
Electronic Communications of the EASST
Volume 5 (2006)

Proceedings of the Sixth OCL Workshop
OCL for (Meta-)Models

in Multiple Application Domains
(OCLApps 2006)

Integrating OCL and Model Transformations in Fujaba

Mirko Stölzel, Steffen Zschaler and Leif Geiger

16 pages

Guest Editors: Dan Chiorean, Birgit Demuth, Martin Gogolla, Jos Warmer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Integrating OCL and Model Transformations in Fujaba

Mirko St ölzel1, Steffen Zschaler2 and Leif Geiger3

1 s2729561@inf.tu-dresden.de, http://st.inf.tu-dresden.de/
Department of Computer Science

Dresden University of Technology, Germany

2 steffen.zschaler@inf.tu-dresden.de, http://st.inf.tu-dresden.de/
Department of Computer Science

Dresden University of Technology, Germany

3 leif.geiger@uni-kassel.de, http://www.se.eecs.uni-kassel.de/se/
Universiẗat Kassel, Wilhelmsḧoher Allee 73, 34121 Kassel

Abstract: This paper discusses the integration of the Dresden OCL Toolkit into the
Fujaba Tool Suite. The integration not only adds OCL support for class diagrams
but also makes OCL usable in Fujaba’s model transformations. This makes Fujaba’s
model transformations more powerful, completely platform independent and easier
to read for developers who are already familiar with OCL. By using the code gen-
erator of the Dresden Toolkit, we are able to generate executable Java code from
Fujaba’s model transformations including the OCL constraints.

Keywords: Object Constraint Language, Fujaba, Dresden OCL Toolkit, Model
Transformation, Story Diagrams

1 Introduction

The Fujaba Tool Suite [Zün99] is a CASE tool which supports Model Driven Development
(MDD) [KWB03]. Within MDD model transformations play an important role. Fujaba offers
special interaction diagrams to specify model transformations. Within these diagrams most of
the transformations are specified graphically. Nevertheless, some expressions have to be speci-
fied textually, like complicated constraints, return values, etc. Since Fujaba generates Java source
code from model transformations, these textual statements have been specified using Java expres-
sion. Currently, no syntax-checking is done for these expressions, so an erroneous expression
results in a compile error after code generation. Newer work adds C++ code generation to Fu-
jaba. Note, that if a developer wants to use C++ code generation, the constraints have to be
written in C++ syntax.

So, it would be helpful to have a platform-independent constraint language, which makes
syntax checking possible within Fujaba’s model transformations, and adds code completion and
code generation for the different target languages Fujaba offers. This paper suggest to use the
Object Constraint Language (OCL) [Obj03a] for this task. To this end, we have integrated the
Dresden OCL Toolkit [OCL99] into the Fujaba Tool Suite. This allows us to use OCL as the
constraint language for Fujaba’s model transformations.

1 / 16 Volume 5 (2006)

mailto:s2729561@inf.tu-dresden.de
http://st.inf.tu-dresden.de/
mailto:steffen.zschaler@inf.tu-dresden.de
http://st.inf.tu-dresden.de/
mailto:leif.geiger@uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

This paper is structured as follows: Section2 briefly describes how model transformations are
specified using Fujaba, Section3 describes the integration of OCL into Fujaba’s model trans-
formations, Section4 describes the implementation of the Dresden OCL Toolkit integration into
Fujaba4Eclipse, Section5 discusses code generation. In Section6, related work is presented and
Section7 concludes.

2 Story Diagrams – A Short Overview

The Fujaba Tool Suite [Zün99] uses Unified Modelling Language (UML) [Obj03b] class dia-
grams to model the structure of an application. In [Stö05] we have integrated the Dresden OCL
Toolkit [OCL99] for use in Fujaba’s class diagrams. For behaviour specification, model trans-
formations are specified by using graph transformations within Fujaba. This is done by mod-
elling specialized UML interaction diagrams for the method bodies—so-called story diagrams
[FNT98, Zün01b]. From such diagrams Fujaba can then generate executable Java source code.

Figure 1 shows such a story diagram. It is an activity diagram into which graph transfor-
mation rule have been embedded. The activity diagram models the control flow. The graph
transformations within the activities model the behaviour. The first activity of Figure1 shows
such a graph transformation. Here, starting from the objectthis , which is the object the method
nameExists() is called on, a child is searched via thechildren association. This child’s
name attribute should equal the passedname parameter. If such a child is found, it is stored in
a local variable calledchild .

Figure 1: Story diagram

Afterwards, the activity is left. If the graph transformation was applied, it is left via the
success transition. So the method returnstrue . Otherwise, thefailure transition is taken,

Proc. OCLApps 2006 2 / 16

ECEASST

thusfalse is returned.
Note, that in Fujaba’s story diagrams, there are several places, where Java source code can be

used. For example, the return value for a stop activity can be any Java expression. This code is
directly copied into the source code during code generation.

3 Integrating OCL into Story Diagrams

This section discusses the integration of OCL into Fujaba’s story diagrams. First, we give a short
overview of the places where OCL can be used in story diagrams. Then some special charac-
teristics of Fujaba’s story diagrams, which must be considered to use OCL in story diagrams,
are presented. Finally a possible solution which considers these special characteristics will be
shown.

3.1 Where to Integrate

In this section, we will present a short overview of all possibilities to use OCL in Fujaba’s story
diagrams. On the left side of the Figures2–6 one can see some examples with the original
notation of Fujaba while on the right the same example is illustrated using OCL:

Attribute expressions can be used to assign new attribute values to an attribute of an object
and to define some additional attribute conditions which must be fulfilled by an object. In
the example of Figure2 the value of thename attribute of thethis -object is assigned to
thenameattribute of thechild -object by calling thegetName() method of thethis -
object. On the right side of Figure2 one can see that thenameattribute of thethis -object
can be directly referenced using OCL.

Figure 2: Attribute assertion and attribute constraints

Collaboration statements are used to execute methods, to define new variables or to assign
new values to variables. These operations can be combined using the sequential, if- or
while composition. In the following example (Figure3) a collaboration statement is used
to define the variablecount of type Integer. ThesizeOfChildren() method has
been automatically generated by Fujaba for the to-n associationchildren . It returns the
number ofPerson instances which are assigned to thethis -object as a child. Using
OCL, one can reference the children association directly and can call thesize() method
of OCL-Set to get the number of children of thethis -object.

3 / 16 Volume 5 (2006)

Figure 3: Collaboration statements

Additional constraints are boolean constraints which can be assigned to a story pattern so that
the story pattern is applicable if the constraint evaluates to true. In the example of Figure4
the additional constraint defines that thethis -object must have exactly five children.

Figure 4: Additional constraints

Boolean transition guards can be used to realize a if- or while-composition in the activity dia-
gram part of the story diagrams. In the following example the variablefound will be set
to true if thechild -object was successfully bound in the previous story pattern. As one
can see on the right side of this example theoclIsUndefined() method can be used
to formulate the boolean condition with OCL.

Figure 5: Boolean if-condition

Proc. OCLApps 2006 4 / 16

ECEASST

Method return value The last possible use of OCL in Fujaba’s story diagrams is represented
in Figure6. At every stop activity, the operation’s return value can be defined using a
constraint.

Figure 6: Stop activity

3.2 Resolving Scoping

To integrate OCL in Fujaba’s story diagrams we use the OCL parser of the Dresden OCL Toolkit.
It checks the syntax and the consistency of an OCL constraints in the context of the containing
story diagram. To perform a consistency check the parser of the Dresden OCL Toolkit tries to
find all variables which are referenced within an OCL constraint in its story diagram. To do
so, the parser has to know which variables and objects are defined in the corresponding story
diagram. This information is contained in the so-called context of an OCL constraint.

When generating the context of OCL constraints in Fujaba’s story diagrams we have to con-
sider some special characteristics of story diagrams:

• In each story diagram thethis -object and the method parameters are predefined bound
objects. Those can always be referenced in OCL constraints.

• A story diagram in general contains many execution paths. Every path visits different
story activities and so different variables and objects can be bound. It can, for example,
occur that one variable is not initialized on one special path leading to a story activity and
initialized on another one. For this reason, only these variables and objects can be used in
an OCL constraint of a story activity which are defined on every path leading to that story
activity.

• An object of a story diagram is initialized with a valid value if the corresponding story
pattern is applicable. So the objects of a story pattern can only be referenced by the
OCL constraints of the next story activity if the activities are connected by asuccess or
eachtime transition. Aneachtime transition is used in combination with a so called
foreach activity. This special activity basically represents repeated matching. It is not
left after the first object was found, but the specified transformations are executed for every
valid object allocation. In the example of Figure1 we could have used aforeach activity
to count all children where thename attribute equals the passedname parameter.

In the following we present an algorithm which considers these characteristics and can be
used to generate the context of an OCL constraint in a story diagram. To obtain this context, an
environment is assigned to every element in the story diagram, beginning with the start activity.

5 / 16 Volume 5 (2006)

An environment encapsulates a set of name–type bindings representing the variables accessible
under this environment. When a name lookup occurs, the environment first checks whether it
contains a corresponding binding itself. If this is not the case, the environment can delegate the
lookup to its parent environments (other environments linked to it via a parent association). If all
parent environments agree on the result of the lookup, this will be returned. If they do not agree,
the lookup fails. As we will see, parent–child relations can, thus, be used to represent the control
flow in a story diagram. Note that story diagrams allow the deletion of objects from the object
graph. Therefore, after deletion of an object its name will be no longer bound. To represent
this, environments distinguish different types of bindings; one of them is used to mark deleted
objects.

In order to clarify the context generation algorithm an example story diagram is represented
in Figure7. There one can see that first an initial environmente1 is assigned to the start activity
of the story diagram and that thethis -object and the method parametervar1 are added to
this environment. In the next step, the outgoing transition of the start activity is traversed and
the first activity is visited. In addition, the environmente2 is assigned to the activity as input
environment. Since the variablesthis andvar1 of the environmente1 can also be used within
the first activity, the parent–child relationship betweene1 ande2 is created. In the first activity
the variablevar2 is created and it is added to the outgoing environmente3 of the activity.

Figure 7: Generation of the OCL-Context

Proc. OCLApps 2006 6 / 16

ECEASST

In the next step the two outgoing transitions of the second activity are traversed and the envi-
ronmentse4 ande5 are assigned to the corresponding story activities. It must be considered,
that on the path following thefailure transition the story pattern of the second activity was
not applicable. Consequently, we cannot assume that the objects of the second activity were suc-
cessfully bound. Therefore these objects cannot be used in following OCL constraints. That’s
the reason why the parent–child relationship is made between the environmente4 and the envi-
ronmente2 and not to the environmente3 . Similarly, the variablevar2 could successfully be
bound when taking thesuccess transition and can be used in following OCL constraints. So
the parent–child relationship between the environmente3 ande5 is created. In the next steps
the environmente6 ande7 are created, which contain the visible variables, and the outgoing
transitions are traversed.

As result the environmente8 is assigned to the next story activity and the parent–child rela-
tions between the environmente8 and the environmentse6 ande7 are created. At this point the
second problem mentioned above must be considered. Since the variablevar4 is defined only
on the left path, the environmente8 does not contain this variable. The same problem applies
to the variablevar2 . Because of thefailure transition this variable can be used only in the
right path and thus the variablevar2 is also not a part of the environmente8 . The last step of
the generation process is to generate the environmentse9 ande10 which is assigned to the stop
activity of the story diagram.

4 Fujaba and the Dresden OCL Toolkit

This section discusses the implementation of the OCL integration into Fujabas story diagrams
within the scope of Fujaba4Eclipse [Zün01a] and the Dresden OCL Toolkit.

The section starts with a short discussion of the context declaration to be used for the OCL
constraints defined in Fujaba’s story diagrams. Every OCL constraint must be preceded by a
context declaration that defines the context in which the constraint is to be evaluated. Next, we
discuss the integration interface of the Dresden OCL Toolkit. This interface has already been
used in [Stö05] to allow the specification of OCL constraints in Fujaba’s class diagrams. Finally,
we present our OCL editor for Eclipse. This allows creating and editing OCL constraints for a
given story diagram—and actually for any model edited in an Eclipse-based application. The
OCL parser of the Dresden OCL Toolkit is used to check syntax and consistency of the OCL
constraints.

4.1 OCL constraint context declaration

The parser of the Dresden OCL Toolkit needs for a consistency check the context declaration of
the OCL constraints. That’s the reason why the context of the OCL constraints in Fujaba’s story
diagrams has to be specified.

As already mentioned in Section3 an environment containing all visible variables is assigned
to each story diagram element. Thus, the environment of a story diagram element represents the
context of an OCL constraint defined for this element.

In order to illustrate the context declaration of OCL constraints in story diagrams two exam-

7 / 16 Volume 5 (2006)

ples are shown below. In the first example one can see an OCL constraint which can be used
for general constraints of a story activity, an attribute condition or for a transition guard. This
constraint is defined in the context of thecond() method of the classEnvironment and the
evaluation results intrue if the OCL constraint is fulfilled. In the second example one can see
an OCL constraint which can be used to specify an attribute assertion, a collaboration statement
or to define the result clause of a method. The difference between these two examples is the
result type of thecond() method which is equivalent to the type of the asserted value.

Environment::cond():Boolean
post:result = (child.oclIsUndefined())

Environment::cond():String
post:result = (this.name)

Figure 8: Examples

4.2 Integration interface of the Dresden OCL Toolkit

The Dresden OCL Toolkit was developed by the Department of Computer Science of the Tech-
nical University Dresden. It can be used to check syntax and consistency of OCL constraints
against a UML model and to generate the corresponding Java code. The required model infor-
mation are managed in an Metadata Repository (MDR) [Mat03] and can be accessed using so
called Java Metadata Interfaces (JMI) [Inc06].

When integrating the Dresden OCL Toolkit in a CASE-Tool the problem occurs that the model
information required for the consistency check are not part of the toolkit repository, but can be
found in the repository of the CASE-Tool. Thus, the main goal of the integration interface was
to find a way to allow the parser of the Dresden OCL Toolkit the direct access to the CASE-Tool
repository.

We have presented an integration concept in [Stö05]. The main idea is to create representa-
tive elements in the toolkit repository which know their corresponding model elements in the
CASE-tool repository. These representatives serve as proxies into the CASE-tool repository.
Duplicating the CASE-tool repository is not required, all model information can remain in the
CASE-tool repository.

The most important part of the integration interface is the classModelFacade . An instance
of this class is assigned to a UML model in the toolkit repository and manages the relationships
between the representative elements and the corresponding elements in the CASE-Tool reposi-
tory. Thus, this instance can be used to determine the actual attributes of a representative element
related to the model element in the CASE-Tool repository. In order to allow using the integra-
tion interface not only for one CASE-Tool but for any CASE-Tools the classModelFacade is
defined as an abstract class and has to be implemented CASE-Tool specific.

In order to illustrate the use of the integration interface the consistency check process for the
right hand side of Figure2 is shown below. There one can see the executed steps to find the
this object referenced in the OCL constraint of Figure2.

Proc. OCLApps 2006 8 / 16

ECEASST

7

Figure 9: Integration interface of the Dresden OCL Toolkit

To find referenced model elements, the parser of the Dresden OCL Toolkit uses method
findClassifier() of the topPackage representative model element which is the en-
try point to an UML model in the toolkit repository. Inside thefindClassifier() method
thegetOwnedElements() method of the JMI interfaceNamespace is called to determine
all model elements in the name space of thetopPackage element.

In order to use the Fujaba specific implementation of the classModelFacade the method
getOwnedElements() was implemented in a custom way. Thus, the instance of the class
FujabaFacade assigned to the UML model in the toolkit repository is determined and its
getOwnedElements() method is called.

Inside this method thegetRefObject() method is used to find out the corresponding el-
ement of the representative element thegetOwnedElement() method was called for. This
way, all model elements defined in the name space of the corresponding element can be deter-
mined and thegetElement() method is called for each of these elements as a parameter. As
result of this method a new representative element is created, or the still existing one is returned.

Since the classEnvironment is not part of the Fujaba UML model the representative ele-
ment for the environment is not in the set of the determined elements. Thus,getElement()
is invoked additionally with theEnvironment instance referenced by theFujabaFacade .

Finally all found representative elements including the environment element are returned as
the result of thegetOwnedElements() method. After this step the parser of the Dresden
OCL Toolkit can use the representative element of the environment to search for thethis vari-
able. For this thegetFeatures() method of the JMI interfaceClassifier is called and

9 / 16 Volume 5 (2006)

the same procedure is started again.
In the last step thegetName() method of the found element representing thethis variable

is used to check whether thename attribute exists.
The integration as presented has been implemented for class and story diagrams. Thus, in-

put, consistency and syntax checking of OCL constraints in story diagram are possible, as it is
possible for Fujabas class diagrams. We use the algorithm described in Section3.2 to generate
the context of OCL constraints in a story diagram which is used by the Fujaba specific imple-
mentation of theModelFacade . Thus, the parser of the Dresden OCL Toolkit is able to check
whether referenced variables within an OCL constraint are defined in the corresponding story
diagram.

4.3 OCL editor of the Dresden OCL Toolkit

In order to use the Dresden OCL Toolkit within Fujaba4Eclipse to check syntax and consistency
of OCL constraints it had to be implemented as a Eclipse plugin. On basis of this plugin an OCL
editor plugin was developed and the integration of the Dresden OCL Toolkit for Fujabas class
diagrams has already been accomplished in [Stö05] using the Dresden OCL Toolkit integration
interface. Presently, we extended the OCL editor plugin to integrate the Dresden OCL Toolkit
also for Fujaba’s story diagrams.

The OCL editor plugin allows other Eclipse plugins to create and edit OCL constraints, and
check syntax and consistency of these constraints against a given model. To do this, the OCL
editor provides an extension point consisting of the abstract classIOCLEditorExtension
which is shown in Figure10.

Figure 10: Extension pointIOCLEditorExtension

Proc. OCLApps 2006 10 / 16

ECEASST

In Figure10 one can see that the classIOCLEditorExtension contains a method named
setSelection() which is called by the OCL editor if the selection of the Eclipse IDE
changed. This method is used to check whether the actual selection is a model element of an
Eclipse plugin implementing the OCL editor extension point. Inside thesetSelection()
method theisValidSelection() method is called which should return a value unequal
null if the selection is a model element of the plugin.

The OCL editor can search for all implementations of its extension point being responsible
for the actual selection. Thus, all existing OCL constraints can be displayed, edited, deleted or
new OCL constraints can be created. In order to realize this some other methods of the class
IOCLEditorExtension have to be implemented:

• The methodisEnabled() is called by the OCL editor to check whether OCL con-
straints can be defined for the selected model element.

• After the methodisEnabled() returnstrue the methodgetConstraints() is
used to get all existing constraints for the selected model element. To display these con-
straints in the OCL editor area thegetConstraintText() is called.

• The methodcreatePartControl() is called to create the graphical user interface
which is used to create and edit OCL constraints

• After an OCL constraint was edited thegetParseConfiguration() method is used
to determine theModelFacade instance, the TopPackage element and the textual OCL
constraint which are encapsulated by an instance of the classParseConfiguration .
TheModelFacade instance and the TopPackage element are used by the OCL editor to
check consistency and syntax of the textual constraint.

• If the syntax and the consistency check for an OCL constraints was successful the meth-
ods createOCLConstraint() or editOCLConstraint() are used to create a
new model element or edit the existing model element representing an OCL constraint on
CASE-Tool side.

• The methoddeleteOCLConstraint() is called to delete an existing OCL model
element.

Finally, a screen shot of the OCL editor plugin can be seen in Figure11. In the left lower part
of this figure you can see the OCL-Editor for Eclipse which allows you to create and edit OCL
constraints for a given story diagram. Additionally, you can use the OCL parser of the Dresden
OCL Toolkit to check syntax and consistency of the OCL constraints against the story diagram.
In the example shown in Figure11 one can see, that an error message is shown in the problems
view of eclipse, since the variablevar4 is not defined on the left path of the example story
diagram.

5 Generating Code

As already mentioned, Fujaba generates executable Java code from class diagrams and model
transformations. The code that would be generated for the left hand side of Figure4 is shown

11 / 16 Volume 5 (2006)

Figure 11: OCL editor Eclipse plugin

below.

01 // bind child: Person
02 Iterator iter = this.iteratorOfChildren ();
03 while (!(fujaba__Success) && iter.hasNext ())
04 {
05 try
06 {
07 child = (Person) iter.next ();
08 // check isomorphic binding
09 JavaSDM.ensure (!(this.equals (child)));
10 // constraint

Proc. OCLApps 2006 12 / 16

ECEASST

11 JavaSDM.ensure (child.sizeOfChildren() == 5);
12 fujaba__Success = true;
13 }
14 catch (JavaSDMException e) {}
15 }

To search through all children of thethis object, aIterator is created in line 02. The
while loop from line 04 to line 15 is repeated till one child has been found, that matches all con-
ditions (fujaba Success == true) or till no more child exists in the list. In this loop, in
line 07 the currentchild object is fetched from the list. Since thethis object, and thechild
object are both of classPerson , it is possible to make a person its own child. Fujaba’s seman-
tics forbids such matches (unless explicitly allowed in the story diagram), so this is checked in
line 09. Note, that Fujaba provides the library methodJavaSDM.ensure(boolean) which
simply does nothing, when passed true and throws aJavaSDMException otherwise. So, if
this equalschild , this would end the checks for the current object and continue with the next
one. Otherwise the additional constraint is checked in line 11. Note, that the text from the con-
straint is directly copied into the code surrounded by anotherJavaSDM.ensure . If this test is
also passed,fujaba Success is set to true, to indicate that a valid child has been found. The
loop is terminated in that case.

If the additional constraint is now specified in OCL, as done in the right hand side of Figure4,
the code generation has to be adapted. We have integrated the code generation of the Dresden
OCL Toolkit into Fujaba4Eclipse. The modified code generation leaves most of the code above
untouched, but changes the check of the condition in line 11. The source code below shows the
code which is now generated.

01 //bind child: Person
02 Iterator iter = this.iteratorOfChildren ();
03 while (!(fujaba__Success) && iter.hasNext ())
04 {
05 try
06 {
07 child = (Person) iter.next ();
08 // check isomorphic binding
09 JavaSDM.ensure (!(this.equals (child)));
10 // ******************* constraint ****************
11 OclAny self =
12 (OclAny) Ocl.getOclRepresentationFor(this);
13 OclBoolean constraintValid=
14 self.getFeatureAsCollection("children").
15 size().isEqualTo(new OclInteger(5));
16 JavaSDM.ensure (constraintValid.isTrue());
17 // ******************* constraint ****************
18 fujaba__Success = true;
19 }

13 / 16 Volume 5 (2006)

20 catch (JavaSDMException e) {}
21 }

Within the Dresden OCL Toolkit the OCL Standard Library is implemented by some Java classes,
which are used by the Java code, created by the Java code generator of the Dresden OCL Toolkit,
to evaluate an OCL constraint. To evaluate the OCL constraint of the right hand side of Fig-
ure4 an instance of the classOCLAny is created as one can see in line 11 of the code example
shown above. This instance is used in line 13 to get an instance of the classOCLCollection
which represents the children association end of thethis -object. Afterwards the number of the
elements in this collection is determined using thesize() method of theOCLCollection
instance. This results in an instance of the classOCLInteger of which theisEqualTo()
method is used to evaluate whether the number of collection elements equals 5. As the result
of the isEqualTo() method call an instance of the classOCLBoolean is created of which
the isTrue() method returns the result of the comparison. So the result of this method can be
used as input of theJavaSDM.ensure() method call as one can see in line 15.

6 Related work

Many CASE tools offer OCL support for class diagrams. For example, the Dresden OCL Toolkit
has been integrated with Together and ArgoUML. But those tools have no support for model
transformation and no integration of OCL in other diagrams. The EMFT project [The06] sup-
ports OCL for constraints and queries. One can use OCL for constraints on the static model
and for specification of querying behavior. This way e.g. derived attributes can be modeled. So
EMFT uses OCL for some very basic behavior specification. But it has no support for model
transformations.

The QVT standard [Obj06] by the OMG has some similar ideas. QVT defines a model trans-
formation language which uses OCL. QVT extends the OCL with imperative expressions to
make it more powerful. In this ImperativeOCL things like attribute assignments, link creation
etc. can now be expressed. In our approach this imperative part is modeled using story diagrams.
Currently, complete tool support for QVT is still missing.

7 Conclusions

The Fujaba Tool Suite is a CASE-Tool which supports the most important diagrams of the Uni-
fied Modelling Language with code generation for Java. To also specify the behaviour of a
system modelled with Fujaba one can use so-called story diagrams.

As described in Section2 story diagrams combine UML activity diagrams and collabora-
tion diagrams for the specification of methods. Within story diagrams some expressions, like
additional constraints, return values, etc are specified textually using Java expressions. These
expressions are inserted identically in the code generated by Fujaba. If a developer wants to
use another programming language than Java every constraint within the story diagrams have
to be changed separately. So it is useful to specify the additional constraints using the Object
Constraint Language.

Proc. OCLApps 2006 14 / 16

ECEASST

Therefore, we discussed the possibilities to use OCL in Fujaba’s story diagrams in Section3
and described some special characteristics which must be considered to generate the context of
OCL contraints within story diagrams. After that we explained an algorithm to generate the OCL
context considering the special characteristics.

On basis of the context generation algorithm the integration of the Dresden OCL Toolkit into
Fujaba4Eclipse using the Dresden OCL Toolkit integration interface is described in Section4.
Additional

In Section5 we described the code generation for Fujaba’s story diagrams and discussed how
the generated code of a story diagram could look like using OCL.

As already mentioned in Section4, we use the Dresden OCL Toolkit to integrate OCL in
Fujaba’s story diagrams. This enables using OCL in various places in Fujaba’s story diagrams,
while maintaining the ability to generate code. Development of a prototype implementation of
the concepts discussed in this paper was completed in [Stö06].

Finally, the implemented integration has been modularly constructed from Eclipse plugins.
Therefore, integration with other Eclipse-based CASE tools should be very straight forward.

Bibliography

[FNT98] T. Fischer, J. Niere, L. Torunski. Konzeption und Realisierung einer integrierten En-
twicklungsumgebung für UML, Java und Story-Driven Modeling. Diplomarbeit, Uni-
versity of Paderborn, 1998.

[Inc06] S. M. Inc. Java Metadata Interface. Nov. 2006. http://java.sun.com/products/jmi/.
http://java.sun.com/products/jmi/

[KWB03] A. Kleppe, J. Warmer, W. Bast.MDA Explained: The Model-Driven Architecture–
Practice and Promise. Addison-Wesley, 2003.

[Mat03] M. Matula. NetBeans Metadata Repository. Mar. 2003. http://mdr.netbeans.org/MDR-
whitepaper.pdf.
http://mdr.netbeans.org/MDR-whitepaper.pdf

[Obj03a] Object Management Group. UML 2.0 OCL Specification. OMG document ptc/2003-
10-14, Oct. 2003.

[Obj03b] Object Management Group. UML Resource Page. 2003.
http://www.omg.org/uml/

[Obj06] Object Management Group. MOF QVT Final Adopted Specification. 2006.
http://www.omg.org/docs/ptc/05-11-01.pdf

[OCL99] OCL Toolkit Team. Dresden OCL Toolkit homepage. 1999.
http://dresden-ocl.sourceforge.net/

[Stö05] M. Stölzel. OCL f̈ur Fujaba. Großer Beleg, Technische Universität Dresden, 2005. In
German.

15 / 16 Volume 5 (2006)

http://java.sun.com/products/jmi/
http://mdr.netbeans.org/MDR-whitepaper.pdf
http://www.omg.org/uml/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://dresden-ocl.sourceforge.net/

[Stö06] M. Stölzel. Verwendung der OCL zur Formulierung von Bedingungen in Storydia-
grammen. Diplomarbeit, Technische Universität Dresden, 2006. In German.

[The06] The Eclipse Foundation. EMFT - Eclipse Modeling Framework Technologies. 2006.
http://www.eclipse.org/emft/projects/ocl/

[Zün99] A. Zündorf. The Fujaba Toolsuite. 1999.
http://www.fujaba.de/

[Zün01a] A. Zündorf. Fujaba for Eclipse. 2001.
http://wwwcs.uni-paderbord.de/cs/fujaba/projects/eclipse/

[Zün01b] A. Zündorf. Rigorous Object Oriented Software Development, Habilitation Thesis.
University of Paderborn, 2001.

Proc. OCLApps 2006 16 / 16

http://www.eclipse.org/emft/projects/ocl/
http://www.fujaba.de/
http://wwwcs.uni-paderbord.de/cs/fujaba/projects/eclipse/

	Introduction
	Story Diagrams -- A Short Overview
	Integrating OCL into Story Diagrams
	Where to Integrate
	Resolving Scoping

	Fujaba and the Dresden OCL Toolkit
	OCL constraint context declaration
	Integration interface of the Dresden OCL Toolkit
	OCL editor of the Dresden OCL Toolkit

	Generating Code
	Related work
	Conclusions

