
Electronic Communications of the EASST
Volume 5 (2006)

Proceedings of the Sixth OCL Workshop
OCL for (Meta-)Models

in Multiple Application Domains
(OCLApps 2006)

Model-Driven Constraint Engineering

Michael Wahler, Jana Koehler and Achim D. Brucker

20 pages

Guest Editors: Dan Chiorean, Birgit Demuth, Martin Gogolla, Jos Warmer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.zurich.ibm.com/~wah/
http://www.zurich.ibm.com/~koe/
http://www.brucker.ch/
http://www.easst.org/eceasst/

ECEASST

Model-Driven Constraint Engineering

Michael Wahler1, Jana Koehler2 and Achim D. Brucker3

1 wah@zurich.ibm.com, 2 koe@zurich.ibm.com
IBM Zurich Research Laboratory

Saeumerstrasse 4, 8803 Rueschlikon, Switzerland

3 brucker@inf.ethz.ch
Information Security, ETH Zurich

8092 Zurich, Switzerland

Abstract: Precise specification of meta-models is an important prerequisite for the
successful application of a model-driven engineering (MDE) process. One means
of precise specification are textual constraints. However, the task of constraint de-
velopment is time-consuming and error-prone if done manually.

In this paper, we present both a methodology and a tool for developing constraints
in a systematic way that can be integrated into a CASE tool. Thus, we provide a
semi-automated means for integrating constraints into the MDE process.

Our approach is based on an extensible library of generic constraint patterns. Con-
straint patterns can be combined to create complex constraints and easily parame-
terized in a CASE tool. Moreover, we show how these parameterized patterns are
transformed into platform-independent or platform-specific constraints by a model
transformation.

Keywords: constraint, pattern, model-driven engineering, UML, OCL

1 Introduction

In model-driven engineering (MDE), a model defines the building blocks from which instances
can be constructed. The main building blocks in the Meta-Object Facility (MOF, [Obj02]) are
classes, their structural features and associations between the classes. Models are usually speci-
fied with a concrete graphical syntax, which allows for rough specification only.

The set of possible instances grows with the number of building blocks that are defined in the
model. In general, not all possible instances are valid with respect to the semantics of the model.
Therefore, textual constraints are used on the model to express details that are either difficult
or even impossible to express in a diagrammatic way. Adding constraints to a model usually
decreases the number of possible instances unless contradictory constraints are introduced.

Constraints stem from different sources: there may be legal restrictions that a system needs to
obey; there may be company policies that grant privileges to certain kinds of customers; there
may be technical restrictions on a system [CLW+06]; there may be security restrictions [LBD02];
and there may be facts that are implied by common sense that cannot be expressed diagrammati-
cally. For instance, hundreds of constraints are used in the specification of the Unified Modeling
Language (UML) meta-model [Obj05].

1 / 20 Volume 5 (2006)

http://www.zurich.ibm.com/~wah/
http://www.zurich.ibm.com/~koe/
http://www.brucker.ch/
mailto:wah@zurich.ibm.com
mailto:koe@zurich.ibm.com
mailto:brucker@inf.ethz.ch

Model-Driven Constraint Engineering

Whereas models were solely used for documentation and communication purposes in the past,
recent model-centric development approaches use models as first-class artifacts in the develop-
ment process. For instance, business process models can be transformed to executable code that
is run on process execution engines [HK04] or models in a domain-specific security language
are transformed to UML [BDW06]. To guarantee correctness of the execution of the generated
code, it is crucial that every model instance conforms to its defining model and satisfies its con-
straints. These validity checks can be performed automatically if the constraints are formalized.
For instance, tools exist that type-check a set of OCL (Object Constraint Language [Obj03])
constraints and validate a model against them [ÁRF03]. Alternatively, validity checks can be
implemented in a programming language, e. g., Java, using a model–access API.

Creation and maintenance of constraints are tedious tasks. In a case study we performed in a
business modeling environment, about 80 constraints were necessary to guarantee the executabil-
ity of a behavioral model for business process monitoring. All constraints are invariants on the
model elements and restrict the set of allowed model instances to a set that is executable on a
process execution engine. Whereas some of these constraints were rather simple, many complex
constraints needed to be formalized, which turned out to be a time-consuming and error-prone
task. The formalization resulted in approximately 500 lines of OCL code, which by nature are
unlikely to be bug-free. Furthermore, the meaning of formal constraints is often misunderstood
by novice users [Cab06].

Even if the constraint expressions and the validation code do not contain any errors, they need
to be adapted once the model changes. This usually results in additional time-consuming coding
and debugging phases, especially in refactorings [CW04, MB05] where models undergo frequent
changes and the attached constraints need to be kept consistent with new versions of the model.

Our contribution to solving the problem of constraint development consists of four parts.
Firstly, we introduce the notion of computation-independent constraint patterns and show how to
transform them into platform-independent or platform-specific constraints. Secondly, we intro-
duce a library of constraint patterns, separate the patterns into atomic and composite patterns, and
add a structure to them to enhance their expressiveness and usability. Thirdly, we provide meta-
constraints that restrict the parameter values of the constraint patterns, thus excluding invalid
pattern instances. Fourthly, we discuss the requirements for integrating model-driven constraint
engineering in a CASE tool and illustrate our prototype for Eclipse/UML2 [ECL].

We believe that a flexible pattern-based approach that is supported by a tool offers an important
improvement for constraint engineering. Most syntactic and semantic errors can be avoided
because the developer can generate OCL code instead of writing it by hand. Furthermore, our
solution promises to decrease development time substantially.

The paper is organized as follows: After presenting some examples motivating the use of pat-
terns in Section 2, we show how patterns can be derived by generalizing a concrete specification
in Section 3. In Section 4, we present our library of patterns together with a taxonomy for them.
To integrate patterns into an MDE process, we first present the transformation of parameterized
patterns to concrete constraints in Section 5. Then, we present how to add support for this ap-
proach to a CASE tool in Section 6. We discuss related work in Section 7 and conclude this
paper with a summary of our contributions and pointer to future work in Section 8.

Proc. OCLApps 2006 2 / 20

ECEASST

2 Example Model and Constraints

In Figure 1 we illustrate a simple model of a company that serves as example throughout the
remainder of this paper. The UML class diagram contains five classes, in which Manager and
Employee are related by a many-to-many relation. Each instance of Employee is associated with
exactly one office, whereas there are no restrictions on the number of inhabitants in one office.

Employee

name : String

salary : Integer

Manager

budget : Integer

Office

desks : Integer

NormalOffice LuxuryOffice

*

+ inhabitant1

+ office

1..*

+ worksFor

*

+ employs

Figure 1: Manager and Employee Class Diagram

Besides the defined classes and associations, instances of this model are not restricted in any
way: there may be managers without employees, and employees may have a salary of zero while
working for multiple managers. However, there are additional requirements that each company
has to comply with. We assume fictitious labor union and company IT requirements that every
work environment has to satisfy. The requirements are captured in the following constraints,
informally in English and formally as OCL expressions.

Constraint 1. A manager with a budget of more than 100,000 must employ at least one employee
with a salary of at least 3000.

This constraint requires that for each instance m of Manager whose budget is greater than
100,000, there exists an instance e of Employee that is related to m by the relation employs.
Furthermore, the value of the salary attribute of e must be at least 3000.
context Manager
inv: self .budget > 100000 implies self.employs−>exists(e | e.salary >= 3000)

Constraint 2. A manager may not occur twice within the management hierarchy.

This constraint prevents that a manager m is responsible for him-/herself by being related to
him-/herself directly by the worksFor relation or indirectly by other managers {mi, . . . ,m j} who
work for m. Formally, a manager may not be an element of the transitive closure of the worksFor
relation. However, OCL does not provide an operator to compute the transitive closure of a
relation.

Thus, we need to define an operation closureWorksFor(S) that computes the transitive clo-
sure [Baa03] of the worksFor relation. We use the parameter S to ensure the termination of the
computation. This parameter stores the elements for which the transitive closure has been com-
puted; it is initially empty. In each step, the set S is deducted from the set of elements in the
worksFor relation. Eventually, S contains all elements in the transitive closure, and the computa-
tion terminates.

3 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

context Manager
def: closureWorksFor(S:Set(Manager)) : Set(Manager) =

worksFor−>union((worksFor − S)−>
collect (m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())

inv: not self .closureWorksFor(Set{})−>includes(self)

Constraint 3. The company may not have more than five organizational layers.

This constraint restricts the depth of the worksFor navigation path. Because a manager can
employ another manager, arbitrary hierarchy levels can be instantiated. However, Constraint 3
forbids more than five hierarchy levels.

Therefore, we define the recursive query pathDepthWorksFor(max,counter) that evaluates if
the worksFor relation adheres to the maximum path depth. This query has two parameters, max
and counter, where max is set to the desired maximum path depth minus 1 and counter is initial-
ized with 0. The query terminates with false if the value of counter is greater than the value of
max, i.e., the maximum path depth has been exceeded. Otherwise, the counter is increased and
the query recursively evaluated on all elements that are related by worksFor.

context Manager
def: pathDepthWorksFor(max:Integer, counter:Integer): Boolean =

if (counter > max or counter < 0 or max < 0) then false
else if (self .worksFor−>isEmpty()) then true

else self .worksFor−>forAll(m:Manager|m.pathDepthWorksFor(max, counter+1))
endif

endif
inv: self .pathDepthWorksFor(4,0)

3 Deriving Constraint Patterns

Constraint patterns can be identified by analyzing existing constraints for recurring expressions
and abstracting from them. In the following, we use the constraints from Section 2 to illus-
trate how patterns are derived from concrete constraints. Constraint 1 is an implication and thus
consists of two parts, a premise and a conclusion. From an abstract point of view, the premise re-
stricts the value of an attribute to a constant. In the conclusion, the existence of a certain instance
related to the context object is required, and there is another value restriction on the attribute
salary of the related instance. Thus, we can identify the patterns Exists and AttributeValueRe-
striction, corresponding to existential quantification and value restriction respectively.

From Constraint 2, we can derive a pattern CyclicDependency that identifies cyclic navigation
paths in model instances. Finally, Constraint 3 can generally be seen as a constraint that restricts
the maximum length of a navigation path from which we derive the PathDepthRestriction pattern.

In general, a constraint pattern is a higher-order function that maps a set of parameters to a
constraint. The semantics of a constraint pattern can be provided in any language, e. g., param-
eterized OCL templates such as in [AT06]. This has the advantage that an OCL constraint can
simply be instantiated from such a pattern by providing values for the pattern parameters.

In our solution, which we call model-driven constraint engineering, we follow the Model
Driven Architecture (MDA) approach [KWB03], which comprises models at different levels

Proc. OCLApps 2006 4 / 20

ECEASST

of abstraction. MDA is an MDE variant defined by the Object Management Group, and we
use MDA and MDE as synonyms in the remainder of this paper. We consider a constraint
pattern a computation-independent model (CIM) of a constraint, because no knowledge of a
formal constraint language is required to apply a pattern as long as the informal semantics of the
pattern is understood. Such a CIM constraint can be transformed into a platform-independent or
platform-specific model (PIM/PSM) by a model transformation.

Following MDA, the (formal) semantics of a pattern is defined within the transformations.
Therefore, we define two transformations for the CyclicDependency pattern that generate an OCL
expression and Java code. First, we need to define a signature for the pattern to specify the param-
eters and their types. The only parameter for this pattern is an OCL navigation expression, which
is a sequence of properties. Thus, the signature is CyclicDependency(navigation:Sequence
(Property)).

The transformations for this pattern are simple template–processing functions that replace
the placeholders for the parameters with concrete values. The OCL template for the CyclicDe-
pendency pattern is self .closure<navigation>(Set{})−>includes(self), in which we assume the
existence of a template function closure<navigation>().

As mentioned, different target platforms can be used instead of generating OCL code. For
instance, a template for the transformation to Java validation code can be defined as follows.

boolean validateCyclicDependency(List navigation) {
Set s = this .closure(navigation, new Set());

if (s.includes(self))
return true;
else return false ;

}

A pattern can be instantiated by providing values for its parameters. However, not all pattern
instantiations are meaningful. For instance, the navigation path that is used to parameterize the
CyclicDependency pattern needs to be reflexive. To exclude meaningless parameter values such
as negative values for multiplicity bounds, we define meta-constraints for each constraint pattern.
These meta-constraints are usually very simple OCL expressions. For instance, the following
meta-constraint ensures that the navigation path that is used to parameterize the CyclicDepen-
dency pattern is reflexive.

self .class.<navigation>.class = self .class

4 A Taxonomy of Structured Constraint Patterns

Although the constraint pattern approach as it has previously been introduced [AT06, CGQ+06,
MN05] reduces both the development time and error rate for model constraints, it has one impor-
tant restriction: As each pattern represents a subset of all possible constraint expressions, there
will be many constraints that are not expressible in terms of existing constraint patterns. This
holds even if an extensive pattern library is used.

Therefore, we introduce the notion of structured constraint patterns, which adds a high degree
of expressiveness to the constraint pattern approach by two measures. Firstly, we introduce the

5 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

logical concepts of implication and negation into the pattern model, which allows a user to create
complex constraints from existing patterns. Secondly, we divide constraint patterns into atomic
and composite patterns. The set of atomic patterns represents recurring restrictions that we have
identified, and it is extensible by the user. The composite patterns are recursively constructed
from atomic patterns and represent higher-order concepts such as quantification.

4.1 Adding Logical Structure to Constraint Patterns

The core of our approach is the class StructuredConstraint, which is a specialization of the UML
meta-class Constraint. This class contains the concepts of negation and implication, allowing
instances of each pattern to be inverted and logically combined.

StructuredConstraint

negated : Boolean

AtomicConstraint CompositeConstraint

properties : Constraint [*]

Constraint

constrainedElement : Element [*] *

- assumption

Figure 2: UML Class Diagram of Structured Constraint Concept

The concept of logical implication is implemented as shown in Figure 2. Each structured
constraint c can have a finite set A of assumptions that can be any kind of constraint, which is
illustrated by the association assumption from StructuredConstraint to Constraint. This allows us
to use either arbitrary constraints (e. g., in OCL) or structured pattern instances as assumptions
for constraints. The semantics of the assumption relation is defined as follows: Let c be an
instance of a structured constraint and A be a finite set of constraints that is related to c with
the assumption relation. Then the conjunction of all constraints in A implies c. The concept of
logical negation is represented by the attribute negated of the class StructuredConstraint.

Figure 2 also introduces the concepts of AtomicConstraint and CompositeConstraint, which
are abstract subclasses of StructuredConstraint. An example for this concept of structured
constraints is Constraint 1 from Section 2. This constraint consists of three parts. The first
part is the assumption self .budget > 100000, the second part the existential quantification
self .employs−>exists(e | . . .), and the third part the properties of the quantification, e.salary
> 3000. We consider the expressions in the assumption and the quantification property as atomic
constraints, whereas we consider the quantification itself as a composite constraint. In the fol-
lowing, we elaborate on the concepts of atomic and composite constraint patterns.

4.2 Atomic Constraint Patterns

In this section, we present an extensible library of atomic constraint patterns. The idea of atomic
constraint patterns is to identify a relevant set of atomic constraints that covers frequently oc-
curring fundamental restrictions on a model, e. g., restrictions on attribute values or on relations

Proc. OCLApps 2006 6 / 20

ECEASST

between objects. The patterns presented in this section originate from a case study in which we
formalized constraints for a business process monitoring model [CLW+06].

Furthermore, we relate the patterns using generalization associations. This creates a taxonomy
of patterns. This taxonomy gives a structure to the set of patterns and helps one to find the right
pattern for a specific purpose. Figure 3 illustrates the taxonomy of atomic constraint patterns
we have identified. In this figure, the patterns are represented as classes that are related with
generalization associations. The parameters of the patterns are specified as attributes, which
refer to simple types such as Integer, to UML meta-classes such as Class, and to the OCL meta-
class OclExpression.

AtomicConstraint

AssociationTypeRestriction

allowedTypes : Class [1..*]

CyclicDependency PathDepthRestriction

maxDepth : Integer

UniquePath

PathRestriction

navigation : Property [1..*]

InjectiveRelation SurjectiveRelation

RelationProperties

relation : Association

AttributeValueRestriction

operator : OclExpression

operand : OclExpression

targetAttribute : Property

MultiplicityRestriction

navigation : Property

operator : OclExpression

operand : OclExpression

ObjectInCollection

collection : OCLExpression

FiniteInstanceSet

UniqueAttributeValue

targetAttribute : Property

Figure 3: UML Class Diagram of Atomic Constraint Patterns

In the following, we further specify the patterns in Figure 3 with informal and formal seman-
tics. Whereas we use English for the informal semantics, we define the formal semantics in the
form of OCL templates. These templates will later be the basis for the model transformation that
generates OCL constraints from pattern instances. For each constraint pattern, we also define
meta-constraints that ensure the well-formedness of pattern instances, as described in Section 3.

4.2.1 Attribute Value Restriction.

The AttributeValueRestriction pattern can be used to restrict the value of an attribute of a class
for all instances of the class. It is a very simple pattern and thus well-suited for introducing our
syntax for OCL templates to the reader.
AttributeValueRestriction (targetAttribute :Property,operator,term:OclExpression): Boolean
= self .< targetAttribute > <operator> <term>

There is one meta-constraint that instances of this pattern need to satisfy: the parameters
targetAttribute and term need to be of the same type.

a) targetAttribute .type = term.type

Example: The premise of Constraint 1 from Section 2—the fact that the budget of a manager
must be greater than 100,000—can be expressed using an instance of this pattern.

7 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

context Manager
inv: AttributeValueRestriction (budget, >, 100000)

4.2.2 Multiplicity Restriction.

The MultiplicityRestriction pattern restricts the multiplicity of an association. Whereas UML
class diagrams allow for constraining multiplicities to a fixed interval, this pattern allows a user to
define multiplicity restrictions that depend on properties of the model instance, e. g., an attribute
value.

MultiplicityRestriction (navigation:Sequence(Property),operator,operand:OclExpression): Boolean
= self .<navigation>−>size() <operator> <operand>

We identified two meta-constraints for this pattern. Firstly, the property navigation needs to
evaluate to a collection. Secondly, the operand must be a positive number.

a) self .<navigation>.oclIsKindOf(Collection)
b) <operand> >= 0

Example: A typical example of this pattern is the association between Office and Employee: The
number of employees in an office may not exceed the number of desks in an office.

context Office
inv: MultiplicityRestriction (inhabitant , <=, desks)

4.2.3 Object in Collection

The ObjectInCollection pattern can be used to express that the context element is in a collection
of related objects.

ObjectInCollection(navigation:Sequence(Property)): Boolean
= self .<navigation>−>includes(self)

The parameter collection for this pattern needs to evaluate to a Collection.

a) self .< collection >.oclIsKindOf(Collection)

Example: This constraint pattern can be used to express that a manager needs to work in the
same office with at least one employee, using the following pattern instance.

context Manager
inv: ObjectInCollection(employs.office. inhabitant)

4.2.4 Unique Attribute Value

The UniqueAttributeValue pattern requires that all instances of the constrained class have distinct
values for the target attribute specified. This pattern is also known as “semantic key” [AT06],
“primary identifier” [MN05] or “identifier” [CGQ+06] pattern in the literature.

UniqueAttributeValue(targetAttribute :Property): Boolean
= self . allInstances()−>isUnique(<targetAttribute>)

Proc. OCLApps 2006 8 / 20

ECEASST

The only meta-constraint that needs to be satisfied is that the specified targetAttribute belongs
to the context class.

a) targetAttribute .class = self .class

Example: Instances of the Employee class are uniquely identifiable by their name attribute.

context Employee
inv: UniqueAttributeValue(name)

4.2.5 Association Type Restriction

The AssociationTypeRestriction pattern can be used to restrict an association a that is defined
between the context class and a superclass C0. Using this pattern, it can be enforced that only
instances of certain subclasses C1, . . . ,Cn of C0, the allowedTypes, may participate in the relation.

AssociationTypeRestriction(navigation:Sequence(Property), allowedTypes:Set(Class))
= self .<navigation>−>forAll(x | <allowedTypes>−>exists(c | x.oclIsTypeOf(c)))

Again, the property navigation needs to evaluate to a collection.

a) self .<navigation>.oclIsKindOf(Collection)

Example: Our company model in Figure 1 allows employees to work in any kind of office. This
pattern can be used to enforce that managers must work in luxury offices.

context Manager
inv AssociationTypeRestriction(office ,{ LuxuryOffice})

4.2.6 Cyclic Dependency

The CyclicDependency pattern can be used to identify cycles in the instance graph of a model.
Such a cycle requires a reflexive association or navigation path in the model.

CyclicDependency(navigation:Sequence(Property))
= self .closure<navigation>(Set{})−>includes(self)

For this pattern, we assume the existence of an operation that computes the transitive closure
for each reflexive navigation. We further require that the parameter navigation denote a reflexive
association, which we capture in the following meta-constraint.

a) self .<navigation>−>forAll(x | x.class = self .class)

Example: An example instance of this pattern is Constraint 2. As this constraints forbids
the existence of a cycle, we need to use the negation feature that each pattern inherits from
StructuredConstraint, which can be textually represented as follows.

context Manager
inv: not CyclicDependency(worksFor)

9 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

4.2.7 Path Depth Restriction

The PathDepthRestriction pattern can be used to restrict the maximum path length for instances
of reflexive associations.

PathDepthRestriction(navigation:Sequence(Property), maxDepth:Integer)
= self .pathDepth<navigation>(maxDepth−1, 0)

Again, we assume the existence of a function that computes the path depth for each reflex-
ive association. Two meta-constraints need to be satisfied by instances of this pattern. Firstly,
navigation needs to be reflexive. Secondly, the value maxDepth needs to be at least one, because
of the definition of the path depth function (cf. Section 2).

a) self .<navigation>−>forAll(x | x.class = self .class)
b) maxDepth >= 1

Example: Constraint 3 is an example instance of this pattern, where the maximum length of the
employs association is restricted to 5. Using the pattern, this constraint can be defined as follows.

context Manager
inv: PathDepthRestriction(worksFor,5)

4.2.8 Unique Path

The UniquePath pattern ensures that there is not more than one path from the context element to
a related element.

UniquePath(navigation:Sequence(Property))
= self .<navigation>−>forAll(x | self .<navigation>−>count(x) = 1)

Again, the property navigation needs to evaluate to a collection.

a) self .<navigation>.oclIsKindOf(Collection)

Example: An infamous example configuration that can be excluded with this pattern was identi-
fied in [RC81] and became famous as the “Nixon diamond” in nonmonotonic reasoning and as
the “diamond of death” in object-oriented programming languages. In this configuration, four
classes A, B, C and D are in the generalization relation ≺= {(A,B),(A,C),(B,D),(C,D)}. If B
and C inherit a structural feature x from A, it is unclear whether D inherits B :: x or C :: x. Thus,
the path from a class to each superclass of its superclasses should be unique.

context Class
inv: UniquePath(superClass.superClass)

4.2.9 Injective Relation

The InjectiveRelation pattern can be used to establish the mathematical concept of an injective
relation R : X ×Y , i.e., R(x1,y)∧R(x2,y)→ x1 = x2.

InjectiveRelation (navigation:Sequence(Property))
= self .<navigation>−>size() = 1 and

self . allInstances()−>forAll (x,y | x.<navigation> = y.<navigation> implies x=y)

Again, the property navigation needs to evaluate to a collection.

Proc. OCLApps 2006 10 / 20

ECEASST

a) self .<navigation>.oclIsKindOf(Collection)

Example: An intuitive example is the constraint that no two employees may work in the same
office. This can be expressed through the following pattern instance.

context Employee
inv: InjectiveRelation (office)

4.2.10 Surjective Relation

The SurjectiveRelation pattern can be used to establish the mathematical concept of a surjective
relation R : X ×Y , i.e., (∀y ∈ Y).(∃x ∈ X).R(x,y).

SurjectiveRelation(navigation:Sequence(Property))
= self .<navigation>.allInstances()−>forAll (y |

self . allInstances()−>exists(x | x.<navigation>−>includes(y)))

Again, the property navigation needs to evaluate to a collection.

a) self .<navigation>.oclIsKindOf(Collection)

Having defined patterns for injective and surjective relations, we can deduce a pattern for bijec-
tive relations, i.e., one-to-one relations.

BijectiveRelation (navigation:Sequence(Property))
= InjectiveRelation (navigation) and SurjectiveRelation(navigation)

Surjectivity and bijectivity can also be expressed using multiplicities in the class diagram. How-
ever, these patterns become important if an association is restricted under certain assumptions
only (cf. Subsection 4.1) and not globally for all instances of a model.

4.2.11 Finite Instance Set

The FiniteInstanceSet pattern can be used to disallow an infinitely large number of instances of
a class. This is usually guaranteed because of memory bounds in real systems, but can lead to
problems when reasoning about models.

FiniteInstanceSet()
= not self . allInstances()−>size().oclIsUndefined()

Example: In our company model, we model only real–world entities such as offices or employ-
ees. Therefore, each class should be required to have a finite number of instances only.

context Employee, Office
inv: FiniteInstanceSet()

4.3 Composite Constraint Patterns

Apart from atomic constraint patterns, each of which restricts a basic property of a model, com-
posite constraints can be used to express complex properties by integrating an arbitrary number of
other constraints (either atomic or composite). Using such a divide-and-conquer approach, com-
plex constraints can be developed in a structured way by combining several simple constraints.

11 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

CompositeConstraint

properties : Constraint [*]

Exists

objects : OclExpression

ForAll

objects : OclExpression

IfThenElse

then : Constraint [1..*]

else : Constraint [*]

Figure 4: Class Diagram of Composite Constraint Patterns

So far, we have identified three composite constraint patterns, Exists, ForAll and IfThenElse,
which we illustrate in Figure 4.

Constraint 1 from Section 2 contains an example instance of the Exists pattern: for the context
element m of class Manager, there has to exist an element e that is related to m with the naviga-
tion employs. This element e must satisfy a set of constraints, the properties of the composite
constraint.

In the following, we provide a template for the Exists pattern. This pattern cannot be ex-
pressed in OCL because it quantifies over a set of predicates, which is a concept of higher-order
logic. Therefore, we use the operator

∧
to define the pattern in pseudo-OCL. When an instance

of a pattern is transformed to an OCL expression, this operator is unfolded to a sequence of
conjunctions.
Exists(properties:Set(Constraint),objects:OclExpression) =

objects−>exists(o |
∧

p∈properties p(o))

The ForAll constraint pattern is defined analogously. The IfThenElse pattern denotes an if-
then-else expression. If the context element of the constraint satisfies all properties, it also needs
to satisfy all then constraints, otherwise, it needs to satisfy all else constraints.
IfThenElse(properties, then, else:Set(Constraint)) =

if (
∧

p∈properties p(self))
then (

∧
p∈then p(self))

else (
∧

p∈else p(self)) endif

5 Transforming CIM to PIM

Having defined a library of CIM constraint patterns, we need to provide model transformations
to generate PIM or PSM constraints from the parameterized patterns. As mentioned before,
multiple transformations for different target languages can be defined.

In this section, we illustrate a transformation that generates OCL constraints from parame-
terized CIM constraint patterns. This transformation, transform_OCL(c), uses OCL templates to
generate output for a pattern c. We use pseudo code that has the same expressiveness as common
programming languages for the definition of the operations.

Three steps are necessary to transform an atomic constraint pattern. First, the code for the
assumptions is generated if there are any. Then, the OCL keyword not is inserted into the
constraint expression if the pattern attribute negated is true. Finally, the variables in the tem-
plates for the constraint patterns are replaced by concrete values from the pattern specification

Proc. OCLApps 2006 12 / 20

ECEASST

by replace_parameters(t), which is a simple string replacement and thus not further specified in
this paper. Listing 1 shows the complete transformation from CIM to PIM for an atomic pattern.

1 sub transform_OCL (c : AtomicConst ra in t) {
2 # p r i n t the assumptions of the c o n s t r a i n t
3 transform_assumptions_OCL (c) ;
4

5 # p r i n t the OCL keyword ‘ not ’ i f the c o n s t r a i n t i s negated
6 i f (c . negated) p r i n t " not " ;
7

8 # rep lace the v a r i a b l e s in the template and p r i n t c o n s t r a i n t
9 p r i n t replace_parameters (template (c)) ;

10 }

Listing 1: OCL Transformation Function for Atomic Patterns

Two operations are invoked from within transform_OCL(c). Whereas replace_parameters(t)
performs simple string replacement, transform_assumptions_OCL(c) is slightly more compli-
cated. In this operation, the set of assumptions is transformed into a conjunction of predicates,
followed by the OCL operator implies. Listing 2 shows the definition of this operation.

1 sub transform_assumptions_OCL (c : S t ruc tu redCons t ra i n t) {
2 # p r i n t the con junc t ion of assumptions
3 foreach p in c . assumption
4 p r i n t transform_OCL (p) ;
5 i f (c . assumption . hasNext ()) p r i n t " and " ;
6

7 # p r i n t the i m p l i c a t i o n opera tor i f necessary
8 i f (c . assumption . notEmpty ()) p r i n t " imp l i es " ;
9 }

Listing 2: Transformation Function for Assumptions

Our composite constraints use other constraints as properties for the elements in their object
collections. This higher-order use of constraints renders the code generation slightly more com-
plicated than for atomic constraints. In particular, the operator

∧
, representing a conjunction of

predicates in a set, needs to be transformed.

1 sub transform_OCL (c : Composi teConstra int) {
2 transform_assumptions_OCL (c) ;
3 i f (c . negated) p r i n t " not " ;
4

5 # copy the template i n t o a v a r i a b l e ‘ body ’
6 body := template (c) ;
7

8 # generate expressions f o r the p r o p e r t i e s and add them to con junc ts
9 foreach p in c . p r o p e r t i e s {

10 con juncts . add (transform_OCL (p) . rep lace (" s e l f " , " e ")) ;
11 }
12

13 # rep lace "
∧

" by the generated con junc ts
14 foreach p in con juncts {
15 i f (con juncts . hasNext ())
16 body . rep lace ("

∧
" , p+ " and "+"

∧
") ;

17 else
18 body . rep lace ("

∧
" , p) ;

19 }

Listing 3: Transformation Function for Composite Constraints

13 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

The transformation of a composite constraint pattern c is shown in Listing 3 and works as
follows. Lines 2 and 3 generate the assumptions and the negation flag as usual. In Line 6, the
template text is copied into a variable body. In Lines 9–11, the properties associated with the
composite constraint are recursively generated and stored in a vector conjuncts. In Lines 14–19,
the operator

∧
is replaced by an explicit conjunction.

If c is an instance of the IfThenElse pattern, its then and else parts need to be transformed as
well. This transformation is analogous to the transformation shown in Lines 9–19 of Listing 3.

6 Tool Support for Model-Driven Constraint Engineering

Tool support is essential for the acceptance and success of model-driven engineering approaches.
In this section, we discuss how to integrate our idea of structured constraint patterns in a model-
driven development tool and apply the tool to the example from Section 2.

6.1 Technical Solution

As depicted in Figure 2, our concept of a structured constraint is a specialization of the UML
meta-class Constraint. There are mainly two commonly accepted approaches for creating vari-
ations of the UML meta-model, namely, extending the meta-model itself or adapting the meta-
model with a UML Profile [Coo00]. We suggest an implementation of our approach as a UML
Profile because we consider it a light-weight approach that simplifies the interoperability between
tools.

In our profile, each constraint pattern is represented by a UML stereotype. The taxonomy of
constraint patterns is established using generalization associations between the stereotypes. The
attributes of the constraint patterns become attributes of the stereotypes in the implementation.

In this solution, one limitation of UML 2.0 becomes critical. In UML 2.0, stereotypes may
not have associations with meta-classes [Obj05]. Thus, a UniqueAttributeValue constraint cannot
refer to the UML meta-class Property. Even worse, a composite constraint cannot refer to other
constraints as we introduced it in Subsection 4.3. However, this deficiency has been remedied in
the UML 2.1 standard [Obj06], in which associations between a stereotype and a meta-class can
be defined.

The Eclipse UML2 project [ECL] provides an implementation of the UML 2.1 meta-model
based on the Eclipse Modeling Framework [EMF]. This makes Eclipse/UML2 an ideal plat-
form for implementing tool support for structured constraint patterns. In Figure 6(a) we show
a screenshot of the UML Profile editor in Eclipse. As can be seen, the taxonomy of structured
constraint patterns can be implemented in a straightforward manner as a UML 2.1 profile.

We prototyped a graphical user interface that guides a user during constraint creation and
maintenance. In Figure 6(b) we show a screenshot of our “wizard” that we integrated into the
graphical modeling tool IBM Rational Software Architect (RSA), based on the UML profile
defined in Eclipse/UML2.

In the upper left part of the window, the user can choose a constraint pattern. When a pattern
is selected, a description of the pattern and its parameters are shown in the upper right part of
the window. In the lower half of the window, the attributes of the pattern selected are shown

Proc. OCLApps 2006 14 / 20

ECEASST

(a) Profile Editor (b) Constraint Wizard

Figure 5: Screen Shots of Eclipse Prototype

and attribute values can be entered. In its current state, the wizard implements one CIM-to-PIM
transformation that generates OCL expressions and one CIM-to-PSM transformation that creates
Java code for run-time model validation. Furthermore, the wizard can also be used to modify
previously created structured constraints by invoking it from the context menu of a structured
constraint. The user can then adapt the parameter values and regenerate the constraint in ques-
tion.

6.2 Applying the Tool to the Example

We have argued in this paper that our approach helps to decrease development time and to reduce
the rate of syntactic errors. To indicate the practicability of our approach, we revisit the example
from Section 2 and apply our method to it. In particular, we use the constraint wizard prototype
to implement Constraint 1 by choosing appropriate patterns specifying their parameters.

Constraint 1 is split into three parts, a quantification part, a predicate part and an assumption.
This enables a divide-and-conquer approach for formalizing this constraint because each part can
be defined separately. The parts can then be linked to form a complex constraint.

When implementing Constraint 1 using our approach, the class Manager is constrained
by an instance of the Exists pattern. This instance has two parameters: the set of
all employees (self .employs) and the quantification predicate, namely, the OCL constraint
self .salary >= 3000, which is the only predicate in the properties of the Exists pattern instance.
Furthermore, this constraint has an assumption that is an AttributeValueRestriction on the budget
of the manager. Figure 6 shows a visualization of Constraint 1 in RSA.

We have already shown in Subsection 4.2 how Constraint 2 and Constraint 3 can be repre-

15 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

Manager

budget : Integer

Must have an employee

with special properties.

«Exists»

{objects = self.employs}

Budget is greater than 100k.

«AttributeValueRestriction»

{targetAttribute=budget,

operator = '>',

term =100000}

assumption

Salary must be at least 3k.

{self.salary >= 3000}

properties

Figure 6: Structured Model of Constraint 1

sented using the CyclicDependency and the PathDepthRestriction pattern respectively. These
two complicated constraints can thus be specified by simply providing a few parameter values
each. If requirements change, these constraints can be quickly adapted without reading, adapting,
and testing verbose expressions.

We believe that this small example already shows the practicability of our approach. Compli-
cated recursive expressions are replaced by structured, concise, and easy-to-read constraint def-
initions. In addition, our model-driven approach enables the automatic generation of platform-
independent or platform-specific constraints in various languages or modeling frameworks.

7 Related Work

The difficulty of developing concise and correct OCL constraints has been addressed in numerous
publications. OCL is considered to be a very important formalism in today’s modeling technolo-
gies, yet it is difficult to write correct, clear, and efficient OCL expressions [CBC05]. This paper
supports the need of using textual constraints in model-driven development, and points out that
tool support is critical for the success of OCL.

In [CCBC04], a list of recommendations is presented to improve correctness, clarity and effi-
ciency of OCL expressions, two of which we consider especially important. Firstly, the authors
advise to couple an OCL constraint with an informal specification for clarity. Our approach of
model-driven constraint engineering, in which a concrete constraint is derived from a CIM con-
straint pattern, follows this idea. Secondly, it is advised to test constraints for syntactic errors.
Our approach avoids syntactic errors by having predefined, syntactically correct templates and a
set of meta-constraints for each pattern.

The concrete syntax of OCL has been made responsible for its low acceptance so far. Thus,
several publications try to improve the syntax. For instance, a visual concrete syntax for OCL
is proposed in [BKPT00], and a mathematical syntax is presented in [Süß06] and [BW06]. The
structured constraint patterns we have presented can be regarded as another concrete constraint
syntax. However, we elevate the syntax to a more abstract level, which we believe improves
conciseness and correctness.

Wrong intuitions about the formal semantics of UML/OCL seem to be a common problem for
users unfamiliar with formal specifications [Cab06]. We believe that our approach can help to
replace wrong intuitions by precisely defined constraint expressions.

Proc. OCLApps 2006 16 / 20

ECEASST

Several publications use the idea of constraint patterns, thus following the general idea of
capturing domain knowledge and making it reusable, as for example introduced in [GHJV95]
for object orientation. Patterns for constraints in model-driven development were first mentioned
in [BHSS00], where one pattern—Singleton—is introduced. The idea of constraint patterns is
further elaborated in [AT06, ABB+05], where a small number of constraint patterns is introduced
along with OCL templates.

Two publications present a larger library of constraint patterns [MN05, CGQ+06]. The pat-
terns presented there originate from the data–modeling domain, and partly overlap with the pat-
terns introduced in this paper, even though they are named differently. Some patterns defined in
this paper cannot be found in these two papers and vice versa.

Our contribution adds to these approaches in two ways. Firstly, our approach offers composite
patterns and, moreover, allows a user to negate patterns and to combine existing patterns using
implication. Thus, the user has a higher flexibility in using the patterns. Secondly, our approach
is supported by a tool that integrates into existing CASE tools.

8 Conclusion and Future Work

In this paper, we have introduced the notion of model-driven constraint engineering. Our ap-
proach provides three main contributions for the efficient development and maintenance of con-
cise UML/OCL specifications.

Firstly, we have introduced the notion of computation-independent patterns and transforma-
tions to concrete constraint expressions. This allows constraints to be represented in an abstract
way, generating platform-independent expressions for precise documentation and platform-
specific code for model validation. Secondly, we have introduced an extensible library of pat-
terns. Our patterns originate from a case study in which we formalized about 80 constraints,
and first discussions with modeling experts confirmed the relevance of our patterns. We have
added a high degree of expressiveness to a pattern-based approach by adding logical structure
and by classifying patterns into atomic and composite patterns. Thirdly, we have provided tool
support for integrating the concepts of model-driven constraint engineering into a CASE tool.
We have presented a wizard that integrates into IBM Rational Software Architect and supports
a user in choosing and parameterizing a constraint pattern. Furthermore, the wizard contains
transformations to platform-independent and platform-specific code.

We argue that our approach helps to decrease both the time and the error rate for constraint
development. For instance, the OCL expression needed for Constraint 3 in Section 2 uses a
recursive definition that is not easy to understand. In contrast to the lengthy and complicated
OCL statement, the same constraint can be defined as an instance of the PathDepthRestriction
pattern. Tool support as presented in Section 6 by an initial prototype further reduces the problem
of defining a constraint by pointing-and-clicking to relevant model elements.

We would like to emphasize that although we have introduced a wizard, we cannot spirit away
the complexity inherent in many constraints. However, we believe that our approach offers a
powerful tool for dealing with this inherent complexity.

Future work includes the definition of new atomic and composite constraint patterns. We be-
lieve that more interesting constraint patterns can be identified in other application domains, such

17 / 20 Volume 5 (2006)

Model-Driven Constraint Engineering

as model transformations [HKSW05], ontology modeling [CP99] or model refactorings [GR02].
Furthermore, existing and future constraint patterns need to be validated with respect to their
relevance in as many case studies as possible.

We are currently working on formalizing the constraint patterns in HOL-OCL [BW06], an
interactive proof environment for UML/OCL. Having support for interactive reasoning has two
advantages. Firstly, we can formally carry out proofs about the constraint patterns, e. g., redun-
dancy between patterns or parameter values that result in unsatisfiable pattern instances. Sec-
ondly, these proofs help to increase the level of automation for consistency proofs of a UML/OCL
specification, provided that constraint patterns are used in the specification.

Acknowledgements: We thank David Basin, Jochen Küster, Alexander Pretschner, and Kse-
nia Ryndina for their valuable feedback on earlier versions of this paper.

Bibliography

[ABB+05] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, P. H. Schmitt. The KeY Tool. Software and
System Modeling 4(1):32–54, 2005.

[ÁRF03] J. A. T. Álvarez, V. Requena, J. L. Fernández. Emerging OCL Tools. Software and
System Modeling 2(4):248–261, 2003.

[AT06] J. Ackermann, K. Turowski. A Library of OCL Specification Patterns to Simplify
Behavioral Specification of Software Components. In Proceedings of Conference
on Advanced Information Systems Engineering. LNCS 4001, pp. 255–269. 2006.

[Baa03] T. Baar. The Definition of Transitive Closure with OCL – Limitations and Applica-
tions. In Proceedings, Fifth Andrei Ershov International Conference, Perspectives of
System Informatics, Novosibirsk, Russia. LNCS 2890, pp. 358–365. Springer, July
2003.

[BDW06] A. D. Brucker, J. Doser, B. Wolff. A Model Transformation Semantics and Analy-
sis Methodology for SecureUML. In Nierstrasz et al. (eds.), Models 2006: Model
Driven Engineering Languages and Systems. LNCS, pp. 306–320. Springer-Verlag,
2006.

[BHSS00] T. Baar, R. Hähnle, T. Sattler, P. H. Schmitt. Entwurfgesteuerte Erzeugung von OCL-
Constraints. Softwaretechnik-Trends 20(3), 2000.

[BKPT00] P. Bottoni, M. Koch, F. Parisi-Presicce, G. Taentzer. Consistency Checking and Vi-
sualization of OCL Constraints. Pp. 294–308 in [EKS00].

[BW06] A. D. Brucker, B. Wolff. The HOL-OCL Book. Technical report 525, ETH Zürich,
Switzerland, 2006.

Proc. OCLApps 2006 18 / 20

ECEASST

[Cab06] J. Cabot. Ambiguity Issues in OCL Postconditions. In Proceedings of the 6th OCL
Workshop at the UML/MoDELS Conference 2006. Pp. 194–204. 2006.

[CBC05] D. Chiorean, M. Bortes, D. Corutiu. Proposals for a Widespread Use of OCL. In
Baar (ed.), Proceedings of the MoDELS’05 Conference Workshop on Tool Support
for OCL and Related Formalisms - Needs and Trends, Montego Bay, Jamaica, Oc-
tober 4, 2005. Technical Report LGL-REPORT-2005-001, pp. 68–82. EPFL, Lau-
sanne, Switzerland, 2005.

[CCBC04] D. Chiorean, D. Corutiu, M. Bortes, I. Chiorean. Good Practices for Creating Cor-
rect, Clear and Efficient OCL Specifications. In Proceedings of NWUML’2004 – 2nd
Nordic Workshop on the Unified Modeling Language. Pp. 127–142. 2004.

[CGQ+06] D. Costal, C. Gómez, A. Queralt, R. Raventós, E. Teniente. Facilitating the Defi-
nition of General Constraints in UML. In Nierstrasz et al. (eds.), MoDELS 2006.
LNCS 4199, pp. 260–274. Springer-Verlag, 2006.

[CLW+06] S.-K. Chen, H. Lei, M. Wahler, H. Chang, K. Bhaskaran, J. Frank. A Model Driven
XML Transformation Framework for Business Performance Management Model
Creation. In International Journal of Electronic Business. Volume 4(3/4), pp. 281–
301. Inderscience, 2006.

[Coo00] S. Cook. The UML Family: Profiles, Prefaces and Packages. Pp. 255–264 in
[EKS00].

[CP99] S. Cranefield, M. Purvis. UML as an Ontology Modelling Language. In Proceed-
ings of the Workshop on Intelligent Information Integration, 16th International Joint
Conference on Artificial Intelligence. 1999.

[CW04] A. L. Correa, C. M. L. Werner. Applying Refactoring Techniques to UML/OCL
Models. In Baar et al. (eds.), UML. LNCS 3273, pp. 173–187. Springer, 2004.

[ECL] The Eclipse UML2 Project. http://www.eclipse.org/uml2/.

[EKS00] A. Evans, S. Kent, B. Selic (eds.). UML 2000. LNCS 1939. Springer, 2000.

[EMF] The Eclipse Modeling Framework. http://www.eclipse.org/emf.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, USA, 1995.

[GR02] M. Gogolla, M. Richters. Expressing UML Class Diagrams Properties with OCL.
In Object Modeling with the OCL, The Rationale behind the Object Constraint Lan-
guage. Pp. 85–114. Springer-Verlag, London, UK, 2002.

[HK04] R. Hauser, J. Koehler. Compiling Process Graphs into Executable Code. In Third In-
ternational Conference on Generative Programming and Component Engineering.
LNCS 3286, pp. 317–336. Springer, 2004.

19 / 20 Volume 5 (2006)

http://www.eclipse.org/uml2/
http://www.eclipse.org/emf

Model-Driven Constraint Engineering

[HKSW05] R. Hauser, J. Koehler, S. Sendall, M. Wahler. Declarative Techniques for Model-
Driven Business Process Integration. IBM Systems Journal 44(1):47–65, 2005.

[KWB03] A. Kleppe, J. Warmer, W. Bast. MDA Explained. The Model Driven Architecture:
Practice and Promise. Addison-Wesley, 2003.

[LBD02] T. Lodderstedt, D. A. Basin, J. Doser. SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In Jézéquel et al. (eds.), UML 2002. LNCS 2460,
pp. 426–441. Springer, 2002.

[MB05] S. Markovic, T. Baar. Refactoring OCL Annotated UML Class Diagrams. In MOD-
ELS 2005. LNCS 3713, pp. 280–294. 2005.

[MN05] E. Miliauskaitė, L. Nemuraitė. Representation of Integrity Constraints in Conceptual
Models. Information Technology and Control 34(4):355–365, 2005.

[Obj02] Object Management Group (OMG). Meta Object Facility (MOF) Specification Ver-
sion 1.4. April 2002. Available as OMG document formal/2002-04-03.

[Obj03] Object Management Group (OMG). UML 2.0 OCL Final Adopted Specification.
2003. Available as OMG document ptc/03-10-14.

[Obj05] Object Management Group (OMG). Unified Modeling Language: Superstructure.
Version 2.0. July 2005. Available as OMG document formal/05-07-04.

[Obj06] Object Management Group (OMG). Unified Modeling Language: Superstructure.
Version 2.1. April 2006. Available as OMG document ptc/2006-04-02.

[RC81] R. Reiter, G. Criscuolo. On Interacting Defaults. Proceedings of the Seventh Inter-
national Joint Conference on Artificial Intelligence (IJCAI’81), pp. 94–100, 1981.

[Süß06] J. G. Süß. Sugar for OCL. In Proceedings of the 6th OCL Workshop at the UML/-
MoDELS Conference 2006. Pp. 240–251. 2006.

Proc. OCLApps 2006 20 / 20

http://www.omg.org/cgi-bin/doc?formal/2002-04-03
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?ptc/2006-04-02

	Introduction
	Example Model and Constraints
	Deriving Constraint Patterns
	A Taxonomy of Structured Constraint Patterns
	Adding Logical Structure to Constraint Patterns
	Atomic Constraint Patterns
	Attribute Value Restriction.
	Multiplicity Restriction.
	Object in Collection
	Unique Attribute Value
	Association Type Restriction
	Cyclic Dependency
	Path Depth Restriction
	Unique Path
	Injective Relation
	Surjective Relation
	Finite Instance Set

	Composite Constraint Patterns

	Transforming CIM to PIM
	Tool Support for Model-Driven Constraint Engineering
	Technical Solution
	Applying the Tool to the Example

	Related Work
	Conclusion and Future Work

