
Electronic Communications of the EASST 
Volume 5 (2006) 

Guest Editors: Dan Chiorean, Birgit Demuth, Martin Gogolla, Jos Warmer 
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer 
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122 

 

Proceedings of the Sixth OCL Workshop 
OCL for (Meta-)Models 

in Multiple Application Domains 
(OCLApps 2006) 

Towards Sharing Rules Between OWL/SWRL and UML/OCL 
 

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner and Vladan Devedžić 
 

18 Pages 



 
 
 ECEASST 

2 / 19 Volume 5 (2006) 

Towards Sharing Rules Between OWL/SWRL and UML/OCL 
 

Milan Milanović1, Dragan Gašević2, Adrian Giurca3,  
Gerd Wagner3 and Vladan Devedžić1  

 
1milan@milanovic.org, devedzic@etf.bg.ac.yu 

FON-School of Business Administration, University of Belgrade, Serbia 
 

2dgasevic@acm.org 
School of Computing and Information Systems, Athabasca University, Canada 

School of Interactive Arts and Technology, Simon Fraser University Surrey, Canada 
 

3Giurca@tu-cottbus.de, G.Wagner@tu-cottbus.de 
Institute of Informatics, Brandenburg Technical University at Cottbus, Germany 

 
 

Abstract: The paper presents a metamodel-driven model transformation approach to 
interchanging rules between the Semantic Web Rule Language along with the Web 
Ontology Language (OWL/SWRL) and Object Constraint Language (OCL) along with 
UML (UML/OCL). The solution is based on the REWERSE Rule Markup Language 
(R2ML), a MOF-defined general rule language, as a pivotal metamodel and the bi-
directional transformations between OWL/SWRL and R2ML and between UML/OCL 
and R2ML. Besides describing mapping rules between three rule languages, the paper 
proposes the implementation by using ATLAS Transformation language (ATL) and 
describes the whole transformation process involving several MOF-based metamodels, 
XML schemas, EBNF grammars. 
 
Keywords: OWL, SWRL, OCL, UML, MOF, XML, EBNF, R2ML, Model 
transformations, ATL.  
 

1 Introduction 
The benefits of bridging Semantic Web and Model-Driven Architecture (MDA) technologies 
have been recognized by researchers awhile ago. On one hand, ontologies are a backbone of 
the Semantic Web defined for sharing knowledge based on explicit definitions of domain 
conceptualization. The Web Ontology Language (OWL) has been adopted as a de facto 
language standard for specifying ontologies on the Web. On the other hand, models are the 
central concepts of Model Driven Architecture (MDA). Having defined a model as a set of 
statements about the system under study, software developers can create software systems that 
are verified with respect to their models. Such created software artifacts can easily be reused 
and retargeted to different platforms (e.g., J2EE or .NET). UML is the most famous modeling 
language from the pile of MDA standards, which is defined by a metamodel specified by using 
Meta-Object Facility (MOF), while MOF is a metamodeling language for specifying 
metamodels, i.e. models of modeling languages. Considering that MDA models and Semantic 
Web ontologies have different purposes, the researchers identified that they have a lot in 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 3 / 19 

common such as similar language constructs (e.g., classes, relations, and properties), very 
often represent the same/similar domain, and use similar development methodologies 
[GDD06]. The bottom line is the OMG’s Ontology Definition Metamodel (ODM) 
specification that defines an OWL-based metamodel (i.e. ODM) by using MOF, an ontology 
UML profile, and a set of transformations between ODM and languages such as UML, OWL, 
ER model, topic maps, and common logics [ODM06]. In this way, one can reuse the present 
UML models when building ontologies. 

In this paper, we further extend the research in approaching the Semantic Web and MDA 
by proposing a solution to interchanging rules between two technologies. More specifically, 
we address the problem of mapping between the Object Constraint Language (OCL), a 
language for defining constrains and rules on UML and MOF models and metamodels, and the 
Semantic Web Rule Language (SWRL), a language complementing the OWL language with 
features for defining rules. In fact, our proposal covers the mapping between OCL along with 
UML (i.e., UML/OCL) and SWRL along with OWL (OWL/SWRL). The main idea of the 
solution is to employ the REWERSE Rule Markup Language (R2ML) [R2ML06], [WGL05], 
[WGL*06] (a MOF-defined general rule language capturing integrity, derivation, production, 
and reaction rules), as a pivotal metamodel for interchanging between OWL/SWRL and 
UML/OCL. This means that we have to provide a two way mappings for either of two rule 
languages with R2ML. The main benefit of such an approach is that we can actually map 
UML/OCL rules into all other rule languages (e.g., Jess, F-Logic, and Prolog) that have 
mappings defined with R2ML. Since various abstract and concrete syntax are used for 
representing and sharing all three metamodels (e.g., R2ML XMI, R2ML XML, OWL XML, 
OCL XMI, UML XMI, OCL text-based syntax), the implementation is done by using Atlas 
Transformation Language (ATL) [ATL06] and by applying the metamodel-driven model 
transformation principle [Béz01]. 

 

2 Motivation 
In this section, we give a simple example of sharing OWL/SWRL and UML/OCL rules, in 
order to motivate our work. Let us consider an example of a UML model representing relations 
between members of a family. For a given class Person, we can define a UML association 
with the Person class itself modeling that one person is a parent of another one. This is 
represented by the hasFather association end. In the similar way, we can represent relations 
that one person has a brother by adding another association with the hasBrother association 
end to our model. However, if we one wants to represent that a person has an uncle, i.e. the 
hasUncle association end, this should be derived based on hasFather and hasBrother 
association ends, by saying if a person has a father, and the father has a brother, then the 
father’s brother is an uncle of the person. This can be expressed by the UML class diagram and 
OCL-text based concrete syntax as it is shown in Figure 1. 

The same model can be represented as an OWL ontology consisting of the Person class and 
object properties hasFather, hasBrother, and hasUncle (see  

Figure 2a). Like in the UML model where the OCL rule has been defined for the hasUncle 
association end, a SWRL rule has to be defined on the OWL ontology for inferring the value 
for the hasUncle object property. This SWRL rule is given in Figure 2b. 
 



 
 
 ECEASST 

4 / 19 Volume 5 (2006) 

 
Figure 1. The family UML model and a OCL invariant on the Person class 

 
<rdf:RDF> 
   <owl:Ontology rdf:about=""/> 
   <owl:Class rdf:ID="Person"/> 
   <owl:ObjectProperty rdf:ID="hasUncle"> 

<rdfs:domain rdf:resource="#Person"/> 
<rdfs:range rdf:resource="#Person"/> 

   </owl:ObjectProperty> 
   <owl:ObjectProperty rdf:ID="hasFather"> 

<rdfs:domain rdf:resource="#Person"/> 
<rdfs:range rdf:resource="#Person"/> 

   </owl:ObjectProperty> 
   <owl:ObjectProperty rdf:ID="hasBrother"> 

<rdfs:domain rdf:resource="#Person"/> 
<rdfs:range rdf:resource="#Person"/> 

   </owl:ObjectProperty> 
</rdf:RDF>  

<ruleml:imp> 
 <ruleml:_body> 
 <swrlx:individualPropertyAtom swrlx:property="hasFather"> 
 <ruleml:var>x1</ruleml:var> 
 <ruleml:var>x2</ruleml:var> 
 </swrlx:individualPropertyAtom> 
 <swrlx:individualPropertyAtom swrlx:property="hasBrother">
 <ruleml:var>x2</ruleml:var> 
 <ruleml:var>x3</ruleml:var> 
 </swrlx:individualPropertyAtom> 
 </ruleml:_body> 
 <ruleml:_head> 
 <swrlx:individualPropertyAtom swrlx:property="hasUncle"> 
 <ruleml:var>x1</ruleml:var> 
 <ruleml:var>x3</ruleml:var> 
 </swrlx:individualPropertyAtom> 
 </ruleml:_head> 
</ruleml:imp>  

(a) The family OWL ontology (b) SWRL rule in the XML concrete syntax 
 

Figure 2. The family OWL ontology and a SWRL rule in the XML concrete syntax 
 

Even from this rather simple example, one can easily recognize many different languages 
that are directly involved in the process of interchanging OWL/SWRL and UML/OCL. Given 
the solution based on the use of the R2ML metamodel as a pivotal metamodel, we can identify 
the following languages: i) OWL and SWRL abstract syntax, OWL and SWRL XML syntax, 
and OWL RDF/XML syntax is used for OWL/SWRL; ii) R2ML abstract syntax, R2ML XMI 
concrete syntax, R2ML XML concrete syntax are used for R2ML; and iii) UML abstract 
syntax, OCL abstract syntax, UML XMI concrete syntax, OCL XMI concrete syntax, and 
OCL text-based concrete syntax are used for UML/OCL. Here we advocate a solution that is 
based on defining mappings between abstract syntax of the three languages where each syntax 
is represented by MOF, i.e. by a MOF-based metamodel. This means that we can exploit 
transformation tools (e.g., ATL) for MOF-based model to enable interchange between 
OWL/SWRL and UML/OCL. In the rest of the paper, we first describe R2ML as the core of 
our solution, and later we give a full process (conceptual mappings at the level of abstract 
syntax and implementation details) of transforming between R2ML and OWL/SWRL, and 
between R2ML and UML/OCL, and thus between OWL/SWRL and UML/OCL. 

 

3 The Interchange Format R2ML 
This section is devoted to the description of integrity rules of R2ML [R2ML06], [WGL05], 
[WGL*06] developed by the REWERSE WG I11 that is used as a basis for interchanging 
between OWL/SWRL and UML/OCL. 

                                                      
1 REWERSE Working Group I1–Rule Markup, http://www.rewerse.net/I1 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 5 / 19 

R2ML supports four kinds of rules, namely, integrity rules, derivation rules, production 
rules, and reaction rules. R2ML covers almost all of the use cases requirements of the W3C 
RIF WG [RIF06]. Since both SWRL rules and OCL constraints are integrity rules, we just 
describe R2ML integrity rules here. An integrity rule, also known as (integrity) constraint, 
consists of a constraint assertion, which is a sentence in a logical language such as first-order 
predicate logic or OCL [OCL06] (see Figure 3). The R2ML framework supports two kinds of 
integrity rules: the alethic and deontic ones. An alethic integrity rule can be expressed by a 
phrase, such as “it is necessarily the case that” and a deontic one can be expressed by phrases, 
such as “it is obligatory that” or “it should be the case that.” 

 

 
Figure 3. The R2ML definition of integrity rules 

 
The corresponding LogicalFormula must have no free variables, i.e. all the variables from this 
formula must be quantified. The metamodel of LogicalFormula is depicted in Figure 4. All 
first order logic constructs for formulas are supported, i.e. conjunctions, disjunctions, and 
implications. 
 

 
Figure 4. R2ML logical formula 

 
The distinction between a weak and strong negation is used in several computational 

languages: it is presented in an explicit form in extended logic programs [GL91], only 
implicitly in SQL and OCL, as was shown in [Wag03]. Intuitively, a weak negation captures 
the absence of positive information, while a strong negation captures the presence of explicit 
negative information (in terms of Kleene’s 3-valued logic). Under the minimal/stable models 
[GL88], a weak negation captures the computational concept of negation-as-failure (or closed-
world negation) [Cla78]. 

Quantified formulas, i.e. formulas in which all variables are quantified, represent the core 
of integrity constraints. Since expressing cardinality restrictions with plain logical formulas 
leads to cumbersome constructions, R2ML introduces “at least/most n” quantified formulas. 

Atoms are basic constituents for formulas in R2ML. Atoms are compatible with all 
important concepts of OWL/SWRL. R2ML distinguishes object atoms (see Figure 5) and data 
atoms (see Figure 6). The design of atoms is tailored to the UML [UML06] and OCL [OCL06] 



 
 
 ECEASST 

6 / 19 Volume 5 (2006) 

concepts as well as to OWL [PSH04] and SWRL [HPB*04] concepts. Here we present just 
R2ML atoms necessary for our goal. See [WGL*06] for a complete description and use of all 
supported atoms. An ObjectClassificationAtom refers to a class and consists of an object term. 
Its role is for object classification, i.e. an ObjectTerm is an instance of the referred class. A 
ReferencePropertyAtom associates an object term as “subject” with other object term as 
“object.” This atom corresponds to the UML concept of object evaluated property, to the 
concept of an RDF [KC04] triple with a non-literal object, to an OWL object property, and to 
the OWL concept of value for an individual-valued property. 

 

 
Figure 5. Object Atoms 

 
An AttributionAtom consists of a reference to an attribute, an object term as “subject,” and 

a data term as “value.” It corresponds to the UML concept of attribute and to the OWL concept 
of value for a data-valued property. 

In order to support common fact types of natural language directly, it is important to have 
n-ary predicates (for n > 2). R2ML’s AssociationAtom is constructed by using an n-ary 
predicate as an association predicate, an ordered collection of data terms as “dataArguments,” 
and an ordered collection of object terms as “objectArguments.” It corresponds to the n-ary 
association concept from UML. 
 

 
Figure 6. Data Atoms 

 
R2ML EqualityAtom and InequalityAtom consist of two or more object terms. They 

correspond to the SameIndividual and DifferentIndividuals OWL concepts. An R2ML 
DataClassificationAtom consists of a data term and refers to a datatype. Its role is to classify 
data terms. An R2ML DataPredicateAtom refers to a datatype predicate, and consists of a 
number of data terms as data arguments. Its role is to provide user-defined built-in atoms. It 
corresponds to the built-in atom concept of SWRL. 

Terms are the basic constituents of atoms. As well as UML, the R2ML language 
distinguishes between object terms (Figure 7) and data terms (see Figure 8). An ObjectTerm is 
an ObjectVariable, an Object, or an object function term, which can be of two different types: 
1. An ObjectOperationTerm is formed with the help of a contextArgument, a user-defined 

operation, and an ordered collection of arguments. This term can be mapped to an OCL 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 7 / 19 

FeatureCallExp by calling an object valued operation in the context of a specific object 
described by the contextArgument. 

2. The RoleFunctionTerm corresponds to a functional association end (of a binary association) 
in a UML class model. 

 

 
Figure 7. Object Terms 

 

 
Figure 8. Data Terms 

 
Objects in R2ML are the same artifacts like in UML. They also correspond to the 

Individual concept of OWL. Variables are provided in the form of ObjectVariable (i.e. 
variables that can be only instantiated by objects) and DataVariable (i.e. variables that can be 
only instantiated by data literals). 

The concept of data value in R2ML is related to the RDF concept of data literal. As well as 
RDF, R2ML distinguishes between plain and typed literals (see DataLiteral and its subclasses 
in Figure 8). They also correspond to the OCL concept of LiteralExp. 

A DataTerm (Figure 8) is either a data DataVariable, a DataLiteral, or a data function term, 
which can be of three different types: 
1. A DatatypeFunctionTerm formed with the help of a user-defined DatatypeFunction and a 

nonempty, ordered collection of dataArguments. 
2. An AttributeFunctionTerm formed with the help of a contextArgument and a user-defined 

Attribute. 



 
 
 ECEASST 

8 / 19 Volume 5 (2006) 

3. A DataOperationTerm formed with the help of a contextArgument, a user-defined operation 
that takes as arguments an ordered collection of terms. 
All of them are useful for the representation of OCL expressions, for example, in 

FeatureCallExp involving data valued operations. 
 

4 Transforming OWL/SWRL to R2ML  
In this section, we explain the transformation steps undertaken to transform OWL/SWRL rules 
into R2ML. In a nutshell, this mapping consists of two transformations. The first one is from 
OWL/SWRL rules represented in the OWL/SWRL XML format [HEP03] into the models 
compliant to the RDM (Rule Definition Metamodel) [BH06]. Second, such RDM-based 
models are transformed into R2ML models, which are compliant to the R2ML metamodel and 
this represents the core of the transformation between the OWL/SWRL and R2ML. 

The rationale for introducing one more metamodel, i.e. RDM, is that it represents an 
abstract syntax of the SWRL (with OWL) language in the MOF technical space. As well as 
SWRL is based on OWL, RDM is also relies on the most recent ODM specification [ODM06]. 
However, OWL/SWRL is usually represented and used in the XML concrete syntax that is a 
combination of the OWL XML Presentation Syntax [HEP03] and the SWRL XML concrete 
syntax [HPB*04], i.e. in the XML technical space. However, the RDM metamodel is located 
in the MOF technical space. To develop transformations between these two rule 
representations, we should put them into the same technical space. One alternative is to 
develop transformations in the XML technical space by using XSTL. However, the present 
practice has demonstrated that the use of XSLT as a solution is hard to maintain [FSS03] 
[JG05], since small modifications in the input and output XML formats can completely 
invalidate the present XSLT transformation. This is especially amplified when transforming 
highly verbose XML formats such as XMI. On the other hand, we can perform this 
transformation in the MOF technical space by using model transformation languages such as 
ATL [ATL06] that are easier to maintain and have better tools for managing MOF-based 
models. This approach has another important benefit, namely, MOF-based models can 
automatically be transformed into XMI. We decide to develop the solution in the MOF 
technical space by using the ATL transformation language. The transformation process 
consists of three steps as follows. Speaking in terms of ATL, the first step is injection of the 
SWRL XML files into models conforming to the XML metamodel (Figure 9). The second step 
is to create RDM models from XML models, and this process is shown in the right part of 
Figure 9 . The third step is transforming such RDM models into R2ML models in the MOF 
technical space (i.e. the core transformation of the abstract syntax). 

Step 1. This step consists of injecting OWL/SWRL rules from the XML technical space 
into the MOF technical space. Such a process is shown in detail for R2ML XML and the 
R2ML metamodel in [MGG*06]. This step means that we have to represent OWL/SWRL 
XML documents (Rules.xml from Figure 9) into the form compliant to MOF. We use the 
XML injector that transforms R2ML XML documents into the models conforming to the 
MOF-based XML metamodel that defines XML elements such as XML Node, Element, and 
Attribute. This XML injector is distributed as a tool along with the ATL engine. The result of 
this injection is an XML model that can be represented in the XML XMI format, which can be 
later used as the input for the ATL transformation. We start our transformation process from 
the SWRL rule defined in Section 2 and shown in the OWL/SWRL XML concrete syntax ( 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 9 / 19 

Figure 2). Figure 10 shows the XML model which is injected from the SWRL given in  
Figure 2. 
 

 
Figure 9. The first and second steps in the transformation scenario: the OWL/SWRL XML 

format into the instances of the RDM metamodel 
 

<XML.Element xmi.id = 'a8' name = 'swrlx:individualPropertyAtom'  
 value = ''> 
   <XML.Element.children> 
      <XML.Attribute xmi.id = 'a9' name = 'swrlx:property'  
       value = 'hasUncle'/> 
      <XML.Element xmi.id = 'a10' name = 'ruleml:var' value = ''> 
         <XML.Element.children> 
            <XML.Text xmi.id = 'a11' name = '#text' value = 'x1'/>
         </XML.Element.children> 
      </XML.Element> 
      <XML.Element xmi.id = 'a12' name = 'ruleml:var' value = ''> 
         <XML.Element.children> 
            <XML.Text xmi.id = 'a13' name = '#text' value = 'x3'/>
         </XML.Element.children> 
      </XML.Element> 
   </XML.Element.children> 
</XML.Element>  

Figure 10. The IndividualPropertyAtom from  
Figure 2 as an instance of the XML metamodel in its XMI format 

 
Step 2. In this step, we transform the XML model (Rules XML from Figure 9) into the 

RDM-compliant model (Rules RDM from Figure 9). This transformation is done by using the 
ATL transformation named XML2RDM.atl. The output RDM model (Rules RDM) conforms to 
the RDM metamodel. An excerpt of the RDM model for the rule from  

Figure 2 is shown in Figure 11. It is important to say that we can not exploit the 
standardized QVT transformation between UML and OWL from [ODM06], since our input 
rules are a combination of SWRL and OWL (i.e., RDM nad ODM).  

In the XML2RDM.atl transformation, source elements from the XML metamodel are 
transformed into target elements of the RDM metamodel. The XML2RDM.atl transformation 
is done on the M1 level (i.e. the model level). This transformation uses the information about 
elements from the M2 (metamodel) level, i.e., metamodels defined on the M2 level (i.e., the 
XML and RDM metamodels) in order to provide transformations of models on the level M1. It 
is important to point out that M1 models (both source and target ones) must be conformant to 
their M2 metamodels. This principle is well-know as metamodel-driven model transformations 
[Béz01].  



 
 
 ECEASST 

10 / 19 Volume 5 (2006) 

<XMI xmi.version = '1.2' timestamp = 'Wed Jul 19 23:01:46 CEST 2006'> 
  <!--...--> 
    <RDM.IndividualVariable xmi.id = 'a1' name = 'x2'/> 
    <RDM.IndividualVariable xmi.id = 'a2' name = 'x3'/> 
    <RDM.IndividualVariable xmi.id = 'a3' name = 'x1'/> 
    <RDM.Antecedent xmi.id = 'a4'> 
      <RDM.Antecedent.containsAtom> 
        <RDM.Atom xmi.idref = 'a5'/> 
        <RDM.Atom xmi.idref = 'a6'/> 
      </RDM.Antecedent.containsAtom> 
    </RDM.Antecedent> 
    <RDM.Consequent xmi.id = 'a7'> 
      <RDM.Consequent.containsAtom> 
        <RDM.Atom xmi.idref = 'a8'/> 
      </RDM.Consequent.containsAtom> 
    </RDM.Consequent> 
    <RDM.Atom xmi.id = 'a5' name = 'IndividualPropertyAtom'> 
      <!--...--> 
    </RDM.Atom> 
   <!--...--> 
    <RDM.ODM.ObjectProperty xmi.id = 'a9' name = 'hasBrother' deprecated = 'false' 

functional = 'false' transitive = 'false' symmetric = 'false'  
inverseFunctional = 'false' 

      complex = 'false'/> 
   <!--...--> 
    <RDM.ODM.Rule xmi.id = 'a13'> 
       <RDM.ODM.Rule.hasConsequent> 
          <RDM.Consequent xmi.idref = 'a7'/> 
       </RDM.ODM.Rule.hasConsequent> 
       <RDM.ODM.Rule.hasAntecedent> 
          <RDM.Antecedent xmi.idref = 'a4'/> 
       </RDM.ODM.Rule.hasAntecedent> 
     </RDM.ODM.Rule> 
  </XMI.content> 
</XMI>  
Figure 11. The RDM XMI representation of the rule shown in  

Figure 2 
 

Step 3. The last step in this transformation process is the most important transformation 
where we transforming RDM model to R2ML model (Figure 12). This means that this step 
represents the transformation of the OWL/SWRL abstract syntax into the R2ML abstract 
syntax. 

 

 
Figure 12. The transformation of the models compliant to the RDM metamodel into the 

models compliant to the R2ML metamodel 
 

This transformation step is fully based on the conceptual mappings between the elements of 
the RDM and R2ML metamodel.  In Table 1, we give an excerpt of mappings between the 
SWRL XML Schema, XML metamodel, RDM metamodel and R2ML metamodel. Due to the 
size limitation for this paper, we selected a few characteristic examples of mapping rules. The 
current mapping specification contains 26 rules. 

 
 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 11 / 19 

Table 1. An excerpt of mappings between the OWL/SWRL XML schema, XML metamodel, 
RDM metamodel, and the R2ML metamodel 

OWL/SWRL XML metamodel RDM metamodel 
R2ML 

metamodel 

individualPropertyAtom 
Element name = 

'swrlx:individualProperty 
Atom' 

Atom 
Universally 
Quantified 
Formula 

OneOf 
Element name = 

'owlx:OneOf' 
EnumeratedClass Disjunction 

var Element name = 'ruleml:var' IndividualVariable ObjectVariable 

sameIndividualAtom 
Element name =  

'swrlx:sameIndividualAtom' 
Atom EqualityAtom 

maxcardinality 
Element name =  

'owlx:maxcardinality' 
MaxCardinality 

Restriction 
AtMostQuantified

Formula 
 

For XML Schema complex types, an instance of the XML metamodel element is created 
through the XML injection described in Step 1 above. Such an XML element is then 
transformed into an instance of the RDM metamodel by using ATL, and then to instances of 
R2ML metamodel. In the second step (the XML2RDM transformation), we created some 
relatively complex helpers, although this transformation is rather straightforward. One 
significantly problem that we had to deal with in this transformation was the creation of unique 
elements in the output RDM model from multiple elements in the input XML model that 
referred  to the same element (e.g., the Variable element). When the XML ruleml:var element 
is transformed to the RDM InvididualVariable element, we use the helper getDefaultVariable. 
The helper always returns the same input ruleml:var element with the given name, because we 
always want to transform it uniquely to the same output element. When the creation of this 
variable is called for the first time, the output IndividualVariable is created, but every other 
time when it is called, we just got a reference to the already created IndividualVariable. The 
helper operation getDefaultVariable first need to find in which rule the input variable is 
located, so that we can have multiple rules in the input file. Finding rules with the ruleml:var 
element is done by the ATL getRuleForElement helper, which tests every input rule element 
(e.g. his sub elements) whether they have the input variable located somewhere in their child 
elements. When a rule is located, we always get the first variable with the given name for 
children elements of that rule. This is done by the ATL allSubElements attribute helper, which 
recursivelly goes to the model graph and returns all sub elements (flatten) for the called 
element.  

The actual transformation between the RDM metamodel and elements of the R2ML 
metamodel are defined as a sequence of rules in the ATL language (RDM2R2ML.atl in Figure 
12). These rules use additional helpers in defining mappings. Each rule in the ATL has one 
input element (i.e., an instance of a metaclass from a MOF based metamodel) and one or more 
output elements. ATL in fact instantiate the R2ML metamodel (M2 level), i.e. it creates R2ML 
models. In this ATL transformation, we use so-called ATL matched rules. A matched rule 
matches a given type of a source model element, and generates one or more kinds of target 
model elements. Figure 13 gives an example of a matched rule which is, in fact, an excerpt of 
the RDM2R2ML.atl transformation for the IndividualPropertyAtom class of the RDM 
metamodel.  



 
 
 ECEASST 

12 / 19 Volume 5 (2006) 

rule IndividualPropertyAtom2UniversallyQuantifiedFormula { 
 from i : RDM!Atom ( 
   i.name = 'IndividualPropertyAtom' 

) 
 to 
  o : R2ML!UniversallyQuantifiedFormula ( 
          variables <- i.terms, 
          formula <- refpropat   
  
   ), 
  refpropat : R2ML!ReferencePropertyAtom ( 
          referenceProperty <- refprop, 
          subject <- i.terms->first(), 
          object <- i.terms->last() 
   ), 
  refprop : R2ML!ReferenceProperty ( 
          refPropertyID <- i.hasPredicateSymbol.name 
   ) 
}  

Figure 13. An excerpt of the ATL transformation: A matched rule that transforms an RDM 
IndividualPropertyAtom to an R2ML UniversallyQuantifiedFormula 

 
As an illustration why we need to use ATL helpers, let us consider the example of 

transforming RDM ClassAtom with Class as a predicate symbol to R2ML 
ObjectClassificationAtom. However, when transforming an RDM Class, we do not have a 
direct reference to the RDM ClassAtom. Since more than one RDM ClassAtom may refer to 
the same RDM Class, we have to find the exact ClassAtom. To solve this situation, we use an 
ATL helper that returns a reference to the needed ClassAtom. 

For example, the R2ML model shown in Figure 14 is the output of the RDM to R2ML 
transformation for the RDM model (IndividualPropertAtom) given in Figure 11. This is 
actually the end of the transformation between abstract syntax of OWL/SWRL and R2ML. 

 
<R2ML> 
<!--...--> 
<R2ML.Formulas.UniversallyQuantifiedFormula xmi.id = 'a12'> 
  <R2ML.Formulas.QuantifiedFormula.formula> 
    <R2ML.RelAt.ReferencePropertyAtom xmi.id = 'a13'  
     isNegated = 'false'> 
      <R2ML.RelAt.ReferencePropertyAtom.object> 
        <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a11'/> 
      </R2ML.RelAt.ReferencePropertyAtom.object> 
      <R2ML.RelAt.ReferencePropertyAtom.referenceProperty> 
        <R2ML.BasContVoc.ReferenceProperty xmi.idref = 'a14'/>
      </R2ML.RelAt.ReferencePropertyAtom.referenceProperty> 
      <R2ML.RelAt.ReferencePropertyAtom.subject> 
        <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a6'/> 
      </R2ML.RelAt.ReferencePropertyAtom.subject> 
     </R2ML.RelAt.ReferencePropertyAtom> 
   </R2ML.Formulas.QuantifiedFormula.formula> 
   <R2ML.Formulas.QuantifiedFormula.variables> 
     <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a6'/> 
     <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a11'/> 
   </R2ML.Formulas.QuantifiedFormula.variables> 
</R2ML.Formulas.UniversallyQuantifiedFormula> 
<!--...--> 

</R2ML>  
Figure 14. An excerpt of the R2ML XMI representation of the RDM rule shown in Figure 11 

 
Note also that an additional step (besides the three ones explained in this section) can be to 

transform rules from R2ML into the R2ML XML concrete syntax. For example, the R2ML 
model shown in Figure 14 can now be transformed to elements of the XML metamodel 
(R2ML2XML), and then automatically transformed to the R2ML XML concrete syntax by 
using the XML extractor that is included the ATL engine. The result of the XML extraction of 
the R2ML model (from Figure 14) is shown in Figure 15. 
 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 13 / 19 

<r2ml:Implication> 
  <r2ml:consequent> 
    <r2ml:UniversallyQuantifiedFormula> 
      <r2ml:ObjectVariable r2ml:name="x1"/> 
      <r2ml:ObjectVariable r2ml:name="x3"/> 
      <r2ml:ReferencePropertyAtom r2ml:refPropertyID="hasUncle">
        <r2ml:subject> 
          <r2ml:ObjectVariable r2ml:name="x1"/> 
        </r2ml:subject> 
        <r2ml:object> 
          <r2ml:ObjectVariable r2ml:name="x3"/> 
        </r2ml:object> 
      </r2ml:ReferencePropertyAtom> 
    </r2ml:UniversallyQuantifiedFormula> 
  </r2ml:consequent> 
  <!--...--> 
</r2ml:Implication>  

Figure 15. An excerpt of the R2ML XML representation of the SWRL rule shown in  
Figure 2 

 

5 Mapping R2ML Integrity constraints to OCL 
In previous section, we have shown how one can get a valid R2ML model from any RDM 
model. The final objective of this section is to explain the transformation of R2ML models 
(rules) into OCL models [OCL06]. To do so, we have defined mappings for transforming 
elements of the OCL metamodel into elements of the R2ML metamodel (see Figure 16). OCL 
has its own abstract and concrete syntax, and for transformation process we use its abstract 
syntax defined in the form of a MOF-based metamodel [OCL06]. Since the R2ML and OCL 
metamodels are both located in the MOF technical space and there is an metamodel for OCL 
defined in the OCL specification, the transformation by ATL is straightforward in terms of 
technological requirements, i.e. we do not have to introduce an additional metamodel like we 
have done with RDM. 

 

 
Figure 16. The transformation scenario: R2ML metamodel to and from OCL metamodel, with 

EBNF injection/extraction of OCL code 
 

Step 1. We transform an R2ML model (Rules_R2ML from Figure 16) into an OCL model 
(Rules_OCL) by using an ATL transformation named R2ML2OCL.atl. The output OCL model 
(Rules_OCL) conforms to the OCL metamodel. In Table 2, we give an excerpt of mappings 
between the R2ML metamodel and OCL metamodel on which this ATL transformation is 
based. The current version of the transformation contains 39 mapping rules. 

For element of the R2ML metamodel, an instance of the OCL metamodel is created in the 
model repository. The ATL transformation is done for classes, attributes, and references. For 
this transformation we have used integrity and derivation rules of the R2ML metamodel in its 
current version (0.3). For the R2ML model (rule) shown in Figure 14, we get an OCL model 



 
 
 ECEASST 

14 / 19 Volume 5 (2006) 

represented in the OCL XMI concrete syntax given in Figure 17. The figure shows an OCL 
iterator expression (forAll) that has Boolean as the return type, and an operation call 
expression as its source. That operation call expression then calls an operation, which has the 
set type as its return type and a class as its source. 

 
Table 2. An excerpt of mappings between the R2ML metamodel, OCL metamodel, and OCL 

code 
R2ML metamodel OCL metamodel OCL code 

Conjuction 
OperationCallExp  

   referredOperation (name =  'and') 
Operand and Operand 

Implication 
OperationCallExp 

   referredOperation (name =  'implies') 
Expression implies 

Expression 

AttributionAtom 
OperationCallExp 

  referredOperation (name =  '=') 
  PropertyCallExp (subject) 

Subject.attribute = 
value 

ObjectVariable Variable Variable name 

EqualityAtom 
OperationCallExp 

referredOperation  (name =  '=') 

Expression1 = 
Expression2 and 
Expression2 = 
Expression3, ... 

RoleFunctionTerm 
PropertyCallExp 

referredProperty (name =  'property') 
source Variable 

Variable.property 

AtMostQuantifiedFormula 
OperationCallExp 

referredOperation (name =  '<=') 
argument maxvalue 

Expression <= 
maxvalue 

 
Step 2. Because the OCL concrete syntax is located in the EBNF technical space, we need 

to get an instance of the OCL metamodel (abstract syntax) into EBNF technical space. There 
are three possible solutions to this problem. The first one is creating another transformation 
from the OCL metamodel to the ATL metamodel (which extends a modified standard OCL 
metamodel), e.g., to its query expression, and then by using the tool "Extract ATL model to 
ATL file" included in ATL, we can get the OCL code. However, the disadvantage of this 
solution is the creation of a new transformation from the OCL metamodel to the ATL 
metamodel, which is a time consuming and more general task overcoming the scope of our 
research. The second solution is to create ATL query expression on OCL metamodel elements, 
which will then generate OCL code in a file. The disadvantage of this solution is that this 
solution can not be used for all OCL metamodel elements, because it will be complex to define 
all mappings. The third solution is to use a TCS (Textual Concrete Syntax) interpreter [Jou06] 
based on the TCS syntax definition of OCL. A TCS represents a domain specific language for 
the specification of textual concrete syntaxes in MDE, and it is a part of the ATL tool suite. It 
can be used to parse text-to-model and to serialize model-to-text. The concrete syntax of OCL 
has been implemented in TCS according to the syntax specified in [OCL06]. Because of the 
specific requirements of TCS (and ANTLR 2, which TCS uses for generating parsers), we 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 15 / 19 

have needed to adapt the standard OCL metamodel, that is, we adapted its EnhancedOCL 
package. We have added the OperatorCallExp element for expressions, which uses these two 
operators:  CollectionOperationCallExp for calling operations on collections and the Iterator 
class which is a specific type of Iterator Variable. We have also added classes for every 
primitive type such as StringType and IntegerType. For defining "def" and "inv" elements of 
OCL, we have introduced the DefOclModuleElement class for "def" elements (operations, 
class OclOperation and attributes, class OclProperty) and the Invariant class for "inv" 
elements. These two types inherit the abstract class OclModuleElement. OclModuleElement 
contains the context definition of the type OclContextDefinition, while OclContextDefinition 
contains Class as the context element. The OclModule class is added as the top-most element 
in order to capture different OclModuleElement's. In the future, we will add support for these 
OCL constructs: derive, postcondition, and precondition. 
 

<OCL.EssentialOCL.IteratorExp xmi.id = 'a11' name = 'forAll'> 
   <UML.TypedElement.type> 
        <OCL.EssentialOCL.BooleanType xmi.id = 'a4'/> 
   </UML.TypedElement.type> 
   <OCL.EssentialOCL.CallExp.source> 
      <OCL.EssentialOCL.OperationCallExp xmi.id = 'a18'> 

    <UML.TypedElement.type> 
             <OCL.EssentialOCL.SetType xmi.idref = 'a19'/> 

    </UML.TypedElement.type> 
    <OCL.EssentialOCL.CallExp.source> 

       <UML.Class xmi.idref = 'a17'/> 
    </OCL.EssentialOCL.CallExp.source> 
    <OCL.EssentialOCL.OperationCallExp.referredOperation>
      <UML.Operation xmi.idref = 'a25'/> 

               <!--...--> 
     <OCL.EssentialOCL.OperationCallExp.referredOperation>
      </OCL.EssentialOCL.OperationCallExp> 
   </OCL.EssentialOCL.CallExp.source> 
   <!--...--> 
</OCL.EssentialOCL.IteratorExp>  

Figure 17. An excerpt of the OCL XMI representation of the R2ML model shown in Figure 14 
 

Figure 18 shows the mapping from the OCL metamodel (in the KM3 format [JB06]) to its 
corresponding TCS. Using the TCS interpreter and defined mapping rules (as in Figure 18 for 
element Class), we have done an EBNF extraction from the OCL model to the OCL code. Our 
starting example shown in Figure 1 is actually the OCL code that represents the OCL model 
from Figure 17. This OCL code is also the transformed SWRL rule from Figure 2.  

In the opposite direction, from OCL to R2ML, for Step 1 (the ENBF injection), we also 
have two solutions. The first one is to use the OCL Parser from the Dresden OCL Toolkit 
[DOT06] for parsing OCL code and creating OCL model from it. This solution needs a 
predefined UML model (in the UML XMI format) as the input on which OCL code is defined, 
and this is not what we want, because for the input we want only OCL code without the UML 
model on which it is defined. The second solution is by using TCS for creating model from 
code. Since we used this solution for generating code from model and it supports generation of 
OCL code without UML model, we decided to us it, for this direction.  
The generation of the ANTLR-based OCL Parser by using TCS is done by following steps: 
1. By using ATL’s EBNF Injector class and the TCS metamodel, we get a TCS model (an 

instance of the TCS metamodel) from the OCL textual concrete syntax. 
2. The TCS2ANTLR transformation is used to transform to the TCS-based model (an instance 

of the TCS metamodel) for the OCL textual concrete syntax into a model compliant to the 
ANTLR metamodel.  



 
 
 ECEASST 

16 / 19 Volume 5 (2006) 

3. The ANTLR model which is transformed from TCS model for the OCL textual concrete 
syntax (obtained in the previous step) along with the TCS definition of ANTLR 
(ANTLR.tcs) and ATL’s EBNF Extractor is used to generate a grammar file of OCL (i.e., 
OCL.g). 

4. Finally, ANTLR is called to create OCLLexer and OCLParser classes (i.e., lexer and parser 
of for parsing OCL text-based code) from the generated grammar file.  

 
When the OCL model is generated form the OCL code, we use OCL2R2ML.atl 

transformation for transforming this model into the corresponding R2ML model (as shown in 
Figure 16). 
 

package OCL { 
  //... 
     class Class extends Type { 

     reference ownedOperation[*] : Operation; 
          reference ownedAttribute[*] : Property; 
          attribute isAbstract : Boolean; 
     } 
  //... 
} 

 

syntax OCL { 
   //... 
      template Class context 
           : (isAbstract ? "abstract") "class" name 
                "{" 
      ownedOperation ownedAttribute 
                "}" 
      ; 
   //... 
}  

a) OCL metamodel b) OCL Textual Concrete Syntax 
 
Figure 18. The transformation of elements of the OCL metamodel into its corresponding OCL 

textual concrete syntax (TCS) 
 

6 Conclusions  
The presented approach to interchanging OWL/SWRL and UML/OCL is based on the pivotal 
(R2ML) metamodel that addresses the complexity of mappings between two languages, which 
contain many diverse concepts. In this paper, we have not focused only on mapping rules 
between OWL/SWRL and R2ML and between UML/OCL and R2ML [WGL*06], but we 
have also described the whole transformation process based on the use of the ATL model 
transformation language and several other XML Schemas and MOF metamodels. Besides 
bridging two OWL/SWRL and UML/OCL, the use of R2ML allows us to reuse (i.e., apply on 
OWL/SWRL and UML/OCL) the previously implemented transformations between R2ML 
and R2ML XML concrete syntax, F-Logic, Jess, and RuleML, thus further  interchanging 
OWL/SWRL and UML/OCL. 

In this paper, we have shown how to transform rules between SWRL and OCL by using 
R2ML as an intermediary general rule markup language. To do so, we have created a number 
of transformations. The first group of transformations is the transformations between the XML 
and MOF technical spaces, which are done by using the XML Injector and Extractor of the 
ATL model transformation tool suite. Namely, we need to proved mappings between MOF-
based and XML-based representations of the following languages: the SWRL XML concrete 
syntax and the RDM (XML2RDM and RDM2XML) as a MOF-based metamodel of SWRL; 
and the R2ML XML Schema and the R2ML MOF-based metamodel (XML2R2ML and 
R2ML2XML). The second group is the transformations between the RDM, R2ML and OCL 
metamodels (i.e., the following transformations RDM2R2ML, R2ML2RDM, R2ML2OCL and 
OCL2R2ML). In the current implementation, we support the translation between OCL 
invariants and R2ML integrity rules. The third group of transformations is done by using the 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 17 / 19 

EBNF Injector and Extractor of the ATL tools suite. We have used this in order provide 
mappings between the EBNF technical space and the MOF technical space, that is, to 
transform between the OCL concrete syntax to the OCL metamodel. The current version of 
transformations  supports OCL invariant's and def's. The practical implementation is is done 
by using the OCL Textual Concrete Syntax and the subsequently-generated OCL Parser and 
Lexer.  

The presented research is a next step towards the further reconciliation of MDA and 
Semantic Web languages, and hence continues the work established by the OMG’s ODM 
specification that only addressed mappings between OWL and UML, while we extended it on 
the accompanying rule languages, i.e., SWRL and OCL. 

We are now in the phase of the evolution of the results of the translation between OCL and 
SWRL via the R2ML language. In our future publications, we are going to report on 
transformation implementation in more detail and evaluation results. We also plan to support 
the translation between the UML parts related to classes and the R2ML vocabulary and 
between the ODM metamodel and the R2ML vocabulary. Besides integrity rules support in the 
present transformations, we are going to support translations of derivation rules of  OCL and 
SWRL. We will also extend our rule transformation framework in order to support other 
OMG’s specification covering rules, i.e., the ones for business and production rules.  
 

Bibliography 
[ATL06] ATLAS Transformation Language (ATL), http://www.sciences.univ-

nantes.fr/lina/atl, 2006. 
 
[Béz01] J. Bézivin. From Object Composition to Model Transformation with the 

MDA, In Proc. of the 39th Int. Conf. and Exh. on Tech. of OO Lang. and Sys., 
pp. 350-355, 2001. 

 
[BH06] S. Brockmans, P. Haase. A Metamodel and UML Profile for Rule-extended 

OWL DL Ontologies - A Complete Reference, Universität Karlsruhe (TH) - 
Technical Report, 2006. 

 
[Cla78] K. L. Clark. Negation as Failure, In Gallaire, H., and Minker, J. (eds.), Logic 

and Data Bases, Plenum Press, NY, pp. 293-322, 1978. 
 
[DOT06] Dresden OCL Toolkit, Technische Unversität Dresden, Software Engineering 

Group, http://dresden-ocl.sourceforge.net, 2006. 
 
[FSS03] K. Falkovych, M. Sabou, H. Stuckenschmidt, UML for the Semantic Web: 

Transformation-based approaches, Knowledge Transformation for the 
Semantic Web, eds., Frontiers in Artificial Intelligence and Applications, vol. 
95, IOS, Amsterdam, pp. 92-106, 2003. 

 
[GDD06] D. Gašević, D. Djurić, V. Devedžić. Model Driven Architecture and Ontology 

Development, Springer, Berlin, 2006. 
 



 
 
 ECEASST 

18 / 19 Volume 5 (2006) 

[GL88] M. Gelfond, V. Lifschitz. The stable model semantics for logic programming, 
In Proc. of ICLP-88, pp. 1070-1080, 1988. 

 
[GL91] M. Gelfond, V. Lifschitz. Classical Negation in Logic Programs and 

Disjunctive Databases, New Generation Computing, vol. 9, pp. 365-385, 1991. 
 
[HEP03] M. Hori, J. Euzenat, F. P. Patel-Schneider. OWL Web Ontology Language 

XML Presentation Syntax, W3C Note, 2003. 
 
[HPB*04] I. Horrocks, P. F. Patel-Scheider, H. Boley, S. Tabet, B. Grosof, M. Dean. 

SWRL: A Semantic Web Rule Language Combining OWL and RuleML, 
W3C Member Submission, http://www.w3.org/Submission/SWRL/, 2004. 

 
[JB06] F. Jouault, J. Bézivin. KM3: a DSL for Metamodel Specification, In 

Proceedings of 8th IFIP International Conference on Formal Methods for 
Open Object-Based Distributed Systems, Bologna, Italy, pp. 171-185, 2006. 

 
[JG05] J. Jovanović, D. Gašević. XML/XSLT-Based Knowledge Sharing, Expert 

Systems with Applications, Vol. 29, No. 3, 2005, pp. 535-553. 
 
[Jou06] F. Jouault. TCS: Textual Concrete Syntax, In Proceedings of the 2nd 

AMMA/ATL Workshop ATLAS group (INRIA & LINA), Nantes, France, 2006. 
 
[KC04] G. Klyne, J. Carroll. Resource Description Framework (RDF): Concepts and 

Abstract Syntax, W3C Rec. 10 February 2004, http://www.w3.org/TR/rdf-
concepts/. 

 
[MGG*06] M. Milanović, D. Gašević, A. Giurca, G. Wagner, S. Lukichev, V. Devedžić. 

Validating Rule Language Metamodels with the Help of Model  
Transformations,” 2nd Int. Conf. of Rules and Rule Markup Languages for the 
Semantic Web, Athens, USA, 2006 (submitted). 

 
[OCL06] OMG OCL. Object Constraint Language, OMG Specification, Version 2.0, 

formal/06-05-01, http://www.omg.org/docs/formal/06-05-01.pdf, 2006. 
 
[ODM06] OMG ODM. Ontology Definition Metamodel, 6th Revised Submission, 2006. 
 
[PSH04] P. F. Patel-Schneider, I. Horrocks. OWL Web Ontology Language Semantic 

and Abstract Syntax, http://www.w3.org/2004/OWL, 2004. 
 
[R2ML06] R2ML. The REWERSE I1 Rule Language, http://oxygen.informatik.tu-

cottbus.de/rewerse-i1/?q=node/6, 2006. 
 
[RIF06]  Rule Interchange Format (RIF) use cases and requirements, W3C Working 

Draft, http://www.w3.org/TR/rif-ucr/, 2006. 
 



 
 
Towards Sharing Rules Between OWL/SWRL and UML/OCL 

Proc. OCLApps 2006 19 / 19 

[UML06] OMG, Unified Modeling Language (UML) 2.0, Docs. formal/05-07-04 & 
formal/05-07-05, 2006. 

 
[Wag03] G. Wagner. Web Rules Need Two Kind of Negations, In Proc. of the 

Workshop on Principles and Practice of Semantic Web Reasoning, pp. 33-50, 
2003. 

 
[WGL05] G. Wagner, A. Giurca, S. Lukichev. R2ML: A General Approach for 

Marking-up Rules, In Proceedings of Dagstuhl Seminar 05371, in F. Bry, F. 
Fages, M. Marchiori,H. Ohlbach (Eds.) Principles and Practices of Semantic 
Web Reasoning, http://drops.dagstuhl.de/opus/volltexte/2006/479/, 2005. 

 
[WGL*06] G. Wagner, A. Giurca, S. Lukichev, G. Antoniou, C. V. Damasio, N. E. 

Fuchs. Language Improvements and Extensions, REWERSE I1-D8 
deliverable, http://rewerse.net/deliverables.html, 2006. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


