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Abstract: This paper investigates a way of imposing a hierarchy on phgma
order to explore relationships between elements of datgpos$ing a hierarchy is
equivalent to clustering. First a tree structure is imposedhe initial graph, then
a k-partite structure is imposed on each previously obtairadter. Imposing a
tree exposes the hierarchical structure of the graph asasgltoviding an abstrac-
tion of the data. In this study three kinds of merge operatiare considered and
their composition is shown to yield a tree with a maximal nembf vertices in
which vertices in the tree are associated with disjoint eated subgraphs. These
subgraphs are subsequently transformed into k-partitghgrasing similar merge
operations. These merges also ensure that the obtaindd mexper with respect to
the hierarchy imposed on the data.

A detailed example of the technique’s application in expgs$he structure of protein
interaction networks is described. The example focusesMRPK cell signalling
pathway. The merge operations help expose where signdhtiEguoccurs within
the pathway and from other signalling pathways within thie ce

Keywords: Graph visualization, clustering technique, trieguartite graphs.

1 Introduction

When exploring the structure of large graphs the user isdftiedered by the number of vertices
and edge crossings contained in an unabstracted visuatizathis study deals with an approach
to transforming the underlying graph with respect to a watlerstood structure namely a tree
structure. The user can then explore the graph with respeittig structure. Vertices in the
underlying graph are clustered together into super-wstiyy edge contraction in such a way
that a tree structure emerges. The question that must theddressed is what edges are con-
tracted and in what order to result in such a structure anddums the abstract tree relate to the
underlying graph in such a way that it can be easily integardty the user.

The idea of abstracting a graph in order to improve its imtgbility is not new. Each ap-
proach to abstraction is designed to achieve differentsgdallFen97, for example, the authors
cluster vertices to obtain a planar abstraction of theahgraph. The obtained graph does then
not contain any cross-edges thus improving the readabiiyhen exploring a graph without
any particular question in mind planarity is a good criterto impose. However some graphs
possess an underlying structure (such as a tree or gridwgteliavhich the user would like to
expose in order to address particular questionsHHR0Y, for example, the authors show that
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users prefer hierarchical graphs when understanding taeséa For this reason, abstracting the
graph as a tree is considered in this study.

Extracting a tree from a graph is usually done by mearspafining tree computation tech-
nigues. But spanning trees only partially achieve our goktle® number of nodes of a spanning
tree is the same as the number of vertices of the graph. Tlaeeelieen attempts to visualize
large networks using spanning tre@s&K06] but ultimately such layouts do not minimize the
number of vertices that the user has to read.

There exist other methods to expose the tree-like struofiagraph such as tree-decomposition
[Die05 Bod93. However the mapping of vertices to clusters is not one . drhis means that
it is hard for the user to associate underlying vertices witbh a decomposition. However the
related area ofraph minor theory which is concerned with studying the properties of graphs ob
tained by edge contraction or edge deletion is of interedgieEeontraction provides a reasonable
way of clustering a graph in such a way that it remains congnsible to the user. As shown
in [DKO5] edge contraction does not have to be performed explicittychn be divided into two
separate sets of operations to obtapreaminor andminor of the underlying graph respectively.
Such operations are termawrgesin this paper.

Intuitively, a merge collapses some vertices of the inigieph into clusters and updates the
edges so that two clusters are connected if they share a comedye. Three merges are consid-
ered in this paper. The first one, introducedm&i04], yields a tree whose number of vertices is
maximal. This tree represents an abstraction of the irgtiaph, enabling the user to browse the
smaller graph. This is of particular relevance when théahifraph is large. If one of the vertices
of the tree appears to be of interest then the user may wagttthe part of the initial graph to
which it corresponds. Often it is desirable that clusterthefgraph are connected. Since this is
not ensured by the merge previously mentioned, a seconderopryation is considered, which
has to be applied together with the first merge operationt{tleemerge operations have to be
composed). Finally, the third merge introduced enablesalization of the contents of clusters
ask-partite graphs.

In section2, some notation and preliminaries are introduced. The fiestgm operation is
presented in sectioB, the second merge operation in sectipand the third merge is introduced
in section5. It is shown in these sections that their composition yieldsee with maximal
number of vertices. The nodes of this tree are obtained lsyazing and the contents of a cluster
is itself cluster to result in &partite graph. Finally, an example of the algorithms aggtlon is
provided based on protein-protein interaction data pexidy CPATH Epd in section6.

2 Preliminaries

A simple graphG is a couple(Vg, Eg) where\g is the set of vertices & andEg is its set of
edges, such that(x,x') € V&|x= X} C Eg C VZ. A graphG is said to be empty i¥/g = 0.
Finally, G is said to be undirected if for allx,y) € Eg, it is also true thaiy,x) € Eg. The
set of undirected simple graphs is denot@dIn what follows, only undirected graphs will be
considered.

Given a non-empty grapB and two vertices,y of G, if (x,y) € Eg thenx andy are said to be
neighbors. Moreover, a pathof G betweernx andy is a sequence of edgés, X 1)1<i<k Such
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thatx = X1, y = %1 and for alli € {1,...,k}, (Xi,%+1) € Ec. The empty path is denotedand
represents the empty sequence of edges.

If p= (Xi,X+1)1<i<k iS a path ofG, then any sub-sequenc®, X+ 1)k, <i<k, With k; > 1 and
ko < kis called a sub-path gf and is denotegby, . For instance, ip equals

(Xl’x2)’ (X2,X3), (X3’X4)’ (X5’XG)’ (X5’X7)’ (XS’XQ)

then py, x, equals(xz,xs), (xs,%g). If pandp’ are two paths ang (resp. p') is empty, then the
concatenation op andp’, denotedp.p’ , equalsp’ (resp. p). Now if neitherp nor p’ is empty
andp = ((X,X+1))1<i<k andp’ = ((Xj,Xj,.1))1<j<k @ndx1 = Xy, thenp.p’ is the path

(le XZ)'(X27 X3) e (Xk7xk+1)'(xll7xl2) e ()q(’ ) Xlk’Jrl)

The length of a patip, denoted p|, is defined as the following:

0 ifp=¢
pl={ |pl if p=(xX).p withx=x
IP|+1 if p=(xX).p with x#£X
For instance, considering the pattdefined abovep| = 6 and|(x1,X1).p| = 6 also.
Given a connected simple undirected gr&pand a vertex of G, the distance functiodg, (-)
is defined for all verticex of G by

dgr(x) = min{|p| € N| pis a path inG betweerr andx} 1)

As an example, for all vertices of graphG given in Figurel, the value ofdg (n) is written
down on the left side of Figure.

0 ©

: / \@
> \@/
3 AN @/

Figure 1: A graphG.

A graph is said to bé&-partite if it is possible to partition vertices intosubsets such that two
vertices belonging to the same patrtition are not neighbidne.goal of this study is to compute a
tree andk-partite graphs with maximal number of vertices, by transiag a graphG. The kind
of transformations under consideration are caitenges.

Definition 1 A merge is an operator froi® to G which possesses the following properties: if
G’ € Gis the result of a merge applied ®e G, then
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(a) A graph obtained by (b) A graph not ob- (c) A merge not preserving (d) The tree result-
merging. tained by merging. the hierarchy. ing from applying
M1 ansz.
Figure 2:

(@) Vi is a partition ol (i.e Ve € 2% andUxey, X = Ve andvX,Y € Ve, XNY = 0).

(b) for X,Y € Vg,
(X,Y) e Eg <= Ixe X,yeY,s.t(xy) € Eg

Thus a merge is an operator which collapses together sexestiles of a graph to obtain a new
vertex. The edges incident to the collapsed vertices thedédnt to the newly obtained vertex.
Note that a graph obtained by merging, using the first mergeadion, is different from a graph

minor. A merge corresponds to the repeated applicationseé&x-contractions, and a minor
corresponds the repeated applications of edge-contnactiod edge-deletions.

Figure 3(a) represents a graph obtained by merging from the gfagh Figurel. But Fig-
ure 3(b) represents a graph which cannot be obtained féddmy merging. There is no edge
betweenv andzin G, and there is one betweén/} and{z}.

Considering a particular vertexof a graphG as well as the distance functiodg, a hierarchy
is explicitly introduced over the vertices Gfin order to facilitate the understanding of the data by
the userr is the higher element in the hierarchy and the further frawertex is the lower itis in
the hierarchy. Itis usually desirable that a merge appliedpreservesthe hierarchy. Formally,

M preserves the hierarchy of G according ta if X,y € VG, VX,Y € V) S.txe X andy €'Y,

der(X) < dgr(Y) = du(c)r(X) < du()Rr(Y) (2)

whereR s the vertex oM (G) containingr. The graphG’ represented in Figur&a)is obtained

by a merge preserving the hierarchy®({see Figurel) according ta. This is not the case for the
merge resulting in the graph of Figuséc). If Rdenotes the vertefr }, thends r({X,Y,W}) <

de r({X,y}) anddg(X') < dg,(Y'). This means that is lower thany' in the hierarchy involved

by G/, although it is the opposite iB. In the case of a social network for instance, a merge like
the one yielded irG’ would then reverse the fact that the persobplays a more important role
than the persow. This seems awkward in some situations. For this reasorges@voiding this
kind of reversion are considered in this study.

1 Note that ifdg  (x) is greater thamlg ( (y) anddg, (y) is greater thamlg ( (x) thenx =y does not hold in general.
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Merging vertices of a graph represents an interesting waydwvide an abstraction. If this
abstraction is done in a reasonable way, merging could gecaibasis by which to browse the
graph. Indeed one could browse the result of a merge andadtecahter into details by browsing
the part of the initial graph represented by a vertex obthinemerging. Such a part of the initial
graph is called aassociated graph.

Definition 2 Let G be a graph and/ be a merge. Given a vertex of M(G), the graph
associated t&X according taG, denotedG'(X) represents the sub-gra@ of G defined by:

e Vg :{XGV6|X€X}
* Eg ={(xy) € Eg|xe XAy€ X}

Even if G is a connected graph, this property does not hold for anycagsd graph. But when
considering entering into details of a vertex of a graphiolthby merging, it is often preferable
that a connected sub-graph®fs associated with it. For this reason, we will consider ictiom 4
merges which ensure that all associated sub-graphs areaedn In what follows, such a graph
will be called adeeply connected graph according toG.

Lemmal is an interesting lemma showing that the existence of pathgraphG is preserved
by merging.

Lemmal Let Gand G betwo graphs such that G’ is obtained from G by applying a merge
operator. Let x,y € Vg and X,Y € Vi suchthat xe X andy € Y. If there exists a path in G
between x and y, then there exists a path in G’ between X and Y.

Section3 aims at providing a means of imposing an optimal tree fromwardirected connected
simple and non empty graph. Sectidraims at providing an algorithm to be applied on the
previous tree so that a deeply connected one is obtainedio®Sécdeals with imposing &-
partite graph on the associated graph of the previoushiradaalusters.

3 Imposing a Tree

In this section how using merges to impose a tree on a grapgim&dered. INBMO04] a merge
yielding a tree is introduced. We show in this section thititierge, denotelll; in what follows,
preserves the hierarchy introduced by the distance fumétion a given vertex and yields a tree
with maximal number of verticedV; is actually defined from an equivalence relatRrand is
then shown to merge as few vertices as possible to resulraedgee theorer).

If Gis an undirected simple and non-empty graph aigda vertex ofG, the relationR onVg
according ta is defined as the following:

xRy <= (d(x) =d(y)) A (Fz p, P, Pxz= P (3)

ARy, =P AYX € p,vY € P, d(x) <d(X) Ad(y) <d(y))
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Basically, two vertices are related accordindRtd there exists a path from each of them leading
to the same vertex by only traversing vertices that are éurétway fromr. Considering that
would be the root of a tree, then the distance function fronould represent the depth of each
vertex in this tree. Two vertices would then be related?oij there exists a vertex whose depth
is greater and from which there is a path to both of them. Tha id then to merge iteratively
two such vertices together into a single one to obtain a tree.

Note that the relatioR is reflexive and symmetric. This implies that the transitil@sureR™
of R is an equivalence relation over the set of vertices oBy definition, xR ™y if and only if
there exists a sequen¢g)i<i<k such thakRx;, xRy and for alli € {1,... k—1}, xRX11.

It is possible to compute the classes of equivalence aseddi@aR ™ by searching for pairs of
vertices related to each other By The idea would then be to merge all the vertices of a same
class to obtain a tree. Considering Figareith dg(r) =0, dg,(X) = dg(y) = dg (W) = 1,
dor(X) = dg,(Y) = dgr(W) = 2 anddg,(z) = 3, the corresponding classes of equivalence
are {x,y,w}, {X,y}, {w} and{z}. An algorithm implementing the merdd; can be found
in [BM04].

Definition 3 LetG be a simple undirected non-empty graph and ket a vertex oG. M1(G,r)
denotes the merge defined by:

* Vi, (er) = {Classes of equivalence Bf* }
* Emyar) = {(X,Y) €V, 6| FXEX,YEY, (xY) € Ec}

As an example, the graph of Figuséa) representdl; (G, r) whereG is the graph of Figuré.

The operator defined by Definitiah is clearly a merge according to Definitidn Moreover,
M1(G,r) is a tree rooted if{r} since no path from two vertices at the same level can lead to a
deeper vertex. It is also worth noting that each vertex obtitained treévi; (G, r) consists of a

set of vertices ofz. Moreover, giverX € Wy, ), if r € Rthen

VX e X7 dMl(G,r),R(X) = dGJ(X)

This equation implies in particular thit; preserves the hierarchy according to

Theoreml is actually the main result of this section. It shows thfatis a merge which yield
a tree whose number of vertices is maximal, while preserttieghierarchy introduced by the
distance function.

Theorem 1 Let G be a undirected simple non-empty graph and r be a vertex of G. M1(G,r) is
the maximal (in the sense of the number of vertices) tree rooted in r, preserving the hierarchy,
and obtained from G by merging.

Proof. (proof of Theorenil)

If M1(G,r) was not an optimal tree, then there exists an optimal mdrgach thatM (G) is a tree
as well as two different vertices andY of M1 (G, r) and two vertices andy of G such thakR*y
butx € X andy € Y. Since the merg# also preserves the hierarclty ) r(X) = dw(c)r(Y)
holds. Now sincexR*y, then it exists a path betweenandy such that only vertices, whose
depth is greater thaa (), are traversed. Now according to Lemmahere exists such a path

Proc. GT-VMT 2007 6/15



Ea ECEASST

betweenX andY in M(G). In that caséV (G) can not be a tree. This contradicts the assumptions
and soM1 (G, r) is not optimal.

O

4  On the Computation of a Deeply Connected Tree

The tree obtained after applying merlyg to a graph does not necessarily yield a tree whose
vertices abstract connected sub-graph&ofin this section a merge denotédb is then intro-
duced to achieve this goal. This merge is performed/Q(G,r). The idea is to merge couples
of vertices for which the associated sub-graphs are notexed in the initial graph.

Definition 4 Given a graphG and a tre€l obtained applying a merging operatdron G, M»
is the maximal (in number of vertices) merging operator ghelh

VX € V1), VXY EVG, XY € X =
3 a pathpin G betweerx andy

The following algorithm gives a way to merge the vertices Isat tfor each vertex of the
obtained tree, its associated sub-graph is connected.

Algorithm 1

e Input: atreeT obtained by applying mergd;
e Output: atreeT’ which the graph associated to any vertex is connected.

e Determine for each vertex df if the associated graph is connected (denoted 1-vertex) or
not (denoted O-vertex).

e From the lower levels to the upper one,

(1) Merge the O-vertices with its parent.
(2) performs action 1 till the obtained tree is deeply comnee.c

This principle relies on the fact that if two verticeandx are merged to yield a vertex whose
associated graph is connected, tlveés the parent ok’ or vice-versa. If it was not the case then
any vertex ofn would not be a neighbor of a vertex ®fin the initial graph. This implies that
more merges should be performed to obtain a connected gsaphiated to the vertep, X' }.

It is also worth noting that ik is the parent ok’ then the graph of the vertex, X'} resulting
from their merging is not necessarily connected. But thiobees true if the graph associated to
X is connected (becausés the parent ok’ and then each vertex af is connected to a vertex of
X).

Theorem 2 Algorithm 1 implements Merge M, and then yields a deeply connected tree with
maximal number of vertices, when applied to M1 (G,r).
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Proof. First, note that Algorithml always terminates. This holds because the merging applied
in action 1 provides a tree whose number of nodes is striotlet than the initial tree. Moreover
the tree, obtained fror® by merging and containing only one node, is deeply connected

Note also that Algorithni always yields a tree. This is due to the fact that the merges pe
formed in action 1 correspond to edges-contraction andatahen add cycles to the tree.

The optimality of the solution provided by Algorithfnis ensured by two features:

e First, any O-vertex has to be merged with an other node.

e Moreover, according to the Definitia) any vertexx of G is either a neighbor of vertices
belonging to the same vertek of M1(G,r) asx, or belonging to a neighbor of. This
means that any 0-vertex has to be merged with its parent asfatsechildren. If a O-vertex
is merge with one of its children, then the obtained node bvéla 1-node, but the number
of 1-node will remain the same as in the previous tree. If n@wartex is merge with its
parents:

— if the parent is a 1-vertex, the case is similar as the first tmeobtained vertex is a
1-node and the number of 1-node remains the same.

— If the parent is a 0-node, it might happen that the resultinderis a 1-node and then
the number of 1-nodes would increase.

We can then deduce that merging a 0-node with its parent ig tmemeficial to obtain an
optimal solution.

O

Figure3(d) shows the resulting tree obtained by applying successivelgedM; andM, to the
graphG given in Figurel, considering Vertex as a root for the imposed tree. According to
Theoren, this tree is the maximal deeply connected one and obtaipeatlnging fromG, con-
sideringr as a root. MoreoveiM, clearly preserves the hierarchy since only edge-contrasti
are performed.

5 Imposing ak-partite Graph on an Associated Graph

When applying the merges considered in secBand 4, the initial graph is clustered so that
a tree is obtained. This provides greater readability wiggbarticularly relevant if the initial
graph is dense and possesses a large number of verticest iBatgo of great interest for the
user to visualize what is inside a clusteg the associated graph. Since the initial graph can be
dense and large, so may be the associated graphs. It is tirdarekt to apply merges to clusters
and then offer a more readable visualization of the assmtigtaphs. However, imposing a tree
on them which preserves the hierarchy is not possible. Térerindeed at least two nodes with
minimal depth, in each cluster. There is then no legitimata to form the basis to impose a
tree.

In this sectiork-partite graphs are considered to be imposed on the asstgjedphs. Indeed
it can be shown that it is possible to cluster each assocgtguh so that &-partite graph, with
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maximal number of vertices and preserving the hierarchgbiained. With that aim, the merge
Ms is introduced.

Definition 5 Let G be a non empty connected undirected graphrapel a vertex ofs. Let us
denoteG’ an associated graph bf,(M1(G,r)). MergeMjs is defined such that

* Vye) = {AC VG| VX Yy €A, (XY) € Eg anddg, (X) = dgr(Y)}

* Ewye) = {(X.Y) € Vi, )| 3x€ X andy € Y with (xy) € Eg}

As shown by Theorer, applying mergeMs to each cluster oM,(M1(G,r)) yields ak-partite
graph preserving the hierarchy according teith maximal number of vertices.

Theorem 3 Let G be a non empty connected undirected graph and r be a vertex of G. Let us
denote G’ an associated graph of M(M1(G,r)). M3(G') is a k-partite preserving the hierarchy
of G according to r with maximal number of vertices.

Proof. First, let us introduce set®/); of vertices ofG’' such thatx andy are in the same set
Vi if and only if dg (X) = dg,(y). The only edges preventing’ from being ak-partite graph
according to set¥ are the ones between two edges of the same depth. But migrgeerges
vertices so that these edges are hidden in a clugteclearly preserves the hierarchy according
to r since only vertices of the same depth are merged. Plus teé\gtare defined such that
they reflect this hierarchy, partitioning the vertices adaug to their depth. Merg®/s is then
optimal since only vertices linked to an other vertex belbgdo the same sé&f are merged.

]

Theorem3 offers a way to impose lapartite graph structure on each associated graph. Referri
to Figurel and only considering the levels 1, 2 and 3, the resultinglgrapot ak-partite graph
sincex andy are neighbors and on the same level. The merge opensttiaiesults in the same
graph except that andy are merged.

The hierarchy introduced in Secti@no impose a tree is preserved. This ensures that users are
not confused when entering into details and reading theeatsdf a cluster. Since the clustered
associated graphs akepartite, a layered layout can be applied so that two vertafehe same
layer are not neighbors. But the readability of the obtaikgértite graphs is even better in this
case than a typicdd-partite graph. If the chosen layering consists in gatlogirirthe same layer
the vertices with same depth, then no edge crosses any Hyisrproperty comes from the fact
that the layers are defined according to the depth of thecestti

6 Example: Exploration of Intra-Cellular Signaling Cascades

The merge operations described in the previous sectionguiteegeneral in nature and so their
primary use is for the purpose of exploration with litdepriori knowledge about the general
structure of the graphical data set being investigated. éstion that might be asked of such
data is to what extent the graphical data set adheres to isypartstructure. In the context
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of the above merge operations it is useful to ask to what edeatata set adheres to a hierar-
chical structure. Examples of such data sets are proteiiprinteraction networks that de-
scribe the observed interactions between proteins raguitbm biological experimental meth-
ods (e.g FBO1, MHPO1]). In this section we will describe the properties of suctadzets, what
sort of questions biologists may ask of such data sets andrhpasing a hierarchical structure
as described in the previous sections on such data can mssistlerstanding the underlying
structure of the data.

6.1 Properties of Protein-Protein Interaction Data

Molecular interactions play an important role in determgthe behavior of cells. The involved
molecules can be proteins and the study of protein intenasthelps to understand activities such
as differentiation, development and proliferation of selProtein-protein interaction (PPI) net-
works are graphical data sets that describe the obsenemdtions between proteins and other
molecules using particular experimental methods. Prstaimd other molecules (e.gca’")
correspond to the nodes of the graph while observed intersctorrespond to edges. Proteins
interact with each other typically to alter the behaviouanbther protein. Many of the interac-
tions in these networks are well documented and have bedinmed repeatedly through various
experiments. Some sequences of interactions are well kaowhplay a direct role in particular
cell behaviors. These sequences are cghtbiways. Examples of such pathways include the
MAPK (involved in the cell proliferation process) and JNKIIN (responding to cell stress)
pathways. However, other less well understood proteinsnaodved in controlling these path-
ways. These proteins are known as regulatory or scaffoldnageins. An example of such a
protein is Ste5pGEFTT01] which is found in yeastScerevisiae). The absence of Ste5p results
in the yeast cell becoming sterile. Regulatory proteinsatse involved in coordinating activity
between various pathways.

It is important to know, given the current data, to what ekiea can understand the behavior
of these networks. The development of new experimental adstho detect possible protein-
protein interactions has vastly increased the biologigtiderstanding of how cells function.
However thesdigh-throughput techniques for detecting interactions can result in maisefa
negatives and positives. While there is an abundance ofawgéinized and easily accessible
interaction data set¥PQ"02, MAA ", cpd there is little additional information associated with
the interactions such as level of confidence, locus or dyesuwfireactions with which to judge
the authenticity of such interactions. These experimen&hods also rarely reproduce the same
results which results in data sets from each experimennbauile overlap. The ultimate goal of
these experiments is to produce a mechanistic understanflihe activities in these networks.
As it stands however there is little scope to achieve suclsutrgiven the current data sets and
so it is best to focus on the structural properties of suctvors.

6.2 Possible Queries on PPI Data

Given that we are restricted to discussing structural ptaseof protein interaction networks,
what sort of questions can a biologist ask of such data? @fiequestions are graph theoretic
in nature. For example, a set of proteins interacting wittheather corresponds to a clique in
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the network. Existence of such structures allows the iiyatstr to abstract and simplify the
network BZC"03].The biologist may also try to infer behaviour or roles frahe structural
evidence. An investigator may ask which interactions are tma particular pathway and which
are regulatory or otherwise. Another common approach ipptyainderstanding of the structure
of one interaction network such as yeast to the structurdegsawell understood network such
as the human celldFT"01].

Figure 3: The initial protein interaction network beforepiasing a tree

6.3 Applying Hierarchy to PPI data

Our hierarchical merge operations can be applied to andaheestructure of protein interac-
tion networks.It is natural to assume in many cases thatrarstgical structure describes the
sequence of interactions in the cell. For example when tmeamugrowth hormone receptor
(grbahuman) is activated on the surface of the cell, many poss#aences of interactions are
activated. Of interest is where the tree assumption is td@dlaindicating the presence of regu-
latory proteins. One can imagine a tree-like cascade ofifesimteractions with the activated
human growth hormone receptor as the root. The first mergeatipe, M,, can be used to in-
duce such a structure on the data. It is a reasonable argugiest the data, that the resulting
unconnected clusters are not meaningful protein intemaatiusters. To produce biologically
more meaningful (connected) clusters the mevigas performed. Finally if the user wishes to
investigate the structure inside a cluster with respechéochosen root, mergds produces a
suitable abstraction.

6.4 Visualizing Protein Interaction Networks

We represent the protein-focused visualization usingtdredsird node-link representation. Clus-
ters are either represented as:
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e An ellipse whose size is proportional to the number of unylegl vertices it contains if all
vertices are on the same level

e An ellipse containing a smaller radial drawing of the ungied graph whose underlying
vertices are clustered using the first merge operation

We use a radial tree layouBETT99 since it handles broad, shallow trees quite well. The
user may focus on visualizing the underlying graph withiohealuster by either drawing the
underlying graph using a force-directed layoBE[TT99 if all vertices are on the same level
of the underlying hierarchy or as a layered Sugiyama stydevilrg [KM81] if the underlying
vertices are found on multiple levels of the underlying &iehy in which connected vertices on
the same level are clustered together to create a k-paréfig

VNP1, RASAT, DAGT, C360Z,

! 3{a_bievin, RBT, 014673, ku70_human, ginm _|

ERK1 Pathway

® MAPK

©BLTAA B11  nica_human,

Figure 4: Imposing a tree on a protein interaction network

6.5 Data Source

We retrieved the data from the CPath protein interactioatztege using the protein human growth
factor receptor-bound protein 10 as the focus protein. Wsttocted the underlying graph using
vertices that were at most three interactions away from dlead protein. Our queries to the
CPath web service were of the form:

http://cbio.mskcc.org/cpath/webservice.do?versiob&tmd=getby_interactorid&
g=CPATH.ID&format=psi mi&startindex=0&organism=9606&maxHits=50

This resulted in a graph containing 875 vertices. The imgpasee algorithm was applied to the
underlying graph resulting in a clustered graph contair@ihg vertices. The resulting graph is
displayed in figuret.
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6.6 Discussion

The user is presented with in interface to scroll, zoom anedstigate clusters in the graph.
There is also a search facility to identify where a particplatein is in the visualization. Upon
investigation it was found that there is no regulatory grotaeteracting with all proteins of the
ERK1 pathway (involving the MAPK1 protein). Regulation bEtERK1 pathway, based on the
evidence provided, occurs higher up the pathway. ERK1 ishwed with cell proliferation. It is
known from the study of the yeast cell that there exist whatkawown as scaffolding proteins,
such as Stebp, that interact with all parts of the ERK1 paghiwgeast and help regulate it. Such
a protein does not exist for the human ERK1 pathway. So figsteows that the behavior of the
human cell is different from the behavior of the yeast celleast regarding proliferation.

In addition a significant number of proteins particularlytba leaf nodes of level 2 in figure
could be identified as being potentially spurious if theyiatt with only one other protein in
the network and their function is unclear. Other spuriodsractions have been absorbed into
various clusters and investigation inside clusters aidserfurther refinement of the tree.

arl_human,

MUCe,

dZT_human, bat2_human, sos2_human; q9p274, q9p250, itn2_human,

hafa_bovin, RE1, q14673, ku70_human, gtm1_human, qp2w2, keed_human, epli_human, h4_human, tmo3_human, ¢

Figure 5: Inside a cluster

7 Conclusion

This study introduces a method to impose a tree on a graph byimgevertices. This method
consists of two steps. The first step provides a tree with malknumber of vertices while
preserving the hierarchy. The second step is meant to bedpplthe previous tree. It provides
a new tree whose nodes are associated to connected partimitifdegraph. The composition of
these two steps then yields a tree with maximal number ofsiedeh that the associated graphs
are connected. Moreover the contents of each nodes of theigritself clustered to result in a
k-partite graph preserving the hierarchy introduced by itipgosed tree.

We applied our approach to visualize protein interactioneuman cells. It has been shown
that although some proteins regulate all parts of the m@lifon pathway of the yeast cell, there
is no evidence of such a protein playing a similar role in thenhn cell. In the process of
applying graph transformations to this data we discovdratidealing with biological data poses
significantly different challenges when compared to trarmsfng software structure for example.
The very fact that the data is inherently uncertain requinas graph transformation techniques
need to handle precision and certainty if they are to be aeleto transforming such data.

As future work, other structures to impose on the initialpjraould be considered. Since
a graph that does not possess a significant hierarchicatteuis likely to possess a grid like
structure. So imposing grids on a graph should be considéiernatively, we could consider
extending the hierarchical notion further by investiggtimposing poly-trees on the initial graph.
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