Electronic Communications of the EASST
Volume 5 (2006)

Proceedings of the Sixth OCL Workshop
OCL for (Meta-)Models
in Multiple Application Domains
(OCLApps 2006)

Use of OCL in a Model Assessment Framework:
An experience report

Joanna Chimiak—Opoka, Chris Lenz

17 pages

Guest Editors: Dan Chiorean, Birgit Demuth, Martin Gogolla, Jos Warmer

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Ea ECEASST

Use of OCL in a Model Assessment Framework:
An experience report

Joanna Chimiak—Opoka, Chris Lenz

Quality Engineering Research Group
Institute of Computer Science, University of Innsbruck
Technikerstrasse 21a, A—6020 Innsbruck
joanna.opoka@uibk.ac.at

Abstract: In a model assessment framework different quality aspects can be exami-
ned. In our approach we consider consistency and perceived Semaality. The
former can be supported by constraints and the later by queries. Congistn be
checked automatically, while for the semantic quality the human judgement is ne-
cessary. For constraint and query definitions the utilisation of a quegyége was
necessary. We present a case study that evaluates the expressigéthe Object
Constraint Language (OCL) in the context of our approach. We fooutypical
gueries required by our methodology and we showed how they can ineltded

in OCL. To take full advantage of the language’s expressivenesatilige new
features of OCL 2.0. Based on our examination we decided to use OCL anaur
lysis tool and we designed an architecture based on Eclipse Modeling \Woakne
Technology.

Keywords: model assessment, semantical model quality, model integration, model
consistency, information retrieval

1 Introduction

The necessity of model maintenance is growing together with the increasingtidgitief models
in real applications. The importance witegration grows with the size and the number of
designed models. The aspect of integration becomes crucial if the modeliiivgrenent is
not homogeneous, i.e., it has to be dealt with diverse modelling tools andwetrerliverse
notations. Such a situation is common if various aspects of the same systeto baviescribed.
For example in the domain of enterprise architecture modelling, for the desorgd business
processes and technical infrastructure different tools and nota@onisecused.

If additionally the models are large scale models with hundreds or thousérelsnaents
they might very likely contain inconsistencies and gaps. Quality assurditicese models can
not be done by pure manual inspection or review but requires tootassisto supponnodel
assessment

We have developedfaamework that is dedicated to both the integration and the assessment
of models. To support the former we designed a modular architecture wéhexig repository
as a central point, with a common meta model and consistency checks. Fdtehe/adefined
a mechanism for information retrieval, namely queries of different typesut entire approach
we focus on the static analysis of models.

1/17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Ea

Modelling Model Data Analysis
Environment Repository Tool

Figure 1: Base components of our framework

The language for expressiggnstraints and queriesover models is an important part of the
model assessment process. Depending on the language expressiitaa possible to cover a
wider or a narrower range of constraints and to retrieve more or lessnafmn from models.

One of the components of our heterogeneous tool environment for megkdsmendGITOq
is a generic analysis tool supporting queries over the model repositoeyefbre, we started our
case study with the Object Constraint Language (OCIM{505 WK99]). In our study we want
to examine all types of queries required by our methodol@®®(d5. The OCL 2.0 provides
a new definition and a querying mechanism which extend the expresssveh¢his language.
As described inAB01, MC99], previous versions of OCL (1.x) were not expressive enough to
define all of the operations required by relational algebra (RA) and wetradequate query lan-
guages (QLs). The main deficiency of previous versions was the @beéthe tuples concept. In
the current version of OCL, tuples are already supported. Thusialltiye operators Cod73
needed to obtain full expressiveness of a QL, nanuéijon, Difference, Product, Seleand
Project can be expressed. This fact encouraged us to use OCL within owvevirark.

The remainder of the paper is structured as follows. In the next secti@ivea brief intro-
duction to our methodology. Then, we present exemplary models (sé&cfioon which the case
study (sectiorB.2) relies. In sectiordl we present a design of our analysis module and finally, in
the last section we draw a conclusion.

2 Model Assessment Framework

In this section, the methodology developed within tedFlow project BCO05 CGITOq is
briefly described. A broader description of the methodology developedyistematic model
assessment can be found BXJ05. The architecture of the first prototype and the technologies
and standards used for its implementation were describ&dGh106. The design of the second
prototype based on the Eclipse Modeling Framework with a generic analgsis tescribed in
section4. We decided to change utilised technologies to be up to date with the curogettsr
and to take advantages from integration with the open source community. leteéh@hase we
plan to release our tool on a public licence.

In this section, only the main ideas related to OCL application within our framewdrich
are necessary to understand the examples presented in sk2tiare described.

2.1 Structure of the framework

As depicted in Figuré at the topmost level of our architecture three components can be distin-
guished: a modelling environment, a model data repository, and an anabysis to

Proc. OCLApps 2006 2117

S

The main assumption in our framework is that all designed models are basedammon
meta model Based on the meta model, the constraints for modelling tools are providedeand th
structure of the common central repository of model elements is genetigedmodelscan be
imported into the repository from modelling tools via adapters (c.f. Figirelrhe usage of a
common meta model is crucial for model integration in a heterogeneous modeNimgranent
with diverse notations and modelling tools.

The analysis tool allows the definition of constraints and queries, andsasluid in the sub-
sequent section, we plan to integrate metrics and regression tests into lffmsamadule. The
metrics are thought to be a mechanism to evaluate models in a quantitative veayegréssion
tests provide a mechanism for continues quality checks. All expressieralso saved in the
repository thus they can be shared among different clients. The an@lgkiscludes also an in-
terpreter for constraints and queries, an interpreter for test suitag¢fi@ssion tests) is planned.
The interpreter can work on the user models saved in the repositorye @etwo manners of
using the interpreter, it can be used as a stand—alone application as peit abthe modelling
tools (c.f. Figure?).

ECEASST

==component== g] <=COMmponents== E]
Analysis Modelling_Environment
<=COmponent== E] ==Component== E] ==antifact== D
Constraints Modelling_Tool Proprietary_Hotation
=zyges= I
<componertes] <scomponert== P ——
~ Modelling_Tool_Adapter N
ueries Proprietary_Adapter
i o |
[s=component== =]
(_J— Interpreter
==camponent== E],/’)L- L
Metrics
kvl (3
<=COMpOnEnt== E]
==component== E] Adapter
Regression_Test
\/\/
b
<=COmponent== E]
Repository
==artifact== D ==artifact== D
Expressions Models

Figure 2: The architecture design of the framework

2.2 The analysis module and OCL expressions

An analysis module for our methodology should be generic enough to dmathi¢he definition

and interpretation of arbitrary queries. In this section we present tipoperrand application

of constraints and queries expressed in OCL. We give a detailed clagsifiof expressions in
context of our framework and at the end we describe how the expresaiobe initialised and
evaluated. In sectioB.2, we examine the expressiveness of OCL and evaluate the possibility of
its usage in the analysis module.

3/17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Ea

2.2.1 Constraints and queries

Within our framework we consider two types of OCL expressions: canssrand queries, both
defined at the meta model level and evaluated over user models.

Constraints extend the specification of models. The aim of using constraints is to support
model consistenciyn an early modelling phase. They can be checked automatically each time
model elements are saved to the repository or on demand. The exprasstohfr ensuring
syntactical correctness are callgteckgcompare sectiofd.2).

Queries provide aggregated information on sets of model elements. The analysisansme
of queries supportsemantic qualityof models. As stated iS00, semantic quality belongs

to the social layer and needs to be judged by humans. Our frameworkrssiipe user in the
judgement process by providing mechanisms for information retrieval. dterewe can only
evaluate the perceived semantic quality comparing user knowledge of tiseleced domain
with his interpretation of modelsS0Q or in our case the results obtained by query evaluations.
Both aspects of semantic quality examinationvahdity andcompleteness- can be supported
by queries. In the first case we check if all model elements are relevér ttomain. This can
be achieved by listing all instances of a given meta model element and hurpantina of their
relevance. In the second case we look for elements from the domain in thet dada repository.

2.2.2 Detailed classification

We classify the constraints and queries in four categories (see exampestion3.2). The
dependencies between categories are depicted in F3gure

Primitive query is the simplest query, which takes as arguments OCL Primitive Types or MOF
Classes.

Check is a special kind of primitive query which returns a Boolean value. It isiciared as a
constraint for a model or, in particular case, as an invariant for aifitass

Compound query is a query which aggregates results of primitive queries. The arguments of
the query are collections. For a given collection the Cartesian Produgittisubd for each
of its element a given primitive query is evaluated. The result BetfTupleType) type.

Complementary query is a query evaluated over the result of a given compound query. All
other queries are evaluated over a set of model elements. The quengeahecks and
primitive queries for result calculation.

2.2.3 Initiation and evaluation scopes

All types of queries and checks can be evaluated on demand in diftaemes selected by a user.
We distinguish two types of scopes, namely an evaluation and an initiation. Stopevaluation
scope (Figuré.a) determines, over what content the query will be interpreted, and theiaritia

Proc. OCLApps 2006 4/17

Ea ECEASST

Query
subtype subtype
subtype

Primitive Compound <——— Complementary

aggregates results from evaluated over

subtype|
Check
Figure 3: The queries hierarchy
evaluation scope initiation scope

repository model diagram single global

a) b)

Figure 4: The classification of scopes

scope (Figurel.b), how the query is called. Furthermore in both scopes we distinguish modes
In the evaluation scope we distinguish following three modes.

Repository mode — the complete set of model elements is considered, i.e., a given expression
is evaluated over the content of the repository.

Model mode — only a single user model is considered, e.g. in a running modelling tool on a
local machine or model of a predefined type (filtered from the repositdhiy mode can
be used if the queries do not need to be evaluated in the context of the temspief
elements (e.g. checks).

Diagram mode — only one diagram is considered. The usage of this mode is similar to the
model mode.

The repository mode is typical for queries in the analysis phase. Thetadeaof the model
and the diagram mode is the possibility of making fast evaluation and ongairegtions during
the modelling phase. In the initiation scope consider two different modeschathe evaluated
in any evaluation scope.

Single (element) mode— only queries related to a given element can be activated. This mode
enables fine granular analysis of models.

Global mode — all queries can be activated. This mode enables global analysis of models

3 Case study

In this section the case study from thedFlowproject is presented. At first (secti@nl) the
excerpt of the domain in question, in form of meta and user models, is peeserhen exam-

5/17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Eﬁ

ples of queries are presented (sectto?) and their analysis within our framework is conducted
(section3.3).

3.1 Modelling of clinical processes

In the subsequent sections, parts of a meta model designed withiMatElow project and
exemplary user models are presented. The meta model is used as a bassckoand query
definitions, the user models as a base for check and query evaluagati®f8.2). For our
study we used a tool dedicated for OCL compilation, namely the OCL Environ(pLE,
[LCIOS]). In this tool, OCL expressions can be compiled and evaluated for singienoes or
for an entire project. The models and all queries were implemented in the O&isiow 2.0.
We stress the fact that the used OCL syntax is the one implemented in OCLEn@uit is also
possible to evaluate all the queries presented below within our analysis module.

3.1.1 Meta model

The aim of theMedFlowproject was the optimisation of clinical processes. Within the project,
we developed a meta model of the clinical processes domain. Figlrews a fragment of the
meta model (the complete meta model can be foun&@05]). For technical reasons our meta
model was designed in OCLE as a model (at the M1 level) and user moddigeasmodels (at
the MO level). In our framework we are working at M2 and M1, respetyiv

+usedBy

0.*

Information . X X LogicalTool
+information +providedByTool 0.*
+persistence : PeristenceLevel isMedium : Boolean +uses
—name : String 0.* 0.* [~name : String

| ITBasedSystem | | PaperBased

Figure 5: Part of thiMedFlows meta model

In the meta model excerpt we can distinguish two main class&smation and LogicalTool.
LogicalTool is an abstract class with two subclassgBasedSystem andPaperBasedSystem. Information
can be saved inogicalTool, expressed by an associatigvidedByTool. LogicalTool can use an-
otherLogicalTool, what is expressed by the associatisas. This simplified meta model is used
as a base for the check and query definitions in se@igan

3.1.2 User models

Based on an meta model (c.f. the previous section) user models are ciratedcase study, we
used the simplified meta model and two exemplary user models presented in &igdoelels
presented in the Figure are objects models, whereas within our frameveyrlate at the M1
level (compare the explanation in the previous section).

In the first user model (Figur®1) four instances ahformation and four instances abgicalTool
are defined. The instancesleformation have diverse persistence levetsv(medium, high) and

Proc. OCLApps 2006 6/17

Ea ECEASST

XR: i Cal : ITl KIS : IT!

name = X-ray referral isMedium = false isMedium = true
persistence = low name = Personal Calculator name = Hospital Information System

XLI PN : PaperBased

name = X-ray lang image isMedium = true
persistence = medium name = Pater Noster Cal : ITI PACS : ITI

isMedium = false isMedium = true

XWI : Information PACS : ITE name = Personal Calculator name = Image Archive
name = X-ray windpipe image isMedium = true
persistence = medium name = Image Archive

XDF : Information KIS : ITBasedSystem PN : PaperBased
name = X-ray di ic findings isMedium = true isMedium = true
persistence = high name = Hospital Information System name = Pater Noster

1))
Figure 6: Exemplary user models: (1) instances of claggesnation, LogicalTool and associa-
tions between them, (2) hierarchy of instancesaaficalTool

instances ofogicalTool are of diverse type (IT- and paper—based).lfigrmation can be saved in
a LogicalTool if the LogicalTool is @ medium (c.f. Exampl&). There are four association links be-
tween instances ofiformation and instances afogicalTool. In the second user model (Figuse)
the hierarchical dependencies between four instancesyiefiTool are defined. These simplified
user models are used as a base for the check and query evaluationsémtthection.

3.2 Definition and evaluation of checks and queries

In this section, we present typical checks and queries. All definitionfom to theMedFlow
meta model (Figur8) and their results are evaluated over the exemplary user models (Bjgure
The examples are based on a representative selection of all typescifdred queries used
within our framework for model assessment.

In the examples the checks and queries are defined in natural languhgepected manu-
ally. The corresponding listings are expressed in OCL 2.0 and automaticallyated in OCLE
version 2.0.

If not stated otherwise, definitionsléf) and invariantsi(nv) are defined and evaluated in
the context ofinformation (cont ext | nf or mati on) and based on the diagram depicted in
Figure6.1. This context is added for technical reasons to enable easier compibatioGL
expressions. The definitions themselves are not context dependeartfénence obelf is used
within them).

3.2.1 Primitive query

A primitive query can return a value of primitive type (except the Boolear)tyglass type or
collection type. The construction of a primitive query is similar to the below defexamples
for checks, thus we do not provide additional examples.

3.2.2 Check

The simplest concept for information retrieval is a check. It is a functidh & set of objects
as a domain. In Exampleand Listingl, the check is defined and evaluated. It checks if there

7117 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Eﬁ

exists an association between a giwearmation and a giverLogicalTool.

Examplel (theCheck)
Definition: Is a given information saved in a given logical tool?
Evaluation for XLI andKIS: no.

Listingl (theCheck)
Definition:

def: let
theCheclki: Information , It: LogicalTool)
= i.providedByTool>intersection Set{|t})—>notEmpty ()

Evaluation:

def:
let objinfo

Information . alllnstances
—>select (name="Xray lung image”)

—>any (true)

let objLTool = LogicalTool. alllnstances
—>select(name="Hospitallnformation System”)
—>any (true)

let theCheckResult= theChecKobjlnfo, objLTool)
— Selection: Boolean = false

Predefined check Checks can be used to express some well-formedness rules. Sukh chec
should be defined during the meta modelling phase and are called preddfauid. In Example
2 and Listing2 a predefined check is defined and evaluated.

Example2 (thePredefinedCheck)
Definition: An information can be saved only in logical tools which aredimens.
Evaluation: is fulfilled for all instances.

Predefined checks can be expressed in the form of invariants acklechior all instances of
the context class by calling the functicheck UML models for errorim the OCLE tool.

Listing2 (thePredefinedCheck)
Definition:

inv: self.providedByTool>forAll (It | It.isMedium=true)

Evaluation check UML models for errors

Mbdel appears to be correct according to the selected rules.

3.2.3 Compound query

In order to aggregate information collected with single queries, we can baddha@ound query.
The collections of elements, used as arguments, can be built in differenensame can use all
instances or a subset of them. Exantpbnd Listing3 depict the results of the compound query
with the check defined in Examplieand Listingl, applied for all instances afformation and

Proc. OCLApps 2006 8/17

11

10

12

14

Ea ECEASST

LogicalTool. In Example3, the result is presented in form of a table while in the Listiig is
presented as a set of tuples.

Example3 (theCompoundQuery)

Definition:

Evaluatet heCheck for all instances ofnformation andLogicalTool classes
Evaluation:

Information\ Logical Tool | KIS PACS PN Cal

XR no no no no

XLI no yes yes no

XWi no yes no no

XDF yes no no no

Listing3 (theCompoundQuery)
Definition:

def: let
theCompoundQuerfinfC: Set(Information), LToolC:Set(LogicalTool))
Set(TupleType(
i : Information ,
It: LogicalTool,
r : Boolean)) =
InfC—collect(info | LToolC—collect(Itool |
Tuple {
i : Information
It: LogicalTool
r : Boolean
}))—>asSet()

info ,
tool ,
theChecKinfo, Itool)

Evaluation:

def:
let theCompoundQueryResult
theCompoundQuerfinformation . allinstances LogicalTool. alllnstances)

K

Selection: Set(Tuple(i:Information,|It:LogicalTool ,Boolean)) = Sef{
Tuple{ XDF , PN , false} , Tuple{ XDF , PACS , false}
Tuple{ XDF , Cal , false} , Tuple{ XDF , KIS , true }
Tuple{ XR , PN , false} , Tuple{ XR , PACS , false}
Tuple{ XR , Cal , false} , Tuple{f XR , KIS , false}
Tuple{ XWI , PN , false} , Tuple{ XWI , PACS , true} ,
Tuple{ XwWI , Cal , false} , Tuple{ XwWI , KIS , false}
Tuple{ XLI , PN , true } , Tuple{ XLI , PACS , true} ,
Tuple{ XLI , Cal , false } , Tuple{ XLI , KIS , false}

o=l

Filtering We can additionally apply filters before or after evaluating the result ofengiom-
pound query. The filtered compound query presented in Exatalel Listing4 is evaluated
only for instances ofhformation andLogicalTool classes, which fulfil additional constraints.

Example4 (theFilteredCompoundQuery)

Definition:

Evaluatet heCheck for instances ofnformation, which have thepersistence attribute set tanedium or
high and instances dfogicalTool, which have the attributeMedium equal totrue.

9/17 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Eﬁ

Evaluation:

Information\ Logical Tool | KIS PACS PN
XLI no yes yes
XWI no yes no
XDF yes no no

The definition oft heFi | t er edConmpoundQuery presented in Listingt uses the result
t heConpoundQuer y from Listing 3. Like in the previous section, the result(eFi | t er ed-
CompoundQuer yResul t) is presented as a set of tuples.

Listing4 (theFilteredCompoundQuery)
Definition:

def: let
theFilteredCompoundQuery = theCompoundQueryResultselect(t |
(t.i.persistence=#mediumor t.i.persistence=#high)
and t.It.isMedium = true)

Evaluation:

def:
let theFilteredCompoundQueryResuk theFilteredCompoundQuery
/%
Selection: Set(Tuple(i:Information,It:LogicalTool ,Boolean))= Sef{
Tuple{ XDF , PN , false} , Tuple{ XDF , KIS , true } ,
Tuple{ XDF , PACS , false} , Tuple{ XwWl , PN , false} ,
Tuple{ XWI , KIS , false} , Tuple{ XWI , PACS , true} ,
Tuple{ XLI , PN , true } , Tuple{ XLI , KIS , false} ,
Tuple{ XLI , PACS , true} } x/

Collecting Elements can be collected according to specific properties (e.g. valuéstgf s
existing links). In the example below we collect elements according to the eldrieratchy

(c.f. Figure6.2). We do not construct a complete definition of a compound query, we only
demonstrate how to create a collection using a recursive OCL function.

Examples (theCollection)

Definition:

Collect allLogicalTools used by a givehogicalTool.
Evaluation for KIS: {PN, Cal, PACS}

Proc. OCLApps 2006 10/17

Ea ECEASST

Listing5 (theCollection)
Definition:

context LogicalTool
def: let
getUsedTools(t:LogicalTool) : Set(LogicalTool)
= t.uses>collect(x|getUsedTools(x))>asSet(}>union(t.uses)

Evaluation:
def:
let objLTool = LogicalTool. alllnstances
—>select(name="Hospitallnformation System”)
—>any (true)
let LToolC = getUsedTools(objLTool)

—— Selection: Set(LogicalTool) = S¢tPN , Cal , PACS}

3.2.4 Complementary query

After the evaluation of a compound query, complementary queries canabgated over the
obtained result. In Exampl& a complementary query is defined and evaluated.

Examples (theComplementaryQuery)

Definition:

Which instances afogicalTool are used to sav@formation objects with persistence leveledium.
Evaluation:

{PACSPN}

The OCL expression presented below depicts one of the possible waymésethis comple-
mentary query. The condition in line 4 corresponds to the filtering conditidrttaremaining
conditions correspond to the iteration over the result of the compoung.quer

Listing6 (theComplementaryQuery)
Definition:

def: let
theComplementaryQuery Collection(LogicalTool) =
LogicalTool. alllnstances ()
—>select(Itool | theCompoundQueryResult
—>select(t| (t.i.persistence = #mediumpnd
(t.It = ltool and t.r = true))—>notEmpty())

Evaluation:

def:
let theComplementaryQueryResukt theComplementaryQuery
— Selection: Collection(LogicalTool)= StPACS , PN}

One can notice that the usage of compound queries does not simplify Q€éssions for
complementary queries. The complementary query defined in Exd&oplebe expressed based
on the result of the previously defined compound queheConmpoundQuer yResul t) asin
Listing 6 or without any definition as in Listing. The results in both listingg and7, are equal.
The expression in Listing seems to be easier and does not depend on any other definitions.

11717 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Ea

Listing7 (theComplementaryQueryBis)

Definition:
LogicalTool. alllnstances
—>collect(ltool | Information . alllnstances
—>select(i | i.persistence=#medium).providedByToel}asSet()

At this point, the question why compound queries are useful for complemyequaries may
arise. Let us explain our motivation for the usage of the first variant. unpoototype for
the MedFlow project we have a common repository for all models. To evaluate a compound
query we have to gather information from the repository, which can bdddaan a remote
server. If we define a complementary query based on the result of thepoemd query, then
the evaluation is faster, otherwise for the evaluation of a complementary gueeagain need
to gather information from the repository. Moreover, we can evaluate wamgplementary
queries over the same compound query without further connection togbsit@ry. The second
reason for using the variant with compound queries is the modified présenté the results
of complementary queries. With some additional effort the result can [semed as a set of
elements in form of highlighted elements in the result of a compound quergf@mple?).

Example7 (theComplementaryQuery)

Evaluation: {PACSPN}
Persistencg Logical Tool \ KIS PACS PN cCal

low 0 0 0 0
medium 0 2 1 0
high 1 0 0 0
3.3 Summary

We showed how to construct all types of checks and queries used fraouework. The OCL
2.0 is expressive enough to be applied in our framework for modelsmses.

The models created in our framework are MOF compliant and as the OClossjpe ob-
ject oriented paradigm, it is easy to navigate through the object structndesreate checks
(Examplel) and queries. The invariants can be used as consistency checks §&fing mo-
dels to the repository (Exampl®. Tuples provide useful mechanisms for the aggregation of
information of different types. Using tuples it is possible to evaluate the Slartd°roduct of
given sets, what was used within our compound queries concept (Ex&@mpJsing the select
operation it is possible to filter collections. The select operation can be dpgitiger to the
result of a compound query (Exampleor to a domain of it (for each argument separately). The
first manner enables the expression of more complex conditions. OCLndbésve a built—in
operator for transitive closure, but it allows definitions of recursivecfions. In Listingb used
tools are recursively collected in order to represent the transitiverelagithe relation defined
by uses. Complementary queries can be expressed in OCL in two different maredirst is
based on a previously defined compound query and the second is ifiatefrom scratch. The
first one seems to provide an easier manner to automate query definiticesaitd presentation.

Proc. OCLApps 2006 12/17

Ea ECEASST

4 Technical aspects

In the SQUAMproject we continue development of the system for quality assessmenteisno
started in theMedFlow project [CGITOg. In this section we present redesigned architecture
of our system which utilises the newest components developed within the &dlipdeling
Framework (EME). The architecture presented below integrates three components ofeEclips
Modeling Framework Technology (EMEY, namely Connected Data Objects (CE)QObject
Constraint Language (OC). and Query (QUERY), to create a system with a central model
repository and a generic analysis tool. The architecture of the repoaitdrthe management of
checks and queries are described in subsequent sections.

4.1 Architecture

As mentioned above the design of the model data repository is based on hariENdome of the
EMFT projects.EMF is a modelling framework and code generation facility for building tools
and other applications based on a structured data m¢éelOg. The model data repository
uses EMF as the meta model, it can save model instances of different EMFodéds (c.f.
Figure?7).

The architecture of the model data repository is based on the client—gemagtigm. The
repository clients can connect to a relational database management syst&mnO, or they
connect to a version control system like subversion (8vNhe connection via CDO provides
multi user support. The connected clients can search, load, saveate omv EMF model in-
stances of an arbitrary EMF meta model. Moreover CDO provides a notificatechanism
to keep connected clients up to date on model changes. SVN providésnegs change his-
tories, merging and also locking mechanisms. The clients can save the EMF ingidaces
to SVN which makes multi user support implicit available because of the mergith¢paking
functionalities.

The repository client integrates the EMFT projects, OCL and QUERY, toifypand exe-
cute queries on EMF model elements. OCL component provides an Appli¢atignamming
Interface (API) for OCL expression syntax which can be used to imple@@t queries and
constraints. The QUERY component facilitates the process of seatdeyaéand update of
model elements; it provides an SQL like syntax.

The SQUAMtool family is based on the above described core functionalities out of thie EM
and EMFT projects. The repository client API (CDO, EMF, OCL and QUERrovides an ac-
cess mechanism for other tools, mostly modelling tools. The tree—based editdre generated
out of EMF meta model definitions. The native editors are especially uleftile prototyping
phase, later on we plan to integrate some graphical editors to create modetésstdn the

http://www.eclipse.org/emf/
http://www.eclipse.org/emft/
http://www.eclipse.org/emft/projects/cdo/
http://www.eclipse.org/emft/projects/ocl/
http://www.eclipse.org/emft/projects/query/
http://subversion.tigris.org/

o 0o~ W N P

13/17 Volume 5 (2006)

http://www.eclipse.org/emf/
http://www.eclipse.org/emft/
http://www.eclipse.org/emft/projects/cdo/
http://www.eclipse.org/emft/projects/ocl/
http://www.eclipse.org/emft/projects/query/
http://subversion.tigris.org/

Use of OCL in a Model Assessment Framework:

An experience report Eﬁ

MedFlowprototype we integrated the MS Vidiand MagicDraw modelling tools. We plan to
integrate these two modelling tools as well as editors developed within the Gaiptadeling
Framework (GMR) with the SQUAMtool family.

ﬁ Model Data Repository
EMF Model Instance]

Resource EMF
Model Meta EMF Model Instance |

Element Model
Instance

/ Repository Client

EMF Model Instance]

— —
Data File
or
/ Cbo SVN

Figure 7: The model data repository architecture design

Model
Element
Instance

\

For analysis purposes we use the repository client which uses the Q@jhooent to make
queries on the model instances. The management of checks and quetéeszribed in the
subsequent section.

4.2 Checks and queries management

The OCL component provides mechanisms for check and query defingti@hsvaluations. In
our framework it should be possible to evaluate checks and queriesyandethus we need an
OCL management system to store OCL expressions. For this purpose weniemple checks
and queries catalogue. The catalogue enables users to evaluate Q€&sexys in different
modes (c.f. Figurd in section?2).

The meta model of the OCL management system is also modelled in EMF, thafef@€L
expressions can also be saved in the model data repository in the same amptieer model
instances.

Figure8 illustrates the simplified meta model for the OCL management system. The model
data repository supports the storage of several meta models. To diti¢ednetween queries
specific to a given meta model we assign OCL expressions to a spewifite. The Bundle
defines the type of the model instances by specifying the meta model thetor@aveform to.

Further we consider queries, thaery element contains on@CLExpression. We distinguish
between a definitiondefinition) and an evaluatior&yaluation) of queries. Within on®efinition
the prior definitions can be used, e.g. a compound query can use a priguitixie (compare sec-
tion 3.2). An OCL expression in thEvaluation also uses definitions. Thgefinition is split into
the Check, Primitive, Compound and Complementary expressions. ThBefinition elements are
elements which can be used as subroutines in other expressions @wditiagion elements are
evaluated over an explicit data model. E&vhluation element is placed in a particul@CLCon-
text. The context of the OCL expression enables the usage sfeghé element. The context can

7
8
9

http://office.microsoft.com/visio/
http://www.magicdraw.com/
GMF is a combination of the EMF and GEF (Graphical Editing Framewodgpts http://www.eclipse.org/gmf/

Proc. OCLApps 2006 14 /17

http://office.microsoft.com/visio/
http://www.magicdraw.com/
http://www.eclipse.org/gmf/

Ea ECEASST

Bundle - OCLContext
T Query | OCLExpression
HEES, Definition USES Evaluation
Check Compound Primitive Complementary

Figure 8: The meta model of the OCL management system

also beNULL, itis useful for expressions without any particular contexts. In thengkalistings
presented in sectiah 2, for all listings except Listin@ and Listing5, NULL context can be used
(these listings do not use thleel f keyword and the definitions are not related to a particular
classifier). For interpretation ofEvaluation element thedCLContext has to be set to an explicit
instance of a model element.

The presented design is a proof of concept for the model data repoditeed technologies
and design allow easy extensions with additional features such as dynadioflmew meta
models, or an extended editor for the OCL management system with OCL symeak and
compilation at design time.

5 Conclusion

Our examination shows that the OCL is expressive enough to be appliegliasydanguage for
model analysis. It is possible to define all types of checks and quedeged by our model
assessment framework (secti8r?). There are two other reasons for OCL usage within our
framework. Firstly, there are more and more tools supporting the OCL notatisa non—
commercial tools (e.g. OCL project within EMFT described in sectiar tools presented in
[BCC'05]). The second reason follows from the first: the knowledge of the notégigetting
broader among scientists and pragmatic modellers.

We presented a proof of concept for the model data repository credttéd EMF and EMFT
technologies. In the presented architecture OCL queries for assdssmeodels can be saved
in the repository (sectiod.2) and evaluated on demand. Currently we are developing full sup-
port for the OCL management system (sectibf). We plan to carry out more case studies
to determine more requirements for model assessments queries and daénesgar query
definitions.

15717 Volume 5 (2006)

Use of OCL in a Model Assessment Framework:

An experience report Eﬁ

Acknowledgement

We would like thankDan Chioreanfor the presentation of the OCLE tool at our University
and the later helpful tips for OCL expression implementation in the OCLE. Wddalike to
thank all of the people who reviewed our paper and gave us cons#licgpivt, especiallyFrank
Innerhofer—Oberperfleandreviewers And at last but not leagRuth Brey who supported us in
our work.

Bibliography

[ABO1] D.H. Akehurst, B. Bordbar. On Querying UML Data Models witiCO. In Gogolla
and Kobryn (eds.)UML. Lecture Notes in Computer Science 2185, pp. 91-103.
Springer, 2001.
http://link.springer.de/link/service/series/0558/bibs/2185/21850091.htm

[BCO5] R. Breu, J. Chimiak-Opoka. Towards Systematic Model AsseasssimeAkoka and
al. (eds.),Perspectives in Conceptual Modeling: ER 2005 Workshops CAOIS, BP-
UML, CoMoGIS, eCOMO, and QolS, Klagenfurt, Austria, October 24L28ture
Notes in Computer Science 3770, pp. 398-409. Springer-Verlag, &c20105.
doi:http://dx.doi.org/10.1007/1156834%3

[BCC'05] T. Baar, D. Chiorean, A. L. Correa, M. Gogolla, H. HuBmann, QreRaoiu, P. H.
Schmitt, J. Warmer. Tool Support for OCL and Related Formalisms - Neeatls an
Trends. In Bruel (ed.)MoDELS Satellite Eventdecture Notes in Computer Sci-
ence 3844, pp. 1-9. Springer, 2005.
http://Igl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05. pdf

[CGITO6] J.Chimiak-Opoka, G. Giesinger, F. Innerhofer-ObdipeB. Tilg. Tool-Supported
Systematic Model Assessment. In Mayr and Breu (eds.). Lecture Notefimat-
ics (LNI)—Proceedings P-82, pp. 183-192. Gesellschaft fuerrmdtik, 2006.

[Cod72] E.F. Codd. Relational Completeness of Data Base Sub-Lgegizata Base Sys-
tems, Rustin(ed), Prentice-Hall publishet972.

[EclO6] Eclipse Foundation Inc. Eclipse Modeling Framework homepa@f@s.2
http://lwww.eclipse.org/emf/

[KS00] J. Krogstie, A. Solvberg. Quality of conceptual modelslnformation systems en-
gineering: Conceptual modeling in a quality perspecti@apter 3, pp. 91-120.
Kompendiumforlaget, Trondheim, Norway, 2000.
http://www.idi.ntnu.notkrogstie/publications/2003/quality-book/b3-quality.pdf

[LCIO5] LCI team. Object Constraint Language Environment. 2005. GderpScience Re-
search Laboratory, "BABES—BOLYAI” University, Romania.

Proc. OCLApps 2006 16/17

http://link.springer.de/link/service/series/0558/bibs/2185/21850091.htm
http://dx.doi.org/http://dx.doi.org/10.1007/11568346_43
http://lgl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf
http://www.eclipse.org/emf/
http://www.idi.ntnu.no/~krogstie/publications/2003/quality-book/b3-quality.pdf

@ ECEASST

[MC99] L. Mandel, M. V. Cengarle. On the Expressive Power of OGLWing et al. (eds.),
World Congress on Formal Methadkecture Notes in Computer Science 1708,
pp. 854—-874. Springer, 1999.
http://link.springer.de/link/service/series/0558/bibs/1708/17080854.htm

[OMGO05] OMG. Object Constraint Language Specification, versionMay; 2005.
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

[WK99] J. Warmer, A. G. KleppeThe Object Constraint Language—Precise Modeling with
UML. first edition, 1999.

171717 Volume 5 (2006)

http://link.springer.de/link/service/series/0558/bibs/1708/17080854.htm
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

	Introduction
	Model Assessment Framework
	Structure of the framework
	The analysis module and OCL expressions
	Constraints and queries
	Detailed classification
	Initiation and evaluation scopes

	Case study
	Modelling of clinical processes
	Meta model
	User models

	Definition and evaluation of checks and queries
	Primitive query
	Check
	Compound query
	Complementary query

	Summary

	Technical aspects
	Architecture
	Checks and queries management

	Conclusion

