
Electronic Communications of the EASST
Volume 5 (2006)

Proceedings of the Sixth OCL Workshop
OCL for (Meta-)Models

in Multiple Application Domains
(OCLApps 2006)

Design of a Railway Domain Profile and its OCL-based Validation

Kirsten Berkenk̈otter

18 pages

Guest Editors: Dan Chiorean, Birgit Demuth, Martin Gogolla, Jos Warmer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Design of a Railway Domain Profile and its OCL-based Validation

Kirsten Berkenkötter

kirsten@informatik.uni-bremen.de, http://www.informatik.uni-bremen.de/∼kirsten
Arbeitsgruppe Betriebssysteme, Verteilte Systeme

Universiẗat Bremen, Germany

Abstract: Domain-specific languages become more and more important these days
as they facilitate the close collaboration of domain experts and software developers.
One effect of this general tendency is the increasing number of UML profiles. UML
itself as the most popular modeling language is capable of modeling all kinds of
systems but it is often inefficient due to its wide-spectrum approach. Profiles tailor
the UML to a specific domain and can hence be seen as domain-specific dialects of
UML. At the moment, profiles mainly introduce new terminology, often in combi-
nation with OCL constraints which describe the new constructs more precisely. As
most tools do not support validation of OCL expressions let alone supplementing
profiles with OCL constraints, it is difficult to check if models based on a profile
comply to this profile. A related problem is checking whether constraints in the pro-
file contradict constraints in the UML specification. In this paper, it is shown how to
complete these tasks with the tool USE. As an example, a profile from the railway
control systems domain is taken which describes the use of its modeling elements
quite strictly. Models based on this profile serve as a foundation for automated code
generation. Therefore, they require a rigorous and unambiguous meaning. OCL is
heavily used to reach this goal.

Keywords: Domain-specific Languages, Railway Domain, UML Profiles, OCL,
Validation

1 Introduction

The current interest in model driven architecture (MDA) [OMG03] and its surrounding tech-
niques like metamodeling and model driven development (MDD) has also increased the interest
in domain-specific languages (DSL) and their development. MDA enforces the idea of platform
independent models (PIM) as main artifact in the design of software systems, while the concrete
implementation will be based on a platform specific model (PSM). The step from PIM to PSM is
performed by transformations while the generation of code is based on the PSM and a description
of the concrete target platform called platform model (PM).

In the context of MDA, several standards have been developed like the Meta Object Facil-
ity (MOF) [OMG06] for designing metamodels and the Unified Modeling Language (UML)
[OMG05c, OMG05b] as a modeling language. UML has become the de-facto standard for mod-
eling languages and is supported by various tools. Due to its wide-spectrum approach, it can be
used for modeling all kinds of systems. This is an advantage as one tool can be used to develop
different kinds of systems. In contrast, it may also lead to inefficiency and inaccuracy as each

1 / 18 Volume 5 (2006)

mailto:kirsten@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/~kirsten

OCL-based Validation of a Railway Domain Profile

domain has its own need, e.g. domain-specific terminology that differs from the one of UML
may lead to misunderstandings. Another problem are semantic variation points in UML. These
are necessary to enable the wide-spectrum approach but not useful if the model is to be used in
the MDA context as transformations and code generation cannot be utilized with an ambiguous
model as foundation.

A good example are railway control systems that are described in specific terminology and no-
tation. The domain of control are track networks that consist of elements like segments, points,
or signals. Routes are defined to describe how trains travel on the network. In addition, there
are rules that specify in which way a network is constructed and how it is operated. Some rules
apply to all kinds of railway systems and some are specific for each kind of railway system, e.g.
tramway or railroads. In principle, UML is capable of modeling such systems: class diagrams
can be used to describe segments, points, and other track elements and their dependencies while
object diagrams model concrete track layouts and routes. Rules can be specified by means of
OCL. The problem is that we have to model each kind of railway system with all rules explic-
itly. The domain knowledge that covers the common parts of all railway control systems is not
captured in such models. Neither is specific notation that is used in the domain like symbols for
signals and sensors.

Domain-specific languages are a means to overcome these disadvantages [Eva06]. Design-
ing a new modeling language from scratch is obviously time-consuming and costly, therefore
UML profiles have become a popular mechanism to tailor the UML to specific domains. In this
way, different UML dialects have been developed with considerably low effort. New terminol-
ogy based on existing UML constructs is introduced and further supplied with OCL [OMG05a,
WK04] constraints to specify its usage precisely. Semantics are often described in natural lan-
guage just as for UML itself.

With respect to railways, the Railway Control Systems Domain (RCSD) profile has been de-
veloped [BHP, BH06] as domain-specific UML derivative with formal semantics.The main rea-
son for developing this profile was to simplify the collaboration of domain experts of the railway
domain and software developers that design controllers for this domain. With the help of the pro-
file, the system expert develops track networks for different kind of railway systems consisting
of track segment, signal, points, etc. The software specialist works on the same information to
develop controllers. In the end, controller code which satisfies safety-critical requirements shall
be generated automatically. Railway control systems are especially interesting as the domain
knowledge gathered in the long history of the domain has to be preserved while combining it
with development techniques for safety-critical systems. Structural aspects are specified by class
and object diagrams (seeFigure 9andFigure 10) whose compliance to the domain is ensured by
OCL constraints. Semantics are based on a timed state transition system that serves as founda-
tion for formal transformations towards code generation for controllers as well as for verification
tasks. In this paper, the focus is on the validation of the structural aspects to ensure the correct
and successful application of transformations and verification. Details about semantics can be
found in [PBD+05, BH06, BHP].

A problem that has not been tackled until now is to validate that the constraints of a profile
comply to the ones of UML and that models using a profile comply to this profile. One reason
for this is that CASE tools often support profiles as far as new terminology can be introduced
but lack support of OCL [BCC+05]. One of the few tools that support OCL is USE (UML

Proc. OCLApps 2006 2 / 18

ECEASST

Specification Environment) [Ric02, GZ04]. It allows the definition of a metamodel supplied
with OCL constraints and checks whether models based on this metamodel fulfill all constraints.
Using (a part of) the UML metamodel in combination with a profile as the USE metamodel
allows for fulfilling three goals: (a) Validating that this profile complies to the UML metamodel
as each model has to fulfill the invariants of the UML metamodel and the profile. (b) Validating
that class diagrams comply to the profile. (c) Validating that object diagrams comply to the
profile if the profile describes instances as well as instantiable elements. This approach has been
used to validate the RCSD profile and models based on this profile.

The paper is organized in the following way: the next section gives an introduction to UML
profiles and the usage of OCL in this context. After that, the railway domain is briefly introduced
in Section 3, followed by a description of the RCSD profile and typical constraints inSection 4.
After that, Section 5describes the validation with USE on the different levels. Future work,
especially with respect to automated test case generation, is sketched inSection 6. At last, the
results of this validation approach and future work are discussed inSection 7.

2 UML Profiles and OCL

UML profiles as described in in [OMG05b] and [OMG05c] offer the possibility to tailor the
UML to a specific domain in several ways: (a) introducing new terminology, (b) introducing
new syntax/notation, (c) introducing new constraints, (d) introducing new semantics, and (e)
introducing further information like transformation rules.

Changing the existing metamodel itself e.g. by introducing semantics contrary to the existing
ones or removing elements is not allowed. Consequently, each model that uses profiles is a
valid UML model. Profiles are therefore not a means to develop domain-specific languages
that contradict UML constraints or semantics. Due to the wide-spectrum approach of UML,
semantics are loosely enough to allow all kinds of profiles. A UML 2.0 profile mainly consists
of stereotypes, i.e. extensions of already existing UML modeling elements. You have to choose
which element should be extended and define the add-ons. In addition, new primitive datatypes
and enumerations can be defined as necessary. InFigure 5, a part of the UML metamodel is
shown that it afterwards used as a basis for stereotypes, e.g. inFigure 4.

OCL can be used in various ways to specify the stereotypes more precisely:

(a) Constraining property values: A stereotype has all properties of its base class and can
add only attributes. Defining new associations to classes in the reference metamodel or
other stereotypes is not allowed. Therefore, constraining values of existing attributes and
associations is a useful means to give a stereotype the desired functionality.

(b) Specifying dependencies between values of different properties of one element: Often,
it is necessary to describe dependencies between the properties of a modeling element
precisely.

(c) Specifying dependencies between property values of different instances of one element:
Some properties like identification numbers need specific values for different instances of
one element.

3 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

(d) Specifying dependencies between property values of different instances of different ele-
ments: In the same way, several elements may have properties whose values have some
kind of relationship. Here, it is important to chose the context of the constraint carefully
such that the constraint is not unnecessarily complicated because another modeling ele-
ment would have been the better choice as basis for the constraint.

3 Short Introduction to the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain and their
properties as e.g. described in [Pac02]. In the railway domain, track elements, sensors, signals,
automatic train runnings, and routes have been proven essential modeling elements. They are
described shortly in the following, more details can be found in [BH06]:

end2

end1

(a)

end2end4

end1 end3

(b)

end1 end3

end2 end4

(c)

Figure 1: Segment (a), crossing (b), and interlaced segment (c)

Track Elements The track network consists of segments, crossings, and points. Segments are
rails with two ends (seeFigure 1(a)), while crossings consist of either two crossing segments
(seeFigure 1(b)) or two interlaced segments (seeFigure 1(c)). Points allow a changeover from
one segment to another one. Single points have a stem and a branch (seeFigure 2(a)). Single slip
points and double slip points are crossings with one, respectively two, changeover possibilities
(seeFigure 2(b)andFigure 2(c)).

end2 end3

end1

(a)

end2end4

end1 end3

(b)

end2end4

end1 end3

(c)

Figure 2: Single point (a), single slip point (b), and double slip point (c)

Sensors Sensors are used to identify the position of trains on the track network, i.e. the cur-
rent track element. To achieve this goal, track elements have entry and exit sensors located at
each end. The number of sensors depends on the allowed driving directions, i.e. the uni- or
bidirectional usage of the track element.

Signals Signals come in various ways. In general, they indicate if a train may go or if it has to
stop. The permission to go may be constrained, e.g. by speed limits or by obligatory directions

Proc. OCLApps 2006 4 / 18

ECEASST

in case of points. As it is significant to know if a train moves according to signaling, signals are
always located at sensors.

Automatic Train Runnings Automatic train running systems are used to enforce braking of
trains, usually in safety-critical situations. The brake enforcement may be permanent or con-
trolled, i.e. it can be switched on and off. Automatic train running systems are also located at
sensors.

Route Definitions As sensors are used as connections between track elements, routes of a track
network are defined by sequences of sensors. They can be entered if the required signal setting
of the first signal of the route is set. This can only be done if all points are in the correct position
needed for this route. Conflicting routes cannot be released at the same time.

4 RCSD Profile

Unfortunately, defining eight stereotypes as suggested by the domain analysis inSection 3is
not sufficient. New primitive datatypes, enumerations, and special kinds of association to model
interrelationships between stereotypes are needed. Furthermore, UML supports two modeling
layers, i.e. the model layer itself (class diagrams) and the instances layer (object diagrams).
In the RCSD profile, both layers are needed: class diagrams are used to model specific parts
of the railway domain, e.g. tramways or railroad models, while object diagrams show explicit
track layouts for such models. Hence, stereotypes on the object level have to be defined. For
these reasons, the RCSD profile is structured in five parts: the definition of primitive datatypes
and literals, network elements on class level, associations between these elements, instances of
network elements and associations, and route definitions.

4.1 Types and Literals

0..1
LiteralId

LiteralAutoRunId
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

LiteralSensorId

LiteralSignalId

LiteralPointId

LiteralRouteId

LiteralDuration

LiteralTimeInstant

<<stereotype>>

<<stereotype>>

<<stereotype>>0..1

0..1

LiteralInteger
<<metaclass>>

value:Integer prefix:String

Figure 3: Literals part of the RCSD profile

Several new datatypes are needed: identifiers for all controllable elements, identifiers for
routes (e.g. to specify conflicting ones), time instants, and durations. All of them have in com-

5 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

mon that the value domain isN. Defining different datatypes facilitates constraints like: all signal
identifiers are unique, all point identifiers are unique, and so on. In addition, each new datatype
has a dedicated stereotype to model literals of this type (seeFigure 3). For the identification
types, the corresponding literal consists of an integer value and a prefix character. Literals for
time instants and durations are integer values.

inv LiteralPointId1:
value >= 0

inv LiteralPointId2:
prefix = ’P’

OCL constraints for these stereotypes are simple as only values of properties are restricted.
Integers values have to be fromN; prefixes for different identification types have specific values:
’S’ for sensors,’Sig’ for signals,’P’ for points,’A’ for automatic runnings, and’R’ for routes.
As an example, the two constraints needed forLiteralPointId are given above. For the sake of
brevity, the name of invariants and the invariants context, where it is unmistakable, are omitted
in the following.

4.2 Network Elements

<<stereotype>>
Segment

<<stereotype>>
Crossing

<<stereotype>>
Sensor

0..1

AutomaticRunning
<<stereotype>>0..1

<<metaclass>>
Class

<<stereotype>>
Point

0..1 <<stereotype>>
TrackElement

<<stereotype>>

<<stereotype>>

SinglePoint

SlipPoint

0..1 <<stereotype>>
Signal

<<enumeration>>

LOW
HIGH
FAILURE

SensorStateKind
<<enumeration>>

GO
STOP

<<enumeration>>

STRAIGHT
LEFT
RIGHT
FAILURE

PointStateKind
<<enumeration>>

GO
STOP
FAILURE

SignalStateKind

<<enumeration>>

OFF
FAILURE

ON

AutoRunKind

LEFT
RIGHT

STRAIGHT

<<enumeration>>
RouteKind PermissionKind

Figure 4: Network elements part of the RCSD profile

The next part of the profile defines track network elements, i.e. segments, crossings, points,
signals, sensors, and automatic train runnings (seeFigure 4). Segment, Crossing, andPoint have
in common that they form the track network itself, therefore they are all subclasses of the abstract

Proc. OCLApps 2006 6 / 18

ECEASST

TrackElement. Similarly, SinglePointandSlipPointare specializations ofPoint. Enumerations
are defined to specify values of properties. All elements are equipped with a set of constraints
that define which properties must be supported by each element and how it is related to other
elements.

An instance ofTrackElementon the model layer must provide several properties:maximal-
NumberofTrainsto restrict the number of trains on a track element at one point in time (manda-
tory) andlimit to give a speed limit (optional). Both properties have to be integers. The first one
has a fixed multiplicity 1, the second one may have multiplicities 0..1 or 1. Such requirements
for TrackElementare defined in the following way:

ownedAttribute->one(a | a.name->includes(’maxNumberOfTrains’)
and a.type.name->includes(’Integer’)
and a.upperBound() = 1 and a.lowerBound() = 1
and a.isReadOnly = true)

To understand the structure of this constraint, a look at the UML metamodel is helpful. In
Figure 5, a part of it is shown, namely theClassesdiagram of the UML 2.0Kernel package.
As all network elements are stereotypes ofClass, we can refer to all properties ofClassin our
constraints. Properties on the model level are instances of classProperty on the metamodel
level, which are associated toClassby ownedAttribute. As aStructuralFeature, Propertyis also
a NamedElement, a TypedElement, and aMultiplicityElement, which allows to restrain name,
type, and multiplicity as shown in the constraints above.

Operation

ValueSpecification

<<enumeration>>
AggregationKind

none

composite
shared

Classifier

/default:String
aggregation:AggregationKind = none
/isComposite:Boolean

+ownedAttribute

{subsets redefinedElement}

+class

{subsets namespace, {ordered,
subsets redefinitionContext} subsets ownedMember}

0..1
subsets namespace,
subsets featuringClassifier}

{subsets classifier,

subsets ownedMember}

+/superClass +subsettedProperty

{redefines general}

+nestedClassifier+class

+class

0..1

0..1

+ownedOperation

{subsets redefinitionContext, {ordered,

subsets ownedMember}
subsets namespace, subsets feature,
subsets featuringClassifier}

+/opposite0..1

{ordered,
subsets attribute,

{ordered, subsets member}

subsets ownedEnd,
subsets feature,
subsets ownedMember}

+redefinedProperty

+navigableOwnedEnd

{subsets ownedEnd}

{ordered,

isDerived:Boolean = false
isReadOnly:Boolean = false
isDerivedUnion:Boolean = false

Property

0..1

2..*

+defaultValue+owningProperty
0..1 {subsets owner} {subsets ownedElement}

Class
{subsets association,
subsets namespace,
subsets featuringClassifier}

0..1

0..1

isDerived:Boolean = false

Association

+ownedEnd +owningAssociation

+memberEnd +association

StructuralFeature RelationshipClassifier

{ordered}
+/endType

1..*

Classifier

*

*

*

*

*

*

*

*

Type

Figure 5: Classes diagram of the UML 2.0 Kernel package

Specifying that some class on model level is the end of an association works in the same way
on the metamodel level. As we can see inFigure 5, the ends of each association are properties of
classes, i.e. we have to define another property that has to be an association end.TrackElementis
again used as an example: At each end of aTrackElement, entry or exit sensors can be associated.

7 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

e1Entry, e1Exit, e2Entry, ande2Exit are used to model these ends of associations to sensors
(optional). All outgoing associations must beSensorAssociations:

ownedAttribute->one(a | a.name->includes(’e1Entry’)
and a.upperBound() = 1 and a.lowerBound() >= 0
and a.isReadOnly = true
and a.outgoingAssociation.

oclIsTypeOf(SensorAssociation)) or
(not ownedAttribute->exists(a2 | a2.name->includes(’e1Entry’)))
...
ownedAttribute->collect(outgoingAssociation)->

forAll(a | a.oclIsTypeOf(SensorAssociation) or a.isUndefined)

Similar constraints are defined for all network elements. They belong obviously to the cate-
gory (a) as described inSection 2. They restrict properties on the metamodel level for the usage
on the model level.

4.3 Associations

Three types of associations are defined:SensorAssociationsthat connect track elements and sen-
sors,SignalAssociationsthat connect signals and sensors, andAutoRunAssociationsthat connect
automatic train runnings and sensors (seeFigure 7(a)). Constraints are needed e.g. to determine
the kind of stereotype at the ends of each association and their number. As an example, each
SignalAssociationis connected to one sensor and one signal:

inv SignalAssociation1: memberEnd->size() = 2
inv SignalAssociation2: endType->size() = 2
inv SignalAssociation3: endType->one(t | t.oclIsKindOf(Sensor))
inv SignalAssociation4: endType->one(t | t.oclIsKindOf(Signal))

Similar constraints are defined for the other kinds of association.

4.4 Instances of Network Elements and Associations

For each non-abstract modeling element and each association, there exists a corresponding in-
stance stereotype (seeFigure 7(b)). Here, the domain-specific notation is defined. InFigure 6(a),
two unidirectional segments connected by a sensorS1are shown. For comparison, the same
constellation in object notation is given inFigure 6(b).

S1

(a)

exit e2exit
S1:<<Sensor>>Sens

entrye1entry
:<<Segment>>Seg:<<Segment>>Seg

(b)

Figure 6: Sensors in RCSD notation (a) and classical UML notation (b)

The instances are heavily restricted by OCL constraints as the instance level serves as the
basis for automated code generation. Again, we find several constraints of category (a), where
the values of properties are specified explicitly. To give an example, the maximal number of
trains on a crossing or point is always defined and the value is 1:

Proc. OCLApps 2006 8 / 18

ECEASST

slot->one(s1 | s1.definingFeature.name->includes(’maxNumberOfTrains’)
and s1.value->size()= 1
and s1.value->first().oclIsTypeOf(LiteralInteger)
and s1.value->first()->oclAsType(LiteralInteger).value = 1)

Similar constraints appear for all kinds of track elements, e.g. the limit on track elements
must have a value fromN if present. More interesting are the constraints from category (b) that
describe the dependencies between properties of one stereotype. As an example, eachPoint has
aplusandminusposition. One of these has to beSTRAIGHTand the other oneLEFT or RIGHT:

slot->select(s1 | s1.definingFeature.name->includes(’minus’) or
s1.definingFeature.name->includes(’plus’))->

one(s2 | s2.value->size()= 1
and s2.value->first().oclIsTypeOf(InstanceValue)
and s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’STRAIGHT’)) and
slot->select(s1 | s1.definingFeature.name->includes(’minus’) or

s1.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1

and s2.value->first().oclIsTypeOf(InstanceValue)
and (s2.value->first().oclAsType(InstanceValue).instance.

name->includes(’LEFT’) or
s2.value->first()->oclAsType(InstanceValue).instance.

name->includes(’RIGHT’)))

0..1

SensorAssociation
<<stereotype>>

0..1 <<stereotype>>
AutoRunAssociation

<<metaclass>> 0..1
SignalAssociation

<<stereotype>>
Association

(a)

<<stereotype>>
AutomaticRunningInstance

0..1 <<stereotype>>
SignalInstance

<<stereotype>>
AutoRunLink

<<stereotype>>
SignalLink

<<stereotype>>
SensorLink

<<stereotype>>
SensorInstance

<<metaclass>>

InstanceSpecification

0..1

0..1

SegmentInstance
<<stereotype>>

CrossingInstance
<<stereotype>>

<<stereotype>>

<<stereotype>>

0..1

0..1

0..1

SinglePointInstance

SlipPointInstance

0..1 0..1

0..1

0..1

(b)

Figure 7: Associations (a) and Instances of network elements and associations (b) parts of the
RCSD profile

9 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

An example from category (c) are identification numbers of sensors that have to be unique.
EachSensormust have a propertysensorIdthat is unique with respect to all instances ofSensor:

SensorInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’sensorId’))->

iterate(
s:Slot;
result:Set(LiteralSensorId) = oclEmpty(Set(LiteralSensorId)) |
result->including(s.value->first.oclAsType(LiteralSensorId)))->

isUnique(value)

4.5 Route definitions

<<stereotype>>

<<stereotype>>
Route

<<metaclass>>

0..1

0..1 <<stereotype>>
Class SignalSetting

<<stereotype>>
RouteConflict

PointPosition

0..1

0..1

<<enumeration>>
RouteConflictKind

<<stereotype>><<metaclass>>
InstanceSpecification RouteInstance

0..1

noAllocation
stopSignal

Figure 8: Route definition part of the RCSD profile

Moreover, the profile defines routes and their instances as shown inFigure 8. EachRouteis
defined by an ordered sequence of sensors. The signal setting for entering the route and sets
of required point positions and of conflicts with other routes are further necessary information.
Again, constraints are used for unambiguous and strict definitions of properties. Constraints
from category (d) are typical as sensors, signals, and points are referenced by their id in route
definitions. This implies that these ids belong to some existing instances, e.g. the sensor ids given
in the definition of a route. Hence, the following constraint must hold for eachRouteInstance:

let i:Set(Integer) =
slot->select(s | s.definingFeature.name->

includes(’routeDefinition’))->asSequence->first().value->
iterate(v:ValueSpecification;

result:Set(Integer)=oclEmpty(Set(Integer)) |
result->including(v.oclAsType(LiteralSensorId).value))

in
i->forAll(id | SensorInstance.allInstances->exists(sens |

sens.slot->select(s | s.definingFeature.name->
includes(’sensorId’))->asSequence->first().value->first().

oclAsType(LiteralSensorId).value = id))

Proc. OCLApps 2006 10 / 18

ECEASST

5 Validation of Wellformedness Rules with USE

The next step is adapting the profile and its various invariants to USE for the validation process.
USE expects a model in textual notation as input. For syntax details, we refer to [GZ04]. In our
case, this is the metamodel consisting of (a part of) the UML metamodel and the profile. On this
basis, instance models can be checked with respect to the invariants in the metamodel. In our
case, the instance model consists of both class layer and object layer, i.e. models using the RCSD
profile. A similar application of USE with respect to the four metamodeling layers of UML is
shown in [GFB05].

This metamodel file includes both the necessary part of the UML 2.0 metamodel and the
RCSD profile for two reasons: first, the profile cannot exist without its reference metamodel and
second, one goal is to check the compliance of the profile to the metamodel. This task must
be performed implicitly as USE does not check if the given constraints contradict. Instead, we
assume the profile compliant to the metamodel as long as both the constraints in the metamodel
and the constraints in the profile are all valid. Contradicting constraints can be identified if all
constraints in the profile evaluate to true but some constraint(s) in the metamodel evaluate(s) to
false.

5.1 Modeling the UML Metamodel and the RCSD Profile for USE

In the metamodel file, a description of classes with attributes and operations, associations, and
OCL constraints is expected. OCL constraints are either invariants as shown inSection 4, defini-
tions of operations, or pre-and postconditions of operations. Only operations whose return value
is directly specified in OCL and not dependent on preconditions are considered side-effect free
and may be used in invariants. For the validation of the profile, all invariants must be fulfilled by
the instance model(s).

From the UML metamodel, theKernelpackage has been modeled with some modifications:
(a) Packages are not needed by the RCSD profile and therefore skipped in all diagrams, diagram
Packageshas been omitted completely. (b) Lower and upper bounds of multiplicities have been
changed toLiteralInteger instead ofValueSpecificationfor easier handling. One reason is that
the invariants in the context ofMultiplicityElementare not specific enough to guarantee that the
ValueSpecificationreally evaluates toLiteralIntegeras necessary. Therefore, expressions cannot
be used to specify multiplicities. The invariants ofMultiplicityElementhave been adapted to
this. (c) Several invariants and operations had to be rewritten or omitted completely as they
are erroneous in the UML specification. More information about this problem can be found in
[BGG04]. (d) Some names in the UML specification had to be changed due to conflicts with USE
keywords or multiple usage in the specification which also leads to conflicts. This problem is also
described in [BGG04]. (e) USE does not supportUnlimitedNaturalas type. This problem has
been overcome by usingIntegerand additional constraints that restrict corresponding values to
N. All in all, 34 invariants have been modeled here. Further packages from the UML metamodel
are not needed.

Profiles are not directly supported by USE. This problem has been overcome by modeling
each stereotype as a subclass from its metaclass, i.e. a metamodel extension. Modeling profiles
as restricted extensions to metamodels is feasible with respect to [JSZ+04]. Here, modifications

11 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

TramCrossing
<<Crossing>>

<<Sensor>>
TramSensor

TramSegment
<<Segment>>

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

<<RouteConflict>>
Conflicts

routeId:RouteId {readOnly}
kind:RouteConflictKind {readOnly}

Signals
<<SignalSetting>>

sigState:SignalStateKind {readOnly}
signalId:SignalId {readOnly}

dirState:RouteKind[0..1] {readOnly}

Points
<<PointPosition>>

pointId:PointId {readOnly}
pointState:PointStateKind {readOnly}

TramRoute
<<Route>>

routeId:RouteId {readOnly}
routeDefinition:SensorId[0..*] {readOnly, ordered}

actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:Duration {readOnly}

signalId:SignalId {readOnly}

requestTime:TimeInstant

direction:RouteKind

<<Signal>>
TramSignal

TramPoint
<<SinglePoint>>

pointId:PointId {readOnly}
plus:PointStateKind {readOnly}
minus:PointStateKind {ReadOnly}
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}
delta_p:Duration {readOnly}

e4exit

e3exit

e2exit
0..1

1

11

actualState:SensorStateKind
sentTime:TimeInstant
counter:Integer
delta_l:Duration {readOnly}
delta_tram:Duration {readOnly}

sensorId:SensorId {readOnly}

e2exit

e2exit

e1exit

sensor

e3entry

e2entry

e3entry

e1entry

e1entry

e1entry

1

0..1

0..1 0..1

0..1

1

1

1

pointPosrouteConflict

signalSetting{readOnly}
1

signal 0..1

0..* 0..*

entrySeg exitSeg

exitPointentryPoint

{readOnly} {readOnly}

entryCross exitCross

1 1

0..1

0..1

0..1

0..1

0..1

Figure 9: Tram network definitions - class level

to metamodels are classified in level one (all extensions to the reference metamodel allowed),
level two (new constructs can be added to the referenced metamodel, but existing ones cannot be
changed), level three (each new construct must have a parent in the reference metamodel), and
level four (new relationships are only allowed as far as existing ones are specialized. The lower
levels include all restrictions of the levels above. Therefore, profiles can be considered a level
four metamodel extension and modeled as such in USE.1 All in all, the following invariants of
types (a) - (d) have been specified:

Profile part (a) (b) (c) (d)
Types and Literals 12 0 0 0
Network Elements 95 0 0 0
Associations 27 0 0 0
Instances 104 37 4 7
Route Definitions 36 1 3 22
Total 274 38 7 29

1 [JSZ+04] considers profiles as level three which is incorrect as the relationship restriction has to be respected by
profiles.

Proc. OCLApps 2006 12 / 18

ECEASST

5.2 Compliance of RCSD Model to Profile on Class Level

Evaluating constraints is possible for instances of the given (meta)model. As an example, a
tram network description is used on class level. Tram networks consist of segments, crossings,
and single points that are all used unidirectionally. Furthermore, there are signals, sensors, and
routes, but no automatic runnings. This constellation is shown inFigure 9.

In USE, an instance model can be constructed step by step by adding instances of classes and
associations of the metamodel to an instance diagram. More convenient is the usage of a*.cmd
command file where instance creation and setting of property values are specified in textual
notation. Again, we refer to [GZ04] for syntax details.

W100

S22−G21.1

G25.1

G24.1

TRAM MAINTENANCE SITE

ROUTE 3: S21−G25.1

ROUTE 5:

G25.0
ROUTE 0:
S20−G21.1

S21−G23.1
ROUTE 2

G23.0

G23.1G20.0

G20.1

G21.0

G21.1

G22.1

ROUTE4: S22−G23.1

G22.9 G24.3G20.3G20.2

W102 W119

G22.3G22.2

W118

G22.0

G20.9 G20.8

W103

W101

G24.2

G22.9

G24.0

G30.1

G29.9

G30.0

S20−G25.1
ROUTE 1:

S21

S20

S22

Figure 10: Concrete track network - instance level

5.3 Compliance of RCSD Model to Profile on Instance Level

A concrete network of a tram maintenance site with six routes is shown inFigure 10. Note
that this diagram is given in RCSD notation and can also be shown in UML object notation as
discussed inSection 4. The explicit route definitions have been omitted for the sake of brevity,
but can be easily extracted fromFigure 10. This diagram has been used for the validation on
the instance level. It consists of 12 segments, 3 crossings, 6 points, 25 sensors, 3 signals, and 6
routes, specified in a second*.cmd file. The two*.cmd files form a complete instance model of
the metamodel consisting of classes and their instances.

5.4 Results

In this example, all invariants have been fulfilled. The correctness of the OCL constraints could
be easily checked by adding intentional errors like incorrect association ends or signals with the

13 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

same id. USE facilitates tracing of such errors by (a) showing which instance of the metamodel
has violated an invariant and by (b) decomposing the invariant in all sub-clauses and giving
the respective evaluation. InFigure 11, we can see thatsensor2and sensor3have duplicate
identification numbers.

Figure 11: Evaluation example - two identical sensor ids

For the validation process, some effort has to be made for the modeling part. Fortunately,
the metamodel and profile have to be modeled only once for each profile. The part of the UML
metamodel that has to be included varies from profile to profile depending on the metaclasses
references by stereotypes. The current version of the USE model file consists of approximately
4000 lines. As this task is performed once per profile, the effort seems reasonable. With respect
of the RCSD profile, the instance model on class level has to be modeled once per specific
railway system, e.g. once for trams. With this part of the instance model, all kinds of concrete
track layouts can be checked. The tram example consists of approximately 1500 lines of input
data to USE. These can be generated from class diagrams by parsing the output of CASE tools
and adapting them to USE. Concrete track layout can also be generated, this time from object
diagrams. In this way, all kinds of track layouts for one system can be checked. The example
track layout needs about 5000 lines. As writing them for each layout would be an obnoxious
task, automation is highly required.

6 Related and Future Work

At the moment, the RCSD profiles defines large parts of a domain-specific language for the
railway control systems domain. On the one hand, there is the abstract and concrete syntax
defined by UML diagrams as shown in the figures inSection 4. On the other hand, there are
static semantics defined by OCL constraints (seeSection 4) that allow us to validate RCSD
models and use them as foundation for further tasks.

Proc. OCLApps 2006 14 / 18

ECEASST

Obviously, also behavioral semantics have to be defined. These are captured by a timed state
transition system (TSTS) that is based on a RCSD model and also incorporates the behavior of a
controller which has to guarantee safety conditions for the running system. The behavior of the
controller can be deduced from generic patterns that are derived from domain knowledge. The
composition of the controller and the individual RCSD model should then allow only sequences
of transitions which never violate a safety condition. A good example here is that a railway
controller may never release two conflicting routes at the same time. More details about the
TSTS and the generic controller patterns can be found in [BH06, PGHD04, PBD+05].

A TSTS can be encoded in SystemC [GLMS02] and used for verification purposes [GD03].
As described in [PGHD04] and [PBD+05], the verification of the railway domain model can
be performed by bounded-model checking as this technique overcomes the problem of state
explosion usually occurring with other model checking techniques for railway control systems
of realistic sizes. SystemC models also serve as foundation for automated code generation of
railway controller code. Automated code generation and the verification of the generated code
are ongoing work that is further described in [PBD+05].

An interesting point to investigate is automated test case generation. Even if the correctness
of model and generated code can be verified, tests have to be performed at least on hardware-
software integration level. This is unavoidable as the hardware integration may expose new kinds
of errors that are caused by hardware configurations, memory handling, interface latencies, and
similar problems that not present on model level. We expect that the selection of meaningful test
cases will be improved significantly due to the domain-specific knowledge provided by RCSD
models.

Currently, there are several approaches to model-based automated test case generation that
could be adapted to the TSTS. One example is presented in [DGG04]. Test cases are chosen by
traversing a graphical representation of the software under test. Paths in the graph are chosen
by statistical methods. Another approach – based on timed automata – is presented in [CO02].
Here, heuristics have been developed to chose test cases from the infinitely many ones deduced
from paths through the timed automata. Both approaches – and also similar ones – share the
same problem: it is not possible to ensure that all relevant test cases for the system under test
have been found.

For the railway domain, the domain knowledge can be taken into account with respect to test
case generation algorithms. The object model in combination with safety conditions gives im-
portant information about the expected behavior of the controller under test. To give an example,
we expect that all points assigned to a route have been switched to the requested position before
the entry signal of the route is set toGO. Other examples are that conflicting routes may not be
released at the same time or that only one train is allowed at most on a point at each point in
time.

The test case generation algorithm has to be aware of this information. At the moment two
possibilities seem feasible. (a) Test case generation is performed at object level based on route
information and safety conditions specified in OCL. The needed test cases are then transfered
to the SystemC level where we can check if the model is sufficiently covered – dependent on
some coverage criterion – and eventually more test cases have to be generated. (b) Another
possibility is to incorporate the domain-specific knowledge about relevant test cases into the
SystemC model as additional information. In this case, test case generation can be completely

15 / 18 Volume 5 (2006)

OCL-based Validation of a Railway Domain Profile

performed on SystemC level. At the moment, we examine the power of these two approaches.
Another advantage of using domain-specific knowledge in automated test case generation is

that not only test cases but also meaningful documentation can be generated. This facilitates
backtracking of occurring errors as we are able to follow the inputs to the controller under test
and its outputs more easily. It is obviously more convenient to be aware that contradicting routes
Route 2andRoute 4have been requested and both released due to some error than reconstructing
the meaning of the generated test case manually.

Moreover, the generation of USE snapshots of RCSD object diagrams by each test, e.g. in
a different log file, seems promising to facilitate error backtracking. As the behavior of the
controller is derived from static semantics and safety conditions defined by OCL expressions,
it is likely that errors occurring in tests are reflected in invariant violations. Hence, we need a
snapshot of an object diagram coinciding with the current system state. In this case, the violated
invariant will give information about the cause of the error. The possibilities for using OCL
constraints and USE in error backtracking are also currently under investigation.

7 Conclusion

The validation of models of the RCSD profile and the profile itself based on OCL constraints
with USE has been proven useful in several ways. It has been shown that the profile complies
to UML as it is required and that an example model for tramways is valid in the RCSD context.
This makes object diagrams for such tramways applicable for transformation and verification
purposes. Another effect of the validation with USE was the improvement of the OCL constraints
themselves. As most case tools have no OCL support, it is hard to detect if constraints exhibit
syntax errors or if complicated constraints really have the intended meaning.

An adaption of the validation process to other profiles can be performed straightforward as
the same kinds of constraints should appear. It is possible that the UML metamodel part has
to be enhanced for other profiles as this depends on the metaclasses referenced by stereotypes.
Validation is reasonable for each profile whose application relies on a solid and unambiguous
model.

With respect to the RCSD profile, future work has to investigate the behavioral aspects of track
layouts as described inSection 6. At the moment, only statical aspects have been examined, but
USE can also be applied to the validation and test of controllers that have been generated for a
concrete track network.

At any rate, verification, automated code generation, and automated test case generation based
on RCSD models seem to be promising approaches to improve the development process of rail-
way control systems and their verification. First results also show the impact of domain-specific
languages as the domain-specific knowledge covered in such models influences further usage of
models as e.g. in automated test case generation significantly.

Acknowledgements: Special thanks go to Fabian Büttner and Arne Lindow for their help with
USE and to Ulrich Hannemann and Jan Peleska for their valuable feedback to the first versions
of this paper and the related work.

Proc. OCLApps 2006 16 / 18

ECEASST

Bibliography

[BCC+05] T. Baar, D. Chiorean, A. Correa, M. Gogolla, H. Hußmann, O. Patrascoiu, P. H.
Schmitt, J. Warmer. Tool Support for OCL and Related Formalisms - Needs
and Trends. In Bruel (ed.),Satellite Events at the ModELS‘2005 Conference.
LNCS 3844, pp. 1–9. Springer-Verlag, 2005.
doi:10.1007/116634301

[BGG04] H. Bauerdick, M. Gogolla, F. Gutsche. Detecting OCL Traps in the UML 2.0 Su-
perstructure. In Baar et al. (eds.),Proceedings 7th International Conference Unified
Modeling Language (UML’2004). LNCS 3273, pp. 188–197. Springer, 2004.
doi:10.1007/b101232

[BH06] K. Berkenk̈otter, U. Hannemann. Modeling the Railway Control Domain Rigorously
with a UML 2.0 Profile. In Ǵorski (ed.),Computer Safety, Reliability, and Security,
SAFECOMP 2006. LNCS 4166, pp. 398–411. Springer, 2006.
doi:10.1007/11875567

[BHP] K. Berkenk̈otter, U. Hannemann, J. Peleska. The Railway Control System Domain.
Draft.
http://www.informatik.uni-bremen.de/agbs/research/RCSD/

[CO02] R. Cardell-Oliver. Conformance Test Experiments for Distributed Real-Time Sys-
tems. In Olderog and Steffen (eds.),International Symposium on Software Testing
and Analysis (ISSTA’02). ACM Press 1710, pp. 159–163. July 2002.
doi:10.1145/566172.566196

[DGG04] A. Denise, M.-C. Gaudel, S.-D. Gouraud. A Generic Method for Statistical Testing.
ISSRE - 15th International Symposium on Software Reliability Engineering, pp. 25–
34, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/ISSRE.2004.2

[Eva06] A. Evans. Domain Specific Languages and MDA. 2006.
http://albini.xactium.com/web/downloads/b1a35960appliedMetamodelling.pdf

[GD03] D. Große, R. Drechsler. Formal Verification of LTL Formulas for SystemC Designs.
In IEEE International Symposium on Circuits and Systems. Pp. V:245–V:248. 2003.
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1206243

[GFB05] M. Gogolla, J.-M. Favre, F. B̈uttner. On Squeezing M0, M1, M2, and M3 into a
Single Object Diagram. Technical report LGL-REPORT-2005-001, Ecole Polytech-
nique F́ed́erale de Lausanne, 2005.
http://www.db.informatik.uni-bremen.de/publications/Gogolla2005OCLWS.ps

[GLMS02] T. Grötker, S. Liao, G. Martin, S. Swan.System Design with SystemC. Kluwer Aca-
demic Publishers, 2002.

17 / 18 Volume 5 (2006)

http://dx.doi.org/10.1007/11663430_1
http://dx.doi.org/10.1007/b101232
http://dx.doi.org/10.1007/11875567
http://www.informatik.uni-bremen.de/agbs/research/RCSD/
http://dx.doi.org/10.1145/566172.566196
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISSRE.2004.2
http://albini.xactium.com/web/downloads/b1a35960appliedMetamodelling.pdf
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1206243
http://www.db.informatik.uni-bremen.de/publications/Gogolla_2005_OCLWS.ps

OCL-based Validation of a Railway Domain Profile

[OMG03] Object Management Group. MDA Guide Version 1.0.1. June 2003.
http://www.omg.org/docs/omg/03-06-01.pdf

[OMG05a] Object Management Group. OCL 2.0 Specification, version 2.0. June 2005.
http://www.omg.org/docs/ptc/05-06-06.pdf

[OMG05b] Object Management Group. Unified Modeling Language: Superstructure, version
2.0. July 2005.
http://www.omg.org/docs/formal/05-07-04.pdf

[OMG05c] Object Management Group. Unified Modeling Language (UML) Specification: In-
frastructure, version 2.0. July 2005.
http://www.omg.org/docs/ptc/04-10-14.pdf

[OMG06] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification.
Jan. 2006.
http://www.omg.org/docs/formal/06-01-01.pdf

[GZ04] M. Gogolla, P. Ziemann.Checking BART Test Scenarios with UML’s Object Con-
straint Language. Pp. 133–170. Kluwer, Boston, 2004.
http://www.db.informatik.uni-bremen.de/publications/Gogolla2004KLUWER.ps

[JSZ+04] Y. Jiang, W. Shao, L. Zhang, Z. Ma, X. Meng, H. Ma. On the Classification of
UML’s Meta Model Extension Mechanism. In Baar et al. (eds.),The Unified Mod-
elling Language: Modelling Languages and Applications. LNCS 3273, pp. 54–68.
Springer, 2004.
doi:10.1007/b101232

[Pac02] J. Pachl.Railway Operation and Control. VTD Rail Publishing, Mountlake Terrace
(USA), 2002. ISBN 0-9719915-1-0.

[PBD+05] J. Peleska, K. Berkenkötter, R. Drechsler, D. Große, U. Hannemann, A. E. Hax-
thausen, S. Kinder. Domain-Specific Formalisms and Model-Driven Development
for Railway Control Systems. InTRain workshop at SEFM2005. September 2005.
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleskaet al train2005
slides.pdf

[PGHD04] J. Peleska, D. Große, A. E. Haxthausen, J. R. Drechsler. Automated Verification
for Train Control Systems. In Schnieder and Tarnai (eds.),FORMS/FORMAT 2004
- Formal Methods for Automation and Safety in Railway and Automotive Systems.
Pp. 252–265. Technical University of Braunschweig, 2004.
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleskaet al forms2004.ps

[Ric02] M. Richters.A Precise Approach to Validating UML Models and OCL Constraints.
BISS Monographs 14. Logos Verlag, Berlin, 2002. Ph.D. Thesis, Universität Bre-
men.

[WK04] J. Warmer, A. Kleppe.Object Constraint Language 2.0. MITP-Verlag, Bonn, 2004.

Proc. OCLApps 2006 18 / 18

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/ptc/04-10-14.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.db.informatik.uni-bremen.de/publications/Gogolla_2004_KLUWER.ps
http://dx.doi.org/10.1007/b101232
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleska_et_al_train2005_slides.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleska_et_al_train2005_slides.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleska_et_al_forms2004.ps

	Introduction
	UML Profiles and OCL
	Short Introduction to the Railway Domain
	RCSD Profile
	Types and Literals
	Network Elements
	Associations
	Instances of Network Elements and Associations
	Route definitions

	Validation of Wellformedness Rules with USE
	Modeling the UML Metamodel and the RCSD Profile for USE
	Compliance of RCSD Model to Profile on Class Level
	Compliance of RCSD Model to Profile on Instance Level
	Results

	Related and Future Work
	Conclusion

