is structured as follows. In $a@i
we provide a formal basis for the rest of the paper. In Se&@iwe define our translation of multi-
graphs to simple graphs and prove the equivalenc@aftransformations on multigraphs on the
one hand, andgpotransformations on (special) simple graphs on the othed.h&mSectiord
we describe how this equivalence can be extended to typedldd graphs. Then, in Sectié@n
we describe hovorPo transformations on multigraphs can be handled by toolsémphting the
spotransformation approach, such as the GROOVE tool. Finall§gection6 concludes and
gives some hints on the way we would like to use the resulthisfwork for improving state
space exploration in GROOVE.

2 Background

2.1 Graphs and Graph Morphisms

Graphs are a very powerful means of modelling systems arndlibbaviour. As will become
clear in this paper, in some cases it is very important whiafion of graphs is used, since the
theory applied may depend on this choice quite heavily.

The graph concept is differently interpreted by people working infeliént domains or even
in the same domain. Graphs can e.gdbterministi¢ directedor labelled In this paper we will
explicitly distinguish between what we catlultigraphsandsimple graphs

Definition 1 (multigraph, multigraph morphism) Aultigraphis a tupleG = (Vg, Eg, srcg, tgtg)
where:

e /g is a set olhodes(or vertexes);

e Egis asetofedges

e srcg,tgtg: Egc — Vg aresourceandtargetfunctions.

A multigraph morphism f G— H is a pair(fy, fg), wherefy : Vg —Vy and fg: Eg — Eq
are functions compatible wittrc andtgt functions, i.e.

o fyosrcg =srcy o fE;

o fyotgtg = tgty o fE. [ |
Definition 2 (simple graph, simple graph morphism) ILeb be a finite set of labels. Aimple
graphlabelled ovelLab is a tupleG = (Vg, Eg) where

e s is a set ofnodes(or vertexes);

e Eg C Vs x Lab x Vg is a set ofedges
The source and target functiomgg, tgtg: Ec — Vi are defined for any edge= (v,1,V) € Eg
by srcg(e) = vandtgtg(e) = V.

A simple graph morphism:fG—H is a pair(fy, fg), wherefy : Vo —Vy and fg: Eg — En

are functions compatible witic andtgt functions and with labelling, i.e. for any edgel V') €
Ee, fe((v1,V)) = (fv(v).1, fv(V)). =
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In the sequel we will call a graph morphisin G — H total if its componentsfy and fg
are total functions, angartial if its components are total functions fro@f to H, whereG' is
some subgraph db. An injectivemorphism is a morphism induced by injective functions. We
will denote the set of multigraphs a#'¥¢ and the set of simple graphs ouerb as.”¥ (Lab).
Hereafter, we will use the tergraphto designate either a multigraph or a simple graph.

In our formal definitions we use unlabelled multigraphs aadtklled simple graphs. We start
with unlabelled multigraphs in order to keep proofs simplewever, all results of the paper can
be extended to labelled graphs, as it will be discussed itid®et Therefore, our examples will
already freely use labels on both nodes and edges.

2.2 Graph Transformations

When modelling system states as graphs, the dynamics of#iens can be specified by graph
transformations. The changes of states are then descrijpgdaph productions also called
graph transformation rules

Definition 3 (graph production) Agraph production pconsists of two graphk andR, being
its left-hand-sideandright-hand-side respectively, together with a partial graph morphism from
L to R, called therule morphism

We often denote a graph productipnas p: L — R, also usingp when referring to the rule
morphism. When combining a graghwith a set%? of graph productions, we getgraph pro-
duction system GPS (G, #?). In a graph production syster is called thestart graph By
applyinggraph productions t& we canderiveother graphs. The applications of graph produc-
tions are defined on categories in which the objects are gnaths or simple graphs and the
arrows are the corresponding graph morphisms. For an inttimh to category theory, see e.g.
[BWI5]. Whether a rule is applicable and to what resulting grapkrévdtion leads depends on
the particular graph transformation approach being agpliethis paper we distinguish between
the Single Pushoutspo) [EHK™97] and the Double Pushoubfo) [CMR"97] approach. For
applying a production in thepoapproach, we only need an occurrence of the left-hand-dide o
the graph production. When the application of a graph pridoluevould delete a node but not all
of its adjacent edges, thodangling edgesvill also be removed. Furthermore, if the application
prescribes one node (or edge) to be both deleted and prdséhnieconflict is solved in favour
of deletion. These conflicts are resolved in tiro approach by forbidding such applications of
productions, i.e. thepPo approach requires additional conditions on the applioati@hich are
called thedangling edge conditioand theidentification condition(together referred to as the
gluing condition.

In the bPO approach, a graph productign L — R is depicted as a spanL K L Rof total
graph morphisms, such thEt=LNR, |: domp) — L, andr: dom(p) — R. To be determin-
istic, it is necessary that either rule morphisms or matghiare injective. We will now define
applications of graph productions and the correspondimyatens for bothspoandbro.

Definition 4 (derivation) Given a graph productign L — Rand a grapl@, a total graph mor-
phismm: L — G is calledmatching Thedirect derivationfrom a graphG to a graphH through
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the productionp via matchingm, denoteds 2= H, is constructed:

(SPO) as the pushout @f andm in the category of graphs and partial graph morphisms (see
Fig. 2(a));

(DPO) by taking, in the category of graphs and total graphpiisms, first the pushout comple-
mentD (with k: K— D andl«: D— G) of | andm, if it exists (ensured by the gluing condition),

and then the pushout ofandk (see Fig2(b)). [ |
L R L——K—=R
ml (PO) lm* ml (PO) kl/ (PO) lm*
G—p—H G<—D—=H
(a) SPO (b) DPO

Figure 2: GrapiH as the result of aspoand abpo derivation.

Intuitively, applying a graph productiop to a graphG can be seen as a sequence of two
actions: find an occurrence (matching) &fin G and thenreplacethat occurrence bR, This
then results in the grapH. An example direct derivation is shown in Fig).

An important difference betweespoandDpPO is the fact thabpPo does not work on simple
graphs with arbitrary matchings, because in some casesdu@ed pushout construction is not
unique or does not exist. In this paper we do apgpho on simple graphs, but then ensure that
we restrict to a special class of matchings and/or morphishigs issue will be discussed in
Section3.

2.3 Back to the Example

Now that we have introduced the notion of graphs and the girapisformation technique, we
can recall the example and give a formal description of thiems. In Fig.3 we specify some of

the actions from the example as graph transformation ryleshbwing their left-hand-side and
right-hand-side graph. The rule morphisms in FHgre defined by the placing of the elements.

,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: Graph transformation rules for some of the actioriee example.

In Fig. 4 we show a singlegpo) rule application in which we apply thepy-rule (Fig.3(b))
on a graphG consisting of twoLists each containing on®bject, also showing the resulting
graphH.

5/14 Volume 6 (2007)



Simulating Multigraph Transformations @

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

entry entry i, . ,i entry | ent entry i
| p* : |
Object Object i ! Object Object i

Figure 4: An example direct derivation.

3 From Multigraphs to Simple Graphs and back again

In this section we describe our translation between mualfilgs and simple graphs. At a categor-
ical level we will show that these translations are functetsch are isomorphisms, moreover
being each others inverse.

3.1 From Multigraphs to Simple Graphs

Consider the set of labelsyc = {s,t}. The functionSim maps multigraphs from#< into
simple graphs in”¥(Lug) as follows: every edge in the multigraph with source node
and target nods; becomes a special node (this we cafiraxy node) with two outgoing edges
(e,s,Vs) and (e t,v;). Thus, we will usee as a variable ranging over edges of multigraphs and
proxy nodes in simple graphs. Figshows an example applying ti&&m function.

Formally, letG = (Vg, Eg,srcg, tgtg) be a multigraph. TherBim(G) is the graphH =
<VH R EH> with

e 4y =V UEg, thatis, edges o are nodes ifH;
® By =Uesce{(&5,51cc(0)), (8, tatc(€))}-

The Sim function can be extended on graph morphisms. That §,ahdH are multigraphs
andm: G — H is a morphism, the®im(m): Sim(G) — Sim(H) is the morphism defined by
)

e for all vin Vgimg) (i-e. v € Vg UEg), (Sim(m))(v) = m(v

e forall (el,v)in Esim(c), (Sim(m))((e,1,v)) = (m(e),l,m(v)).

Note that the definition od8im(m) on edges o8im(G) ensures thabim(m) is indeed a simple
graph morphism.

1

In this definitionm is supposed to be a total morphism. This is not a restrictioa partial morphism is a total
morphism on a subgraph.
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%ﬂ St%

Figure 5: Encoding of a multigraph (on the left) into simplaghs with proxy nodes (on the
right) by theSim function.

3.2 From Simple Graphs to Multigraphs

Let Y 4«4 be the set of bipartite simple graphs olgfs satisfying the following conditions:
G=(V,E) e Y 44 if

1. V =V,UVe whereV, andV; are two disjoint sets;
2. E = EsUE; whereEg andE; are disjoint sets anfls C Ve x {s} x Vp, andE; C Ve x {t} X Vp;

3. any nodein V, has exactly two adjacent edgess, V) € Esand(e, t, V) for somev;,, v €
\/%

We now define the functioSim1: % ,4 — .#% as follows: ifG = (V,UVe, Eg) where
V, andVe are as in the description a#% ., stated above, theH = Sim(G) is the graph
(V,E,src,tgt) such thaV =V,, E =V, and for anye € E, src(e) = vs andtgt(e) = v, where
Vs, t € V,, are the nodes such th@& s, vs), (e,t, vi) € Eg. We know by conditior8 of the definition
of the set of graphs”’¥ ,« that the nodess andv; exist and are unique.

TheSim~! function can also be extended on graph morphisms: I6 — H is a simple graph
morphism, therSim—1(m): Sim~(G) — Sim~%(H) is the multigraph morphism such that for
anyxin Vg, (Sim~1(m))(x) = m(x). We now show thaSim~(m) defined this way is indeed a
multigraph morphism.

Let G’ = Sim (G), H = Sim 1(H) andm = Sim~*(m). Then for any edge € Eg, (m o
srce ) (e) = m(vs) wherevs is the unique node i such that(es,Vvs) is an edge of5. Asmis
a simple graph morphisnim(e),s,m(vs)) is an edge irH. On the other handsrcy: onv)(e) =
srcy(m(e)) is the unique node, in H such thatm(e), s, V;) is a edge irH. We deduce then that
both(m(e),s,v;) and(m(e),s, m(vs)) are edges ikl. By uniqueness of;, necessarily; = m(vs),
som osrcg = srcyr oM. We can see in a similar way thatt o tgtg = tgty, om'.

It is not very hard to see tha¥¥ ,« is exactly the set of simple graphs that are images of
multigraphs by thé&Sim function, and that the functioBim~ is the inverse of the functio8im.
This will be formally stated in the following section.

3.3 Categories for Multigraphs and Simple Graphs

In this section we define the categorig&s and SGyg (Lmg) on which DPO transformation
is defined for multigraphs and for simple graphs that are dings of multigraphs. We show
also that the functionSim andSim—* define free functors frortMG to SGyg (Lme) and from
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SGwic (Lmc) to MG respectively. This will guarantee that performingo transformations on
multigraphs can be simulated by o transformations on simple graphs that belongA& <,
as stated in Theoreth The reader who is not familiar with category theory will padly only
be interested in the result of this theorem.

Definition 5 (categorieMG, SG(L), andSGyc (Lmg)) MG is the category whose objects are
elements of #% and whose arrows are multigraph morphisn$5(L) is the category whose
objects are simple graphs over the set of lahedsd whose arrows are simple graph morphisms.
Finally, SGug (Lmg) is the category whose objects are elements’®f ,« and whose arrows
are simple graph morphisms.

Note thatSGyg (Lmc) can be equivalently defined as the full subcategorGfLyg) in-
duced byY .

Recall that a functof = (f,, f,) from a categorC to a categonp is a function withf, (resp.
fm) associating objects (resp. morphisms)ofvith objects (resp. morphisms) &f and such
that f preserves morphisms, identities and composition.

The following lemma easily follows from the definitions.

Lemmal Itholds that

1. Simis a functor fromMG to SGyg (Lmg) and
2. Sim 1is a functor fromSGyg (Lwg) to MG;
3. the functorsSim and Sim~! are isomorphisms:

SimoSim ' =1Dgg,c (s and Sim™*

oSim=IDyg.

Graph morphisms are called edge reflecting if edges are tedledong their boundary, i.e.
whenever there is an edge between two nodes in the image ofdhghism, there should be an
edge between the pre-images of these nodes in the domaie wfdtphism (see next lemma).

Lemma2 All morphisms f: G — H in SGyg (Lmg) are edge reflecting, i.e.
if (f(x),l,f(y)) € Eq then (x]l,y) € Eg.

Proof. It is enough to show tha®im translates to edge reflecting morphisms, because the cat-
egories are isomorphic. By definitioBjm translates edges to special nodes with two outgoing
edges to other nodes. NodesNtG are connected via structured edgesSiByc (Lmg), thus
edges connect an original node with a proxy node. fLe¢ a graph morphism MG . If Sim(f)
reaches a proxy nodé,has to map to the original edge. Therefore, also the adjachyds are
reached bysim(f) and thusSim(f) is edge reflecting. O

3.4 Multigraph versus Simple Graph transformations

In the sequel we combine the graph categok&3, SGyg (Lmg) andSG(Lyg) with the trans-
formation approachespoandppPo. We will denote such combinations wikhG +DpPoetc. The
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aim of this paper is to transladG +bpPointo SG(Lyg)+SPo. This is achieved in two steps:

MG+DPO — SGyg(Luwg)+DPO — SG(Lug)+SPO

The first step consists in encoding multigraphs and productiles using th&im function, thus
obtaining simple graphs ¥ _,« and simple graph morphisms. The second step consists in
encoding theppo rules intosporules. In HHT96] (Proposition 3.5) it has been shown that

it is possible to translate the application conditions abro derivation (i.e. dangling edge
and identification condition) itMG to equivalent negative application conditionsaCs) for
performingspoderivations inMG. In Theoreml we show that the initiabpPo transformations

in MG can be simulated by the translatedotransformation irSG(Lyg).

Remarkl (Unigueness of derivationslo be deterministic for given graph production and
matching,DPo derivations need the unigueness of pushout complemengslhiesive categories
this is the case if the rule morphisms are, or the match is,omanphic (see Lemma 15 in
[LS04]), meaning injective in the categofgraph. In our setting, the categoG is adhesive
and therefore als&Gyg (Lmc) is, because it is isomorphic. The monomorphisms in the lat-
ter one are also equalisers by their property of being edigctimg and thus, they are regular
monomorphisms.

Given a DPO rulep =L LK LR we useSim(p) to denoteSim(L) Siod) Sim(K)
Sim(R), and we denote b$im*(p) the translated rule equipped with additiomalcs, as de-
scribed in HHT96]. For the following lemma we interpret graphs 96y (Lvg) as graphs in
MG by forgetting all labels. This allows us to show that puskare not only translated to those
in a different category, but also remain pushouts in theiraigcategory of multigraphs, after
applying Sim. An extension oMG with labels is direct and only adds information, which does
not interfere with the pushout construction.

Sim(r)
—

Lemma 3
A——B Sim(A) —— Sim(B)

l (PO) l in MG implies l (PO) J/ in MG up to label information.
D Sim(C) —— Sim(D)

C——s
Proof. (sketch) Pushouts MG are constructed component-wise for the sets of edges amrdnod
by building the disjoint union and factorising along the ieglence generated by the span of
morphisms. The definition oim is compatible with the standard pushout construction, i.e.
Sim(D) = Sim(B+aC) = Sim(B) +sjm(a) SIiM(C). O

Theorem 1(simulation) Given arule p=L L K % R and a match mL — G in MG, where
| is injective, the following three are equivalent:

1. G228 G in MG;

Sim(p),Sim(m)

2. Sim(G) oro SIM(G') in SGue (Lma);

9/14 Volume 6 (2007)
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3. Sim(G) 2RSS, Sim(G') in SG(Luo).

Furthermore, if a rule in 2 or 3 is applicable, then the resslalways a graph ir8G(Lyg).

Proof. 1< 2 SimandSim~! are isomorphisms by Lemnizand hence, they preserve all Limits
and Colimits. Sincé is injective theDpo-derivations are unique up to isomorphism.

2= 3 The derivation in 2 can be considered as a derivatioM@ up to labels, according to
Lemma3. Then using [HHT96), it is equivalent to arspPoderivation withNACS in MG
with resultSim(G’), that is,Sim(G') is the pushout op andmin MG. But, asSim(G') is
a simple graph, it is also the pushoutmndmin SG(Lug), up to labels. Because of the
strict relation between the labels in graphsit¥ _,« and their structure, it is not difficult
to see thaSim(G') is also the pushout gf andmin SG(Lug) without ignoring the labels.

3= 2 Let H' be the result of the derivatiota) Sim(G) = 2.SMW.  H/ in MG. By
[HHT96] we know that thertb) Sim(G) Mﬁpo H’ is a derivation irMG. Since
Sim(p), Sim(m) are morphisms i$Gvg (Lmc), by Lemma2 we know that they are edge
reflecting, and this allows to deduce that the grélis a simple graph, that is, an object
of SG(Lug). Now, asSG(Lwg) is a full subcategory dfiG and by(a), we have thaH’ is
the pushout oSim*(p) andSim(m) in SG(Lug). By uniqueness of this pushout and the
derivation in point3 we deduce thatl” = H, thus(b) is a derivation irSG(Lwg). Finally,
one can see th&l’ and the context graph ifb) are also objects Gy (Lmg) because
the translated rule will only produce and delete completectiired edges by definition of
Sim. Hence, no garbage (i.e. proxy nodes with either an outgo#dge or a-edge, but
not both) will occur. Thus(b) is also a derivation iI5Gyc (Lma)-

Result H = Sim(G') is a direct consequence of the last part of the proof for teeipus item.
O

4 Extensions

Theoreml immediately extends to rules with negative applicationditions, because they con-
tain just additional graphs and morphisms of the same kinkusTwe will not describe this
aspect in more detail.

We are also confident that the results from this paper can tem@ad in a straightforward
manner to hypergraph&pn02], which differ from multigraphs in not having source andgetr
functions, but rather a single functiends: Eg — V¢ that associates with every edgestaing
of nodes. Hypergraphs can be translated to simple graphg peécisely the same technique of
encoding edges as proxy nodes, with in this case as manyaayealges (to nodes) as there are
elements irends(e).

Up to now we have only considered unlabelled and untypedgnaihs, but all the results that
we have shown can be easily extended to typed multigraplishamce to labelled ones, since
labelling can be insured by typing; see, e.&EPT0§. Fig. 6 shows how one of our example
labelled multigraphs would be encoded into a simple graph.
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entry
o e

entry

Figure 6: Encoding of a labelled multigraph.

A typed graph(G,m) is a graphG together with a morphisrm: G — TG to some grapffG
called the type graph. A typed graph morphi$m(G,m) — (G, ) is a morphism for which
m= ' o f. Transformations of typed graphs should involve only tygesph morphisms. It is
equivalent to consider transformations islece category That is, typed transformations @
w.r.t. the type grapi G are equivalent to transformations in the slice categoiyTG, whereC
is eitherMG or SGy (Lmg) andTGis a multigraph or simple graph, respectively. NowMG
and SGy (Lmg) are isomorphic withSim as isomorphism functor, it is trivial to see that the
slice categories are also isomorphic. Thus, there is a push®™G | TGif, and only if, there is
a pushout irSGy (Lmg) | Sim(TG). Then the simulation result stated in Theorgmiso holds
for a typed transformation.

However, in this case, an additional translation step Isrstjuired to translate to untyped
simple graphs. Then we have to extend the labels to encodgpimg; hence, the translation is
from [SGu (Lmg) | SIM(TG)]4+spPoto [SGue (Lme X (VtcUErg))]+SPo. We are convinced
that this translation is straightforward, but we have neegithe proof.

5 Simulation in SPO Tools

Tools performing graph transformations often implengrbsince this requires only one pushout
construction whether fappo an additional pushout complement construction is needesh-P
lems arise when performing rule applications usémgpthat do not satisfy the gluing condition.
In the running example such a situation would occur whenyapplthedelete rule on anObject
that is contained in more than oh&t.

In order still to be able to performpPo transformation, there are basically two alternatives:

1. restrict rule applications by checking the gluing coioditafter searching for matchings;

2. encode the gluing condition using additional negativaliegtion conditions in the trans-
formation rules.

Choosing the first alternative requires that the tool peman additional gluing check on
the found matches. This gluing check means that for all ifleations in the matching and
for all node deletions we need to ensure that there is no weskelete conflict (identification
condition) and that the node-deletions do not cause dapgliiges (dangling condition), respec-
tively. The AGG tool’'s kernel implementsPoand uses a similar mechanism for handlivepo
transformations.
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The second alternative is based on Theoferim which we show that it is possible to sim-
ulate DPO on our special simple graphs by adding additional negapdi@ation conditions as
described infHHT94].

Let us now briefly describe how one can use the GROOVE tooldresother tool support-
ing simple graph transformations wigit Q) for performingbppo transformations on multigraphs.
Given a (multi-) graph production system (GPS- (G, &), one first has to create the produc-
tion systemSim(T) by encoding the grapB and all graphs and morphisms that are parts of the
productions inZ? in the manner described in SectiBn Note that if some productions include
negative application conditions, these conditions togrethith the morphisms that relate them
to the corresponding production are encoded just as normphg and morphisms. Now, if
the tool offers the possibility to check for the gluing cdiwh (choicel above), then the GPS
Sim(T) can be submitted to the tool, specifying that the check fergluiing condition has to
be performed. Otherwise (choi@eabove), one has to construct the production syssemi (T)
by augmentingsim(T) with additionalNAcs for encoding the gluing condition Bim(T). The
GPSSim*(T) is then submitted to the tool as a normal (simple) graph ol system. Any
derivation results obtained by the tool (e.g. graphs thateaderived from the start graph or the
actual rule applications) can be transformed back to mmaltigs using th&im~* mapping. This
forth and back translation can be used, for instance, fohaxging results between different
graph transformation tools.

6 Conclusion and Future Work

We have proposed a method for performingo multigraph transformations using tools han-
dling sposimple graph transformations. Compared to previous wiaikNI06], this method is
generic, i.e. has been proved correct on categorical lexkHaes not depend on the tools to be
used.

Pushing theory to work in practise. Tool interoperability is one major motivating point to
translate graph transformation systems using multigrapitkbP0O to equivalent systems with
simple graphs andpoderivations. On the more fundamental level it is even maoter@sting to
have the possibilities of applying a wide range of theoattiesults and implementing them in the
tool of favour. During the last three decades, a lot of thewag developed usingPo and multi-
graphs. One special new technique is the analysis of demgtising Subobject Transformation
Systems $T19) presented inCHS0§. Since the GROOVE tool performs graph derivations to
verify systems, the translation presented in this papeldcgire the possibility of combining
the power of both (which was not possible before, becarseare not defined fosPQ. And
indeed, this idea already has a concrete structure: blysice can exploit the possible results of
dependencies using a translatiorsttes and furthermore, the branching derivations of the state
space can be folded into one summary object. Thus, only d snraber of derivation steps will
have to be performed to construct an abstraction of a muaebigtate space. The idea is then
to use the abstraction equipped with s to deliver only effective states and perform model
checking on these states and their concrete successors.
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