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Abstract: This paper investigates a way of imposing a hierarchy on a graph in
order to explore relationships between elements of data. Imposing a hierarchy is
equivalent to clustering. First a tree structure is imposedon the initial graph, then
a k-partite structure is imposed on each previously obtained cluster. Imposing a
tree exposes the hierarchical structure of the graph as wellas providing an abstrac-
tion of the data. In this study three kinds of merge operations are considered and
their composition is shown to yield a tree with a maximal number of vertices in
which vertices in the tree are associated with disjoint connected subgraphs. These
subgraphs are subsequently transformed into k-partite graphs using similar merge
operations. These merges also ensure that the obtained treeis proper with respect to
the hierarchy imposed on the data.

A detailed example of the technique’s application in exposing the structure of protein
interaction networks is described. The example focuses on the MAPK cell signalling
pathway. The merge operations help expose where signal regulation occurs within
the pathway and from other signalling pathways within the cell.

Keywords: Graph visualization, clustering technique, tree,k-partite graphs.

1 Introduction

When exploring the structure of large graphs the user is often hindered by the number of vertices
and edge crossings contained in an unabstracted visualization. This study deals with an approach
to transforming the underlying graph with respect to a well understood structure namely a tree
structure. The user can then explore the graph with respect to this structure. Vertices in the
underlying graph are clustered together into super-vertices by edge contraction in such a way
that a tree structure emerges. The question that must then beaddressed is what edges are con-
tracted and in what order to result in such a structure and howdoes the abstract tree relate to the
underlying graph in such a way that it can be easily interpreted by the user.

The idea of abstracting a graph in order to improve its interpretability is not new. Each ap-
proach to abstraction is designed to achieve different goals. In [Fen97], for example, the authors
cluster vertices to obtain a planar abstraction of the initial graph. The obtained graph does then
not contain any cross-edges thus improving the readability. When exploring a graph without
any particular question in mind planarity is a good criterion to impose. However some graphs
possess an underlying structure (such as a tree or grid structure) which the user would like to
expose in order to address particular questions. In [HHP05], for example, the authors show that
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users prefer hierarchical graphs when understanding the data set. For this reason, abstracting the
graph as a tree is considered in this study.

Extracting a tree from a graph is usually done by means ofspanning tree computation tech-
niques. But spanning trees only partially achieve our goals. The number of nodes of a spanning
tree is the same as the number of vertices of the graph. There have been attempts to visualize
large networks using spanning trees [LKK06] but ultimately such layouts do not minimize the
number of vertices that the user has to read.

There exist other methods to expose the tree-like structureof a graph such as tree-decomposition
[Die05, Bod93]. However the mapping of vertices to clusters is not one to one. This means that
it is hard for the user to associate underlying vertices withsuch a decomposition. However the
related area ofgraph minor theory which is concerned with studying the properties of graphs ob-
tained by edge contraction or edge deletion is of interest. Edge contraction provides a reasonable
way of clustering a graph in such a way that it remains comprehensible to the user. As shown
in [DK05] edge contraction does not have to be performed explicitly but can be divided into two
separate sets of operations to obtain apre-minor andminor of the underlying graph respectively.
Such operations are termedmerges in this paper.

Intuitively, a merge collapses some vertices of the initialgraph into clusters and updates the
edges so that two clusters are connected if they share a common edge. Three merges are consid-
ered in this paper. The first one, introduced in [BM04], yields a tree whose number of vertices is
maximal. This tree represents an abstraction of the initialgraph, enabling the user to browse the
smaller graph. This is of particular relevance when the initial graph is large. If one of the vertices
of the tree appears to be of interest then the user may want to see the part of the initial graph to
which it corresponds. Often it is desirable that clusters ofthe graph are connected. Since this is
not ensured by the merge previously mentioned, a second merge operation is considered, which
has to be applied together with the first merge operation (thetwo merge operations have to be
composed). Finally, the third merge introduced enables visualization of the contents of clusters
ask-partite graphs.

In section2, some notation and preliminaries are introduced. The first merge operation is
presented in section3, the second merge operation in section4, and the third merge is introduced
in section5. It is shown in these sections that their composition yieldsa tree with maximal
number of vertices. The nodes of this tree are obtained by clustering and the contents of a cluster
is itself cluster to result in ak-partite graph. Finally, an example of the algorithms application is
provided based on protein-protein interaction data provided by CPATH [cpa] in section6.

2 Preliminaries

A simple graphG is a couple(VG,EG) whereVG is the set of vertices ofG andEG is its set of
edges, such that{(x,x′) ∈ V 2

G|x = x′} ⊆ EG ⊆ V 2
G. A graphG is said to be empty ifVG = /0.

Finally, G is said to be undirected if for all(x,y) ∈ EG, it is also true that(y,x) ∈ EG. The
set of undirected simple graphs is denotedG. In what follows, only undirected graphs will be
considered.

Given a non-empty graphG and two verticesx,y of G, if (x,y) ∈ EG thenx andy are said to be
neighbors. Moreover, a pathp of G betweenx andy is a sequence of edges(xi,xi+1)1≤i≤k such
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thatx = x1, y = xk+1 and for alli ∈ {1, . . . ,k}, (xi,xi+1) ∈ EG. The empty path is denotedε and
represents the empty sequence of edges.

If p = (xi,xi+1)1≤i≤k is a path ofG, then any sub-sequence(xi,xi+1)k1≤i≤k2 with k1 ≥ 1 and
k2 ≤ k is called a sub-path ofp and is denotedpxk1 ,xk2

. For instance, ifp equals

(x1,x2),(x2,x3),(x3,x4),(x5,x6),(x6,x7),(x8,x9)

then px3,x6 equals(x3,x4),(x5,x6). If p and p′ are two paths andp (resp. p′) is empty, then the
concatenation ofp and p′, denotedp.p′ , equalsp′ (resp. p). Now if neitherp nor p′ is empty
andp = ((xi,xi+1))1≤i≤k andp′ = ((x′j,x

′
j+1))1≤ j≤k′ andxk+1 = x′1, thenp.p′ is the path

(x1,x2).(x2,x3) . . . (xk,xk+1).(x
′
1,x

′
2) . . . (x

′
k′ ,x

′
k′+1)

The length of a pathp, denoted|p|, is defined as the following:

|p| =







0 if p = ε
|p′| if p = (x,x′).p′ with x = x′

|p′|+1 if p = (x,x′).p′ with x 6= x′

For instance, considering the pathp defined above,|p| = 6 and|(x1,x1).p| = 6 also.
Given a connected simple undirected graphG and a vertexr of G, the distance functiondG,r(·)

is defined for all verticesx of G by

dG,r(x) = min{|p| ∈ N| p is a path inG betweenr andx} (1)

As an example, for all verticesn of graphG given in Figure1, the value ofdG,r(n) is written
down on the left side of Figure1.

0 r

1 x y w

2 x′ y′ w’

3 z

Figure 1: A graphG.

A graph is said to bek-partite if it is possible to partition vertices intok subsets such that two
vertices belonging to the same partition are not neighbors.The goal of this study is to compute a
tree andk-partite graphs with maximal number of vertices, by transforming a graphG. The kind
of transformations under consideration are calledmerges:

Definition 1 A merge is an operator fromG to G which possesses the following properties: if
G′ ∈ G is the result of a merge applied toG ∈ G, then
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{r}

{x ,y ,w }

{x′,y′} {w′}

{z}

(a) A graph obtained by
merging.

{r} = R

{x,y,w}

{x′,y′} {w′}

{z}

(b) A graph not ob-
tained by merging.

{r}

{x,y′,w}

{x′,y} {w′}

{z}

(c) A merge not preserving
the hierarchy.

{r}

{x,y,w,w′}

{x′,y′,z}

(d) The tree result-
ing from applying
M1 andM2.

Figure 2:

(a) VG′ is a partition ofVG (i.eVG′ ⊆ 2VG and
S

X∈VG′
X = VG and∀X ,Y ∈VG′ , X ∩Y = /0).

(b) for X ,Y ∈VG′ ,
(X ,Y ) ∈ EG′ ⇐⇒∃x ∈ X ,y ∈ Y, s.t(x,y) ∈ EG

Thus a merge is an operator which collapses together severalvertices of a graph to obtain a new
vertex. The edges incident to the collapsed vertices then incident to the newly obtained vertex.
Note that a graph obtained by merging, using the first merge operation, is different from a graph
minor. A merge corresponds to the repeated applications of vertex-contractions, and a minor
corresponds the repeated applications of edge-contractions and edge-deletions.

Figure3(a) represents a graph obtained by merging from the graphG of Figure1. But Fig-
ure 3(b) represents a graph which cannot be obtained fromG by merging. There is no edge
betweenw′ andz in G, and there is one between{w′} and{z}.

Considering a particular vertexr of a graphG as well as the distance functiondG,r, a hierarchy
is explicitly introduced over the vertices ofG in order to facilitate the understanding of the data by
the user:r is the higher element in the hierarchy and the further fromr a vertex is the lower it is in
the hierarchy1. It is usually desirable that a merge applied toG preserves the hierarchy. Formally,
M preserves the hierarchy of G according tor if ∀x,y ∈VG,∀X ,Y ∈VM(G) s.tx ∈ X andy ∈ Y ,

dG,r(x) ≤ dG,r(y) ⇒ dM(G),R(X) ≤ dM(G),R(Y ) (2)

whereR is the vertex ofM(G) containingr. The graphG′ represented in Figure3(a)is obtained
by a merge preserving the hierarchy ofG (see Figure1) according tor. This is not the case for the
merge resulting in the graph of Figure3(c). If R denotes the vertex{r}, thendG′,R({x,y′,w}) <

dG′,r({x′,y}) anddG,r(x′) < dG,r(y′). This means thatx′ is lower thany′ in the hierarchy involved
by G′, although it is the opposite inG. In the case of a social network for instance, a merge like
the one yielded inG′ would then reverse the fact that the personx′ plays a more important role
than the persony′. This seems awkward in some situations. For this reason, merges avoiding this
kind of reversion are considered in this study.

1 Note that ifdG,r(x) is greater thandG,r(y) anddG,r(y) is greater thandG,r(x) thenx = y does not hold in general.
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Merging vertices of a graph represents an interesting way toprovide an abstraction. If this
abstraction is done in a reasonable way, merging could provide a basis by which to browse the
graph. Indeed one could browse the result of a merge and decide to enter into details by browsing
the part of the initial graph represented by a vertex obtained by merging. Such a part of the initial
graph is called anassociated graph.

Definition 2 Let G be a graph andM be a merge. Given a vertexX of M(G), the graph
associated toX according toG, denotedG′(X) represents the sub-graphG′ of G defined by:

• VG′ = {x ∈VG|x ∈ X}

• EG′ = {(x,y) ∈ EG|x ∈ X ∧ y ∈ X}

Even if G is a connected graph, this property does not hold for any associated graph. But when
considering entering into details of a vertex of a graph obtained by merging, it is often preferable
that a connected sub-graph ofG is associated with it. For this reason, we will consider in section4
merges which ensure that all associated sub-graphs are connected. In what follows, such a graph
will be called adeeply connected graph according toG.

Lemma1 is an interesting lemma showing that the existence of path ina graphG is preserved
by merging.

Lemma 1 Let G and G′ be two graphs such that G′ is obtained from G by applying a merge
operator. Let x,y ∈ VG and X ,Y ∈ VG′ such that x ∈ X and y ∈ Y . If there exists a path in G
between x and y, then there exists a path in G′ between X and Y .

Section3 aims at providing a means of imposing an optimal tree from anyundirected connected
simple and non empty graph. Section4 aims at providing an algorithm to be applied on the
previous tree so that a deeply connected one is obtained. Section 5 deals with imposing ak-
partite graph on the associated graph of the previously obtained clusters.

3 Imposing a Tree

In this section how using merges to impose a tree on a graph is considered. In [BM04] a merge
yielding a tree is introduced. We show in this section that this merge, denotedM1 in what follows,
preserves the hierarchy introduced by the distance function from a given vertex and yields a tree
with maximal number of vertices.M1 is actually defined from an equivalence relationR and is
then shown to merge as few vertices as possible to result in a tree (see theorem1).

If G is an undirected simple and non-empty graph andr is a vertex ofG, the relationR onVG

according tor is defined as the following:

xRy ⇐⇒ (d(x) = d(y))∧
(

∃z, p, p′, px,z = p (3)

∧p′y,z = p′∧∀x′ ∈ p,∀y′ ∈ p′, d(x) ≤ d(x′)∧d(y) ≤ d(y′)
)
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Basically, two vertices are related according toR if there exists a path from each of them leading
to the same vertex by only traversing vertices that are further away fromr. Considering thatr
would be the root of a tree, then the distance function fromr would represent the depth of each
vertex in this tree. Two vertices would then be related byR if there exists a vertex whose depth
is greater and from which there is a path to both of them. The idea is then to merge iteratively
two such vertices together into a single one to obtain a tree.

Note that the relationR is reflexive and symmetric. This implies that the transitiveclosureR+

of R is an equivalence relation over the set of vertices ofG . By definition,xR+y if and only if
there exists a sequence(xi)1≤i≤k such thatxRx1, xkRy and for alli ∈ {1, . . . ,k−1}, xiRxi+1.

It is possible to compute the classes of equivalence associated toR+ by searching for pairs of
vertices related to each other byR. The idea would then be to merge all the vertices of a same
class to obtain a tree. Considering Figure1 with dG,r(r) = 0, dG,r(x) = dG,r(y) = dG,r(w) = 1,
dG,r(x′) = dG,r(y′) = dG,r(w′) = 2 anddG,r(z) = 3, the corresponding classes of equivalence
are{x,y,w}, {x′,y′}, {w′} and{z}. An algorithm implementing the mergeM1 can be found
in [BM04].

Definition 3 Let G be a simple undirected non-empty graph and letr be a vertex ofG. M1(G,r)
denotes the merge defined by:

• VM1(G,r) = {classes of equivalence ofR+}

• EM1(G,r) = {(X ,Y ) ∈V 2
M1(G,r)|∃x ∈ X ,y ∈ Y, (x,y) ∈ EG}

As an example, the graph of Figure3(a)representsM1(G,r) whereG is the graph of Figure1.
The operator defined by Definition3 is clearly a merge according to Definition1. Moreover,
M1(G,r) is a tree rooted in{r} since no path from two vertices at the same level can lead to a
deeper vertex. It is also worth noting that each vertex of theobtained treeM1(G,r) consists of a
set of vertices ofG. Moreover, givenX ∈VM1(G,r), if r ∈ R then

∀x ∈ X , dM1(G,r),R(X) = dG,r(x)

This equation implies in particular thatM1 preserves the hierarchy according tor.
Theorem1 is actually the main result of this section. It shows thatM1 is a merge which yield

a tree whose number of vertices is maximal, while preservingthe hierarchy introduced by the
distance function.

Theorem 1 Let G be a undirected simple non-empty graph and r be a vertex of G. M1(G,r) is
the maximal (in the sense of the number of vertices) tree rooted in r, preserving the hierarchy,
and obtained from G by merging.

Proof. (proof of Theorem1)
If M1(G,r) was not an optimal tree, then there exists an optimal mergeM such thatM(G) is a tree
as well as two different verticesX andY of M1(G,r) and two verticesx andy of G such thatxR∗y
but x ∈ X andy ∈ Y . Since the mergeM also preserves the hierarchy,dM(G),R(X) = dM(G),R(Y )
holds. Now sincexR∗y, then it exists a path betweenx and y such that only vertices, whose
depth is greater thandG,r(x), are traversed. Now according to Lemma1, there exists such a path
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betweenX andY in M(G). In that caseM(G) can not be a tree. This contradicts the assumptions
and soM1(G,r) is not optimal.

4 On the Computation of a Deeply Connected Tree

The tree obtained after applying mergeM1 to a graph does not necessarily yield a tree whose
vertices abstract connected sub-graphs ofG. In this section a merge denotedM2 is then intro-
duced to achieve this goal. This merge is performed onM1(G,r). The idea is to merge couples
of vertices for which the associated sub-graphs are not connected in the initial graph.

Definition 4 Given a graphG and a treeT obtained applying a merging operatorM on G, M2

is the maximal (in number of vertices) merging operator suchthat

∀X ∈VM2(T ),∀x,y ∈VG,x,y ∈ X ⇒

∃ a pathp in G betweenx andy

The following algorithm gives a way to merge the vertices so that for each vertex of the
obtained tree, its associated sub-graph is connected.

Algorithm 1

• Input: a treeT obtained by applying mergeM1

• Output: a treeT ′ which the graph associated to any vertex is connected.

• Determine for each vertex ofT if the associated graph is connected (denoted 1-vertex) or
not (denoted 0-vertex).

• From the lower levels to the upper one,

(1) Merge the 0-vertices with its parent.

(2) performs action 1 till the obtained tree is deeply connected.

This principle relies on the fact that if two verticesx andx′ are merged to yield a vertex whose
associated graph is connected, thenx is the parent ofx′ or vice-versa. If it was not the case then
any vertex ofn would not be a neighbor of a vertex ofx′ in the initial graph. This implies that
more merges should be performed to obtain a connected graph associated to the vertex{x,x′}.

It is also worth noting that ifx is the parent ofx′ then the graph of the vertex{x,x′} resulting
from their merging is not necessarily connected. But this becomes true if the graph associated to
x is connected (becausex is the parent ofx′ and then each vertex ofx′ is connected to a vertex of
x).

Theorem 2 Algorithm 1 implements Merge M2 and then yields a deeply connected tree with
maximal number of vertices, when applied to M1(G,r).
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Proof. First, note that Algorithm1 always terminates. This holds because the merging applied
in action 1 provides a tree whose number of nodes is strictly lower than the initial tree. Moreover
the tree, obtained fromG by merging and containing only one node, is deeply connected.

Note also that Algorithm1 always yields a tree. This is due to the fact that the merges per-
formed in action 1 correspond to edges-contraction and cannot then add cycles to the tree.

The optimality of the solution provided by Algorithm1 is ensured by two features:

• First, any 0-vertex has to be merged with an other node.

• Moreover, according to the Definition3, any vertexx of G is either a neighbor of vertices
belonging to the same vertexX of M1(G,r) asx, or belonging to a neighbor ofX . This
means that any 0-vertex has to be merged with its parent or oneof its children. If a 0-vertex
is merge with one of its children, then the obtained node willbe a 1-node, but the number
of 1-node will remain the same as in the previous tree. If now a0-vertex is merge with its
parents:

– if the parent is a 1-vertex, the case is similar as the first one: the obtained vertex is a
1-node and the number of 1-node remains the same.

– If the parent is a 0-node, it might happen that the resulting node is a 1-node and then
the number of 1-nodes would increase.

We can then deduce that merging a 0-node with its parent is more beneficial to obtain an
optimal solution.

Figure3(d) shows the resulting tree obtained by applying successivelymergesM1 andM2 to the
graphG given in Figure1, considering Vertexr as a root for the imposed tree. According to
Theorem2, this tree is the maximal deeply connected one and obtained by merging fromG, con-
sideringr as a root. Moreover,M2 clearly preserves the hierarchy since only edge-contractions
are performed.

5 Imposing ak-partite Graph on an Associated Graph

When applying the merges considered in section3 and4, the initial graph is clustered so that
a tree is obtained. This provides greater readability whichis particularly relevant if the initial
graph is dense and possesses a large number of vertices. But it is also of great interest for the
user to visualize what is inside a cluster,i.e the associated graph. Since the initial graph can be
dense and large, so may be the associated graphs. It is then ofinterest to apply merges to clusters
and then offer a more readable visualization of the associated graphs. However, imposing a tree
on them which preserves the hierarchy is not possible. Thereare indeed at least two nodes with
minimal depth, in each cluster. There is then no legitimate root to form the basis to impose a
tree.

In this sectionk-partite graphs are considered to be imposed on the associated graphs. Indeed
it can be shown that it is possible to cluster each associatedgraph so that ak-partite graph, with
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maximal number of vertices and preserving the hierarchy, isobtained. With that aim, the merge
M3 is introduced.

Definition 5 Let G be a non empty connected undirected graph andr be a vertex ofG. Let us
denoteG′ an associated graph ofM2(M1(G,r)). MergeM3 is defined such that

• VM3(G′) = {A ⊆VG| ∀x,y ∈ A, (x,y) ∈ EG anddG,r(x) = dG,r(y)}

• EM3(G′) = {(X ,Y ) ∈V 2
M3(G′)| ∃x ∈ X andy ∈ Y with (x,y) ∈ EG}

As shown by Theorem3, applying mergeM3 to each cluster ofM2(M1(G,r)) yields ak-partite
graph preserving the hierarchy according tor with maximal number of vertices.

Theorem 3 Let G be a non empty connected undirected graph and r be a vertex of G. Let us
denote G′ an associated graph of M2(M1(G,r)). M3(G′) is a k-partite preserving the hierarchy
of G according to r with maximal number of vertices.

Proof. First, let us introduce sets(Vi)i of vertices ofG′ such thatx and y are in the same set
Vi if and only if dG,r(x) = dG,r(y). The only edges preventingG′ from being ak-partite graph
according to setsVi are the ones between two edges of the same depth. But mergeM3 merges
vertices so that these edges are hidden in a cluster.M3 clearly preserves the hierarchy according
to r since only vertices of the same depth are merged. Plus the sets (Vi)i are defined such that
they reflect this hierarchy, partitioning the vertices according to their depth. MergeM3 is then
optimal since only vertices linked to an other vertex belonging to the same setVi are merged.

Theorem3 offers a way to impose ak-partite graph structure on each associated graph. Referring
to Figure1 and only considering the levels 1, 2 and 3, the resulting graph is not ak-partite graph
sincex andy are neighbors and on the same level. The merge operationM3 results in the same
graph except thatx andy are merged.

The hierarchy introduced in Section2 to impose a tree is preserved. This ensures that users are
not confused when entering into details and reading the contents of a cluster. Since the clustered
associated graphs arek-partite, a layered layout can be applied so that two vertices of the same
layer are not neighbors. But the readability of the obtainedk-partite graphs is even better in this
case than a typicalk-partite graph. If the chosen layering consists in gathering in the same layer
the vertices with same depth, then no edge crosses any layer.This property comes from the fact
that the layers are defined according to the depth of the vertices.

6 Example: Exploration of Intra-Cellular Signaling Cascades

The merge operations described in the previous sections arequite general in nature and so their
primary use is for the purpose of exploration with littlea priori knowledge about the general
structure of the graphical data set being investigated. A question that might be asked of such
data is to what extent the graphical data set adheres to a particular structure. In the context
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of the above merge operations it is useful to ask to what extent a data set adheres to a hierar-
chical structure. Examples of such data sets are protein-protein interaction networks that de-
scribe the observed interactions between proteins resulting from biological experimental meth-
ods (e.g [FB01, MHP01]). In this section we will describe the properties of such data sets, what
sort of questions biologists may ask of such data sets and howimposing a hierarchical structure
as described in the previous sections on such data can assistin understanding the underlying
structure of the data.

6.1 Properties of Protein-Protein Interaction Data

Molecular interactions play an important role in determining the behavior of cells. The involved
molecules can be proteins and the study of protein interactions helps to understand activities such
as differentiation, development and proliferation of cells. Protein-protein interaction (PPI) net-
works are graphical data sets that describe the observed interactions between proteins and other
molecules using particular experimental methods. Proteins and other molecules (e.g.Ca2+)
correspond to the nodes of the graph while observed interactions correspond to edges. Proteins
interact with each other typically to alter the behaviour ofanother protein. Many of the interac-
tions in these networks are well documented and have been confirmed repeatedly through various
experiments. Some sequences of interactions are well knownand play a direct role in particular
cell behaviors. These sequences are calledpathways. Examples of such pathways include the
MAPK (involved in the cell proliferation process) and JNK-c-JUN (responding to cell stress)
pathways. However, other less well understood proteins areinvolved in controlling these path-
ways. These proteins are known as regulatory or scaffoldingproteins. An example of such a
protein is Ste5p [GFT+01] which is found in yeast (S.cerevisiae). The absence of Ste5p results
in the yeast cell becoming sterile. Regulatory proteins arealso involved in coordinating activity
between various pathways.

It is important to know, given the current data, to what extent we can understand the behavior
of these networks. The development of new experimental methods to detect possible protein-
protein interactions has vastly increased the biologist’sunderstanding of how cells function.
However thesehigh-throughput techniques for detecting interactions can result in many false
negatives and positives. While there is an abundance of wellorganized and easily accessible
interaction data sets [ZPQ+02, MAA +, cpa] there is little additional information associated with
the interactions such as level of confidence, locus or dynamics of reactions with which to judge
the authenticity of such interactions. These experimentalmethods also rarely reproduce the same
results which results in data sets from each experiment having little overlap. The ultimate goal of
these experiments is to produce a mechanistic understanding of the activities in these networks.
As it stands however there is little scope to achieve such a result given the current data sets and
so it is best to focus on the structural properties of such networks.

6.2 Possible Queries on PPI Data

Given that we are restricted to discussing structural properties of protein interaction networks,
what sort of questions can a biologist ask of such data? Oftenthe questions are graph theoretic
in nature. For example, a set of proteins interacting with each other corresponds to a clique in
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the network. Existence of such structures allows the investigator to abstract and simplify the
network [BZC+03].The biologist may also try to infer behaviour or roles fromthe structural
evidence. An investigator may ask which interactions are core to a particular pathway and which
are regulatory or otherwise. Another common approach is to apply understanding of the structure
of one interaction network such as yeast to the structure of aless well understood network such
as the human cell [GFT+01].

Figure 3: The initial protein interaction network before imposing a tree

6.3 Applying Hierarchy to PPI data

Our hierarchical merge operations can be applied to analyzethe structure of protein interac-
tion networks.It is natural to assume in many cases that a hierarchical structure describes the
sequence of interactions in the cell. For example when the human growth hormone receptor
(grba human) is activated on the surface of the cell, many possiblesequences of interactions are
activated. Of interest is where the tree assumption is violated, indicating the presence of regu-
latory proteins. One can imagine a tree-like cascade of possible interactions with the activated
human growth hormone receptor as the root. The first merge operation, M1, can be used to in-
duce such a structure on the data. It is a reasonable argument, given the data, that the resulting
unconnected clusters are not meaningful protein interaction clusters. To produce biologically
more meaningful (connected) clusters the mergeM2 is performed. Finally if the user wishes to
investigate the structure inside a cluster with respect to the chosen root, mergeM3 produces a
suitable abstraction.

6.4 Visualizing Protein Interaction Networks

We represent the protein-focused visualization using the standard node-link representation. Clus-
ters are either represented as:
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• An ellipse whose size is proportional to the number of underlying vertices it contains if all
vertices are on the same level

• An ellipse containing a smaller radial drawing of the underlying graph whose underlying
vertices are clustered using the first merge operation

We use a radial tree layout [BETT99] since it handles broad, shallow trees quite well. The
user may focus on visualizing the underlying graph within each cluster by either drawing the
underlying graph using a force-directed layout [BETT99] if all vertices are on the same level
of the underlying hierarchy or as a layered Sugiyama style drawing [KM81] if the underlying
vertices are found on multiple levels of the underlying hierarchy in which connected vertices on
the same level are clustered together to create a k-partite graph.

Figure 4: Imposing a tree on a protein interaction network

6.5 Data Source

We retrieved the data from the CPath protein interaction database using the protein human growth
factor receptor-bound protein 10 as the focus protein. We constructed the underlying graph using
vertices that were at most three interactions away from the focus protein. Our queries to the
CPath web service were of the form:

http://cbio.mskcc.org/cpath/webservice.do?version=1.0&cmd=getby interactorid&
q=CPATH ID&format=psi mi&startIndex=0&organism=9606&maxHits=50

This resulted in a graph containing 875 vertices. The imposed tree algorithm was applied to the
underlying graph resulting in a clustered graph containing210 vertices. The resulting graph is
displayed in figure4.
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6.6 Discussion

The user is presented with in interface to scroll, zoom and investigate clusters in the graph.
There is also a search facility to identify where a particular protein is in the visualization. Upon
investigation it was found that there is no regulatory protein interacting with all proteins of the
ERK1 pathway (involving the MAPK1 protein). Regulation of the ERK1 pathway, based on the
evidence provided, occurs higher up the pathway. ERK1 is involved with cell proliferation. It is
known from the study of the yeast cell that there exist what are known as scaffolding proteins,
such as Ste5p, that interact with all parts of the ERK1 pathway in yeast and help regulate it. Such
a protein does not exist for the human ERK1 pathway. So figure4 shows that the behavior of the
human cell is different from the behavior of the yeast cell, at least regarding proliferation.

In addition a significant number of proteins particularly onthe leaf nodes of level 2 in figure4
could be identified as being potentially spurious if they interact with only one other protein in
the network and their function is unclear. Other spurious interactions have been absorbed into
various clusters and investigation inside clusters aids inthe further refinement of the tree.

Figure 5: Inside a cluster

7 Conclusion

This study introduces a method to impose a tree on a graph by merging vertices. This method
consists of two steps. The first step provides a tree with maximal number of vertices while
preserving the hierarchy. The second step is meant to be applied to the previous tree. It provides
a new tree whose nodes are associated to connected part of theinitial graph. The composition of
these two steps then yields a tree with maximal number of nodes such that the associated graphs
are connected. Moreover the contents of each nodes of the tree, is itself clustered to result in a
k-partite graph preserving the hierarchy introduced by the imposed tree.

We applied our approach to visualize protein interactions in human cells. It has been shown
that although some proteins regulate all parts of the proliferation pathway of the yeast cell, there
is no evidence of such a protein playing a similar role in the human cell. In the process of
applying graph transformations to this data we discovered that dealing with biological data poses
significantly different challenges when compared to transforming software structure for example.
The very fact that the data is inherently uncertain requiresthat graph transformation techniques
need to handle precision and certainty if they are to be relevant to transforming such data.

As future work, other structures to impose on the initial graph could be considered. Since
a graph that does not possess a significant hierarchical structure is likely to possess a grid like
structure. So imposing grids on a graph should be considered. Alternatively, we could consider
extending the hierarchical notion further by investigating imposing poly-trees on the initial graph.
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[DK05] R. Diestel, D. Kühn. Graph minor hierarchies.Discrete Appl. Math. 145(2):167–182,
2005.
doi:http://dx.doi.org/10.1016/j.dam.2004.01.010

[FB01] S. Fields, P. Bartel. The two-hybrid system. A personal view. Methods Mol. Biol.
177:3–8, 2001.

[Fen97] Q. Feng.Algorithms for Drawing Clustered Graphs. PhD thesis, University of New-
castle, 1997.

[GFT+01] G.Pearson, F.Robinson, T.B.Gibson, B.-E. Xu, M.Karandikar, K.Berman,
M.H.Cobb. Mitogen-activated protein (MAP) kinase pathways : Regulation and
physiological functions.Endocrine reviews (Endocr. rev.) 22, no2:153–183, 2001.

[HHP05] W. Huang, S. Hong, P.Eades. Layout effects on sociogram perception.Graph Draw-
ing, pp. 262–273, 2005.

[KM81] S. K.Sugiyama, M.toda. Methods for visual understandins of hierarchical sys-
tem structures.IEEE Transactions on Systems, Man. and Cybernetics, SMC-11(2),
pp. 109–125, 1981.

[LKK06] K. Lehmann, S. Kottler, M. Kaufmann. Visualizing Large and Clustered Networks.
Graph Drawing 06, Septembre 2006.

Proc. GT-VMT 2007 14 / 15

http://dx.doi.org/http://dx.doi.org/10.1016/j.dam.2004.01.010


ECEASST

[MAA +] H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Gldener, G. Mannhaupt, M. Mn-
sterktter, P. Pagel, N. Strack, V. Stmpflen, J. Warfsmann, A.Ruepp. MIPS: analysis
and annotation of proteins from whole genomes.Nucleic Acids Res, January.

[MHP01] M. Mann, R. Hendrickson, A. Pandey. Analysis of proteins and proteomes by mass
spectrometry.Ann. rev. Biochem. 70:437–473, 2001.

[ZPQ+02] A. Zanzoni, M. L. Palazzi, M. Quondam, G. Ausiello, H. M. Citterich, G. Ce-
sareni. MINT: a Molecular INTeraction database.FEBS Lett 513(1):135–140, Febru-
ary 2002.

15 / 15 Volume 6 (2007)


	Introduction
	Preliminaries
	Imposing a Tree
	On the Computation of a Deeply Connected Tree
	Imposing a k-partite Graph on an Associated Graph
	Example: Exploration of Intra-Cellular Signaling Cascades
	Properties of Protein-Protein Interaction Data
	Possible Queries on PPI Data
	Applying Hierarchy to PPI data
	Visualizing Protein Interaction Networks
	Data Source
	Discussion

	Conclusion

