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Abstract: The layout of Logichart diagrams is first discussed. The layout condition
is formalized with a layout constraint (expressions of equalities and inequalities) of
tree-structured diagrams. Next, a cell placement that gives the minimum-area layout
under a specific layout constraint is presented. A Logichart attribute graph grammar
is then formalized. This grammar is underlain by a neighborhood controlled embed-
ding (NCE) graph grammar whose productions are defined in order to formalize the
graph-syntax rules of Logichart diagrams. Semantic rules attached to the grammar’s
productions are defined in such a way that they can extract the layout information
needed to display a Logichart diagram by means of the attributes attached to the
nodes of the graphs derived by the grammar. The semantic rules are formalized so
as to obtain the Logichart diagrams of the minimum area under the above layout
constraint.

Keywords: Prolog program diagrams, Attribute graph grammar, Graph layout

1 Introduction

Visualization using program diagrams can effectively facilitate the understanding, debugging,
and education of programs. The Transparent Prolog Machine, a well-known Prolog visualization
system [1, 2], displays the structure of a pure Prolog program as a tree with AND/OR branches
(an AND/OR tree) and depicts the states of the various goals as symbols at its nodes. Other
Prolog visualization and debugging systems, e.g., [3], also deal primarily with pure Prolog and
use AND/OR trees. However, it is not easy to correlate the content of a Prolog program with that
of its corresponding AND/OR tree, because the structure of the clauses of the Prolog program,
and their representations in the AND/OR tree, are different.

Logichart (a Logic flowchart) is a program diagram description language that we previously
developed to help visualize the execution flow of Prolog programs [4, 5]. Logichart diagrams
have been developed to represent computation, which is the response of a Prolog program to
a query, as an intelligible diagram. A Logichart diagram has a tree-like structure, as shown in
Figure 1, with the following features: (1) the head and body goals that compose each clause are
aligned horizontally, and (2) a calling goal and the heads of the clauses that it calls are aligned
vertically. Feature (1) gives clauses in a Prolog program and their representations in the corre-
sponding Logichart diagram a similar structure so that it is easier to see the correspondences be-
tween them. Feature (2) makes it easier to understand the relationships between related clauses,
because they are vertically adjacent.

1 / 16 Volume 7 (2007)

mailto:adachi@eng.toyo.ac.jp
mailto:gz0600160@toyonet.toyo.ac.jp


Logichart and its Layout

prolog_program test(X,Y,Z)

test(X,Y,Z)

test(_, _, _)

appendList(X, Y, Z)

appendList([], X, X)

appendList([X|L1], L2, [X|List]) appendList(L1, L2, List)

appendList([X|L1], L2, [X|List])

write((X, Y, Z))

write(end)

nl

appendList([], X, X)

nl

Figure 1: Example of Logichart diagrams

In this paper, we first explain the structure of Logichart diagrams and discuss their layout. The
layout condition is formalized with a layout constraint (expressions of equalities and inequalities)
of tree-structured diagrams. We then present a cell placement that gives the minimum-area layout
of a Logichart diagram under a specific layout constraint.

A Logichart diagram has a graph structure composed of nodes (which are called cells in
Logichart) and edges. The syntax rules of Logichart diagrams are therefore well formalized
with a graph grammar. Furthermore, layout information (the x- and y-coordinates of each node)
can be well evaluated by means of attributes attached to each node label and layout rules attached
to each production of the graph grammar. Based on these viewpoints, we formalize the syntax
and layout rules of Logichart diagrams based on an attribute graph grammar [6, 7], and as a
result, we define the Logichart attribute graph grammar (Logichart-AGG for short). This gram-
mar is underlain by a neighborhood controlled embedding (NCE) graph grammar that generates
ordered graphs [8]. Its productions are defined in order to formalize the graph-syntax rules of
Logichart diagrams, and the semantic rules attached to the grammar’s productions are defined in
such a way that they can extract the layout information needed to display a Logichart diagram by
means of the attributes attached to the nodes of the graphs derived by the grammar. The semantic
rules are formalized so as to obtain Logichart diagrams of the minimum area under the above
layout constraint.

Some practical studies on formalizing the syntax of the program diagrams of imperative pro-
gramming languages (e.g., Pascal, C) in terms of attribute graph grammars have already been
presented [7, 9]. However, except for the authors’ research, there are no known studies on for-
malizing Prolog program diagrams. Furthermore, our present study is the first to discuss the
minimum-area layout of program diagrams under specific layout conditions and to formalize it
as the semantic rules of attribute graph grammar.
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2 Prolog program visualization

2.1 Logichart diagrams

Prolog is generally an interpreted language, although compiler implementations do exist. A
Prolog program consists of a set of clauses. Each clause has a head and a body. The body
consists of either no goals, one goal, or a sequence of goals. A Prolog program is executed
when the interpreter is given a query that consists of one or more goals. The system uses its
computation rule to select a goal from the query, then uses its search rule to search for a clause
whose head matches the goal. If such a clause is found and called, the current query becomes
(is reduced to) a new query by replacing the selected goal with the body that corresponds to
the matching head. The Prolog system dynamically constructs the execution of its programs
(queries) in this way.

Logichart diagrams have been developed to represent computation, which is the response of a
Prolog program to a query, as an intelligible diagram [4]. A Logichart diagram is relatively easy
to understand, and correspondence with the source Prolog program is clearly presented. Figure 1
shows a Logichart diagram that corresponds to the Prolog program shown below and the query
‘?- test(X,Y,Z).’.

test(X,Y,Z) :- appendList(X,Y,Z),
write((X,Y,Z)),nl.

test(_,_,_) :- write(end),nl.
appendList([],X,X).
appendList([X|L1],L2,[X|List]) :-

appendList(L1,L2,List).

2.2 Drawing constraints of Logichart diagrams

Drawing Logichart diagrams requires their cells to be laid out. This section discusses the layout
conditions for Logichart diagrams.

A Logichart diagram has a rooted, binary tree structure. The layout conditions of Logichart
diagrams are formalized as the layout constraints of tree-structured diagrams as follows.

Definition 1 An L-tree-structure T is defined by T = (V,E,r,LE ,width,depth), where (V,E)
is a binary tree, V is a set of cells, E is a set of edges and the root cell is r ∈V . LE : E →{h,v}
is an edge labeling function. The map width : V → R is the width f unction of the cells, and the
map depth : V → R is the depth f unction of the cells.

The horizontal length is represented by width(p), which is called the width o f cell p, and the
vertical length is represented by depth(p), which is called the depth o f cell p.

Definition 2 The placement of an L-tree-structure, T = (V,E,r,LE ,width,depth), is defined
as a function, π : V → R×R. Symbols πx(p) and πy(p) denote the x-coordinate and the y-
coordinate of p, respectively: π(p) = (πx(p),πy(p)).
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Definition 3 Let T = (V,E,r,LE ,width,depth) be an L-tree-structure and π be the placement
of T : D = (T,π) is called an L-tree-structured diagram (L-TSD for short).

L-TSDs are drawn by mapping each cell to a set of planar coordinates and joining the cells to-
gether with line segments corresponding to each edge. The x- and y-coordinates are taken along
the respective horizontal and vertical directions, and the coordinates of each cell are considered
to be those of its top left corner.

Definition 4 Let T = (V,E,r,LE ,width,depth) be an L-tree-structure, π be the placement of
T , and D = (T,π) be an L-TSD. The width and the depth o f D are defined by the following
functions:

width(D) ≡ max{|πx(p)+width(p)−πx(q)| : ∀p,q ∈V}.
depth(D) ≡ max{|πy(p)+depth(p)−πy(q)| : ∀p,q ∈V}.

Definition 5 Let T = (V,E,r,LE ,width,depth) be an L-tree-structure, π be the placement of
T , and D = (T,π) be an L-TSD. The area o f D is defined as

area(D)≡ width(D)×depth(D).

For cells s and t of an L-TSD, t is called a v-child of s if there is an edge labeled v from s
to t. Similarly, t is called an h-child of s if there is an edge labeled h from s to t. Here, t is
called a v-descendant of s if there is a path composed of edges labeled v. Similarly, t is called
an h-descendant of s if there is a path composed of edges labeled h.

Here, v-subTSD with root cell s is defined as a subdiagram of an L-TSD consisting of cell
s, its v-child t, an edge labeled v from s to t, and a subTSD of the L-TSD whose root cell is t.
Similarly, h-subTSD with root cell s is defined as a subdiagram of an L-TSD consisting of cell s,
its h-child t, an edge labeled h from s to t, and a subTSD of the L-TSD whose root cell is t. The
s itself is the h-subTSD with root cell s if s has no h-child. A cell with no input edge labeled h is
called a head cell, and a cell with an input edge labeled h is called a goal cell.

An edge labeled h is drawn horizontally, and an edge labeled v is drawn vertically for an
L-TSD. The layout constraints for drawing L-TSDs are as follows.

Condition B1: If t is an h-child of s, then
πy(s) = πy(t). (Figure 2)

Condition B2: If t is a v-child of s, then
πx(s) = πx(t). (Figure 3)

Condition B3: If s is a goal cell, then
πy(v-child of s) ≥ πy(s) + depth(s) + GapY. (Figure 4)

Condition B4: If s is a head cell, then
πy(v-child of s) ≥ max{πy(t)+depth(t) | t is a cell of h-subTSD of s} + GapY. (Figure 5)

Condition B5: If s is a goal cell, then
πx(h-child of s) ≥ max{πx(t)+width(t) | t is a cell of v-subTSD of s} + GapX. (Figure 6)
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Condition B6: If s is a head cell, then
πx(h-child of s) ≥ πx(s) + width(s) + GapX. (Figure 7)

Figure 2: Layout condition B1 Figure 3: Layout condition B2

GapY

GapY

GapY

Figure 4: Layout condition B3

GapY

Figure 5: Layout condition B4

The minimum-area L-TSD is obtained with the following theorem.

Theorem 1 For any L-TSD, the placement, π , satisfying the condition, C1∧C2∧C3∧C4∧C5∧
C6, gives the minimum-area L-TSD satisfying B1∧B2∧B3∧B4∧B5∧B6.

Condition C1: If t is an h-child of s, then
πy(s) = πy(t).

Condition C2: If t is a v-child of s, then
πx(s) = πx(t).

Condition C3: If s is a goal cell, then
πy(v-child of s) = πy(s) + depth(s) + GapY.

Condition C4: If s is a head cell, then
πy(v-child of s) = max{πy(t)+depth(t) | t is a cell of h-subTSD of s} + GapY.

Condition C5: If s is a goal cell, then
πx(h-child of s) = max{πx(t)+width(t) | t is a cell of v-subTSD of s} + GapX.
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GapX GapX

Figure 6: Layout condition B5

GapXGapX GapX

Figure 7: Layout condition B6

Condition C6: If s is a head cell, then
πx(h-child of s) = πx(s) + width(s) + GapX.

Proof. It is obvious that C1∧C2∧C3∧C4∧C5∧C6 implies B1∧B2∧B3∧B4∧B5∧B6. Suppose
a placement, πC, satisfies C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6. For L-TSD under the placement, πC,
cells connected with an edge labeled h cannot be placed closer because of the layout conditions,
B2∧B5∧B6. Thus, the placement, πC, gives the layout with the minimum width. Similarly, for
L-TSD under the placement, πC, cells connected with an edge labeled v cannot be placed closer
because of the layout conditions, B1∧B3∧B4. Thus, the placement, πC, gives the layout with the
minimum depth. Consequently, the placement, πC, gives the layout with the minimum area.

Drawing binary trees that only have rightward-horizontal and downward-vertical segments is
known as h-v drawing. Several studies on h-v drawing problems have been presented [10, 11].
The L-TSD drawing problem differs from these because an L-TSD’s cells have a particular size
(height and depth), and its layout constraints also differ from theirs.

3 Logichart-AGG

The Logichart-AGG consists of an edNCE graph grammar that generates ordered graphs and
semantic rules. The edNCE grammar has formalized productions that specify the syntax rules
of Logichart diagrams, and the semantic rules enable us to calculate the node coordinates of
Logichart diagrams satisfying the layout constraints described in the previous section.

The Logichart-AGG specifications are very concise and consist of 13 productions associated
with 88 semantic rules. The node label alphabet of the Logichart-AGG is shown in Figure 8.
The edge label alphabet is Γ = Ω = {e,h,v}. We introduced additional edges labeled ‘h’ and
‘v’ to the Logichart-AGG in order to regard the diagrams derived by it as L-TSDs. A Logichart
diagram is obtained by removing all edges labeled ‘h’ and ‘v’ from the diagram derived by the
Logichart-AGG.

The following attributes are defined to extract the node coordinates needed to make Logichart
diagrams.
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[prolog_program]   start label

[goal]                      goal

[clause]                   clause

(a) Nonterminal node alphabet

(b) Terminal node alphabet

head

THEN

ELSE

goal

negated goal

recursive clause

if goal

unit clause

built-in predicate

goal sequence

THEN label

ELSE label

Figure 8: Node alphabets of Logichart-AGG

Inherited attributes of node labels (except the initial label):

• πx : the x-coordinate of a node

• πy : the y-coordinate of a node

Synthesized attributes of nonterminal node labels:

• subtree width : the width of a subtree

• subtree depth : the depth of a subtree

The following symbols and functions are used in the productions and semantic rules of the
Logichart-AGG.

• <X> : the text string corresponding to the Prolog goal name X

• “X” : text string X

• max(x,y) : a function returns the maximum value of x and y

• get width(x) : a function returns the width of terminal node x

• get depth(x) : a function returns the depth of terminal node x
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Some of the productions and their associated semantic rules in the Logichart-AGG are illus-
trated in Figures 9 to 14. The number in the lower right of each node of the productions is its
identifier, and denotes its order within the nodes of the right-hand side graph. The symbol # in
the connection instructions of the production definition matches any one of the node labels.

The production and semantic rules to rewrite the initial node ‘[ prolog program ]’ are shown
in Figure 9. These rules are formalized to represent queries given in Prolog syntax, and the
nonterminal node ‘goal’ in the right-hand-side graph corresponds to the query. Semantic rules
πx(1) = RootX and πy(1) = RootY mean that the x-coordinate of node 1 is ‘RootX’ and the
y-coordinate of node 1 is ‘RootY’. Semantic rule πx(2) = RootX+get width(1)+GapX means
that the x-coordinate of node 2 is equal to ‘RootX’ plus the width of the head node labeled
“prolog program” plus the horizontal gap ‘GapX’. Semantic rule πy(2) = RootY means that
the y-coordinate of node 2 is ‘RootY’. The root node “prolog program” and the subdiagram
derived from the nonterminal node 2 labeled ‘goal’ are aligned with a separation of ‘GapX’ in
the horizontal direction by these semantic rules.

“prolog_program”0 ::=
1

2[prolog_program] [goal]

C = φ
Semantic Rules

  π  (1) = RootX,      π  (1) = RootY, 

  π  (2) = RootX + get_width(1) + GapX,      π  (2) = RootY,

  subtree_width(0) = get_width(1) + GapX + subtree_width(2),

  subtree_depth(0) = max(get_depth(1), subtree_depth(2))

Production

,
e,h

Figure 9: Rules used to rewrite initial node ‘[ prolog program ]’

The production and semantic rules shown in Figure 10 are as formalized for the ‘and’ operation
on Prolog goals. Semantic rule πx(2) = πx(1) + subtree width(1) + GapX means that the x-
coordinate of node 2 is equal to the x-coordinate of node 1 plus the width of the subdiagram
derived from node 1 plus the horizontal gap ‘GapX’. Therefore, goals connected by the operator
‘and’ are aligned with a separation of ‘GapX’ in the horizontal direction.

The production and semantic rules shown in Figure 11 are as formalized for the ‘or’ operation
on Prolog goals. Semantic rule πy(2) = πy(1) + subtree depth(1) + GapY means that the y-
coordinate of node 2 is equal to the y-coordinate of node 1 plus the depth of the subdiagram
derived from node 1 plus the horizontal gap ‘GapY’. Therefore, goals connected by the operator
‘or’ are aligned with a separation of ‘GapY’ in the vertical direction.

The production and semantic rules shown in Figure 12 are formalized for the call of a goal.
Semantic rule πy(2) = πy(1)+depth(1)+GapY means that the y-coordinate of node 2 is equal
to the y-coordinate of node 1 plus the depth of the cell corresponding to node 1 plus the vertical
gap ‘GapY’. Therefore, a calling goal and the clause heads of the goals called by it are aligned
with a separation of ‘GapY’ in the vertical direction.

Figure 13 shows the rules for drawing negated goals. Figure 14 shows the production and
semantic rules used to rewrite a nonterminal node ‘[ goal ]’ with a terminal node that corresponds
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[goal]
0

::=
1 2

[goal] [goal]

C = {(#,e,e,1,in), (#,e,e,2,out), (#,h,h,1,in),

         (#,h,h,2,out), (#,v,v,1,in), (#,v,v,1,out)}

Semantic Rules

  π  (1) = π  (0),      π  (1) = π  (0),

  π  (2) = π  (1) + subtree_width(1) + GapX,      π  (2) = π  (1),

  subtree_width(0) = subtree_width(1) + GapX + subtree_width(2),

  subtree_depth(0) = max(subtree_depth(1), subtree_depth(2))

Production

x y

x

x

x

,
e,h

Figure 10: Rules formalized for ‘and’ operation on Prolog goals

[goal]0 ::= 1

2

[goal]

[goal]

C = {(#,e,e,1,in), (#,e,e,1,out),

         (#,e,e,2,in), (#,e,e,2,out),

         (#,h,h,1,in), (#,h,h,1,out),

         (#,v,v,1,in), (#,h,h,2,out)}

Semantic Rules

  π  (1) = π  (0),      π  (1) = π  (0),

  π  (2) = π  (1),      π  (2) = π  (1) + subtree_depth(1) + GapY,

  subtree_width(0) = max(subtree_width(1), subtree_width(2)),

  subtree_depth(0) = subtree_depth(1) + GapY + subtree_depth(2)

Production

x

yx yx

yx y

,

v

Figure 11: Rules formalized for ‘or’ operation on Prolog goals

to built-in predicates such as ‘write’, ‘nl’, and the cut ‘!’.

4 Attribute evaluation of Logichart-AGG

The definitions of an edNCE graph grammar, its leftmost derivation, an attribute graph grammar,
and attribute evaluation algorithms are outlined in the appendix.

The productions and semantic rules of the Logichart-AGG are defined so as to guarantee that
the simple one-pass evaluator described in Figure 16 in the appendix will evaluate all attribute
instances of every c-derivation tree of the Logichart-AGG.

Theorem 2 The Logichart-AGG is a simple one-pass.

An L-TSD is obtained by removing all edges labeled ‘e’ from a diagram derived by the
Logichart-AGG. The semantic rules of the Logichart-AGG guarantee the next theorem.

Theorem 3 An L-TSD derived by the Logichart-AGG satisfies the layout condition C1 ∧C2 ∧
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0 ::=
1

2

[goal]

[clause]

C = {(#,e,e,1,in), (#,e,e,1,out),

         (#,h,h,1,in), (#,h,h,1,out),

         (#,v,v,1,in), (#,v,v,2,out)}

Semantic Rules

  π  (1) = π  (0),       π  (1) = π  (0),

  π  (2) = π  (1),       π  (2) = π  (1) + get_depth(1) + GapY,

  subtree_width(0) = max(get_width(1), subtree_width(2)),

  subtree_depth(0) = get_depth(1) + GapY + subtree_depth(2)

Production

<call_goal>

x yx y

x yx y

,
e,v

Figure 12: Rules formalized for call of goal

0 ::=
1

[goal]

C = {(#,e,e,1,in), (#,e,e,1,out), (#,h,h,1,in), (#,h,h,1,out),

         (#,v,v,1,in), (#,v,v,2,out)}

Semantic Rules

  π  (1) = π  (0),       π  (1) = π  (0),

  π  (2) = π  (1),       π  (2) = π  (1) + get_depth(1) + GapY,

  π  (3) = π  (2) + get_width(2) + GapX,       π  (3) =π  (2),

  subtree_width(0) = max(get_width(1), get_width(2) + GapX + subtree(3)),

  subtree_depth(0) = get_depth(1) + GapY + max(get_depth(2), subtree(3))

Production

<negation_goals>

<negation_goals>
2

[goal] 3

yx y

yx y

yx y

,
e,v

e,h

Figure 13: Rules formalized for negation of goals

C3∧C4∧C5∧C6.

The above theorem states that the diagrams derived by the Logichart-AGG are the minimum-
area ones under the layout constraint, B1∧B2∧B3∧B4∧B5∧B6.

5 Conclusion

We presented a method of visualizing Prolog programs by means of Logichart diagrams. The
layout condition for the Logichart diagrams was formalized with a layout constraint (expressions
of equalities and inequalities) of tree-structured diagrams. The minimum-area layout of the
Logichart diagrams was obtained under a specific layout constraint. We then formalized the
syntax and layout rules of Logichart diagrams based on an attribute graph grammar, and defined

Proc. LED 2007 10 / 16



ECEASST

0
::=

1
[goal]

C = {(#,e,e,1,in), (#,e,e,1,out),

         (#,h,h,1,in), (#,h,h,1,out),

         (#,v,v,1,in), (#,v,v,1,out)}

Semantic Rules

  π  (1) = π  (0),       π  (1) = π  (0),

  subtree_width(0) = get_width(1),

  subtree_depth(0) = get_depth(1)

Production

<built-in_predicate>

x yx y

,

Figure 14: Rules formalized for built-in predicates

the Logichart-AGG. The diagrams derived by the Logichart-AGG were the minimum-area ones
under the specific layout constraint.

We implemented a Prolog visualization system in complete accordance with the Logichart-
AGG in the SICStus prolog [12]. The system inputs a prolog program and a query, parses them
(and does not parse a graph grammar), generates an internal representation of the corresponding
Logichart diagram, and displays them with Tcl/Tk. Figure 15 shows a snapshot of the Prolog
visualization system.

Figure 15: Snapshot of Prolog visualization system
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Appendix
We outline an edNCE grammar that generates ordered graphs, leftmost derivations, and c-

derivation trees by referring to [8].
Attribute graph grammars were developed in the 1980s [6]. Some attribute evaluation algo-

rithms for attribute graph grammars have been published (e.g., [13, 14]). Here, we explain an
attribute graph grammar whose underlying grammar is the edNCE grammar that generates or-
dered graphs. We then explain an attribute evaluation algorithm on the basis of the node order of
the right-hand side graphs of the edNCE grammar’s productions and their c-derivation trees.

A Graph grammar and derivation

A.1 edNCE grammar

Let Σ be an alphabet of nodes and Γ be an alphabet of edges. A graph over Σ and Γ is a 3-tuple
H = (V,E,λ ), where V is the finite nonempty set of nodes, E ⊆ {(v,γ,w) | v,w∈V,v 6= w,γ ∈ Γ}
is the set of edges, and λ : V → Σ is the node labeling function. The components of a graph, H,
are denoted by VH , EH , and λH . Two graphs H and K are isomorphic if there is a bijection f :
VH →VK such that EK = {( f (v),γ, f (w)) | (v,γ,w) ∈ EH} and, for all v ∈VH , λK( f (v)) = λH(v).
The set of all graphs over Σ and Γ is denoted as GRΣ,Γ.

Definition 6 An edNCE grammar is a tuple G = (Σ, ∆, Γ, Ω, P, S), where

(1) Σ is the alphabet of node labels.

(2) ∆ is the alphabet of terminal node labels.

(3) Γ is the alphabet of edge labels.

(4) Ω is the alphabet of final edge labels.

(5) P is the finite set of productions. A production has the form ‘X → (D,C)’, where

(5.1) X ∈ Σ−∆ and D ∈ GRΣ,Γ.

(5.2) C ⊆ Σ× Γ× Γ×VD× {in, out} is the connection relation of p and each element
(σ ,β ,γ,x,d) (σ ∈ Σ, β ,γ ∈ Γ, x ∈VD,d ∈ {in, out}) of C is a connection instruction
of p.

(6) S∈Σ−∆ is the initial nonterminal node label. The initial graph, Hs, is a graph that consists
of a single node labeled S and has no edge.

Two productions p1 : X1 → (D1,C1) and p2 : X2 → (D2,C2) are called isomorphic if X1 = X2
and there is an isomorphism f from D1 to D2 and C2 = {(σ , β ,γ, f (x), d) | (σ , β ,γ, x, d) ∈
C1}. By copy(p), we denote the set of all productions that are isomorphic to a production, p, in
P. An element of copy(p) is called a production copy of p. copy(P) =

⋃
p∈P

copy(p).

13 / 16 Volume 7 (2007)



Logichart and its Layout

The process of graph rewriting in an edNCE graph grammar is defined as follows. Let a given
graph (host graph) be H and let v be a nonterminal node of H. Let node v be labeled X , and let
p′ : X → (D′,C′) be a production copy of some p ∈ P such that D′ and H are mutually disjoint.

(1) Remove node v and all edges that are incident with v from H. Let the resulting graph (rest
graph) be H−.

(2) Put D′ (daughter graph) in H−.

(3) Establish new edges between certain nodes of D′ and certain nodes of H− in a way spec-
ified by the connection instructions in C′. This is called the embedding of D′ in H−. Let
the resulting graph be H ′.

The meaning of an instruction, (σ ,β ,γ,x, in) ∈ C′, is as follows: if there is an edge with
label β from a node, w ∈ VH −{v}, with label σ to node v, then the embedding process should
establish an edge with label γ from node w to node x ∈ VH ′ . Also, this is similarly the case for
(σ ,β ,γ,x, out) instead of (σ ,β ,γ,x, in), where ‘in’ refers to the incoming edges of v and ‘out’
to the outgoing edges of v.

Let H and H ′ be graphs in GRΣ,Γ. If H is transformed into H ′ by the application of a production
copy, p′, as described above, then we write H⇒v,p′H

′ and call it a derivation step. A sequence
of derivation steps H0 ⇒v1,p′1

H1 ⇒v2,p′2
· · · ⇒vn,p′n

Hn is called a derivation. A derivation, H0

⇒v1,p′1
H1 ⇒v2,p′2

· · · ⇒vn,p′n
Hn, n≥ 0, is creative if the graphs, H0 and D′

i, 1≤ i≤ n, are mutually
disjoint, where rhs(p′i) = (D′

i,C
′
i). We will restrict ourselves to creative derivations. We write

H⇒∗H ′ if there is a creative derivation as above, with H0 = H and Hn = H ′. A sentential form of
G is a graph, H, such that HS⇒∗H for some initial graph HS. A set of sentential forms is denoted
by S (G). The graph language generated by G is L (G) = {[H] | H ∈ GR∆,Ω and HS⇒∗H for
some initial graph HS}. For a graph, H, the set of all graphs isomorphic to H is denoted as [H].

A.2 Leftmost derivation

The leftmost derivation is defined as follows. Let a given ordered graph (host graph) be H and
let v be the first nonterminal node within the node order of H. Let node v be labeled X , and let
p′ : X → (D′,C′) be a production copy of some p ∈ P such that D′ and H are mutually disjoint.

(1) Remove node v and all edges that are incident with v from H. Let the resulting graph (rest
graph) be H−.

(2) Put D′ (daughter graph) in H−.

(3) Establish new edges between certain nodes of D′ and certain nodes of H− in the way
specified by the connection instructions in C′. Let the resulting graph be H ′.

(4) If the nodes of H are ordered as (v1, · · · ,vh) with v = vi, and those of D′ are ordered as
(w1, · · · ,wd), then the order, H ′, is v1, · · · ,v(i−1),w1, · · · ,wd , v(i+1), · · · ,vh.

Let the initial graph, Hs, be an ordered graph that consists of a single node labeled S. If an
ordered graph, H, is transformed into an ordered graph, H ′, by the application of a production
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copy, p′, as described above, then we write H⇒p′H
′ and call it a leftmost derivation step. A

sequence of leftmost derivation steps H0 ⇒v1,p′1
H1 ⇒v2,p′2

· · · ⇒vn,p′n
Hn is called a leftmost

derivation.
We write H⇒∗

lmH ′ if there is a leftmost derivation from H to H ′. The graph language leftmost
generated by G is Llm(G) = {[H] | H ∈ GR∆,Ω and HS⇒∗

lmH for some initial graph HS}, where
the abstract graph, [H], no longer involves an order.

A.3 Derivation tree

Derivation trees are rooted, ordered trees. Each vertex of a tree has directed edges to each of its
k children, k ≥ 0, and the order of the children is indicated by labeling the edges as 1, · · · ,k.

Definition 7 ([8]) Let G = (Σ, ∆, Γ, Ω, P, S) be an edNCE grammar. A c-labeled derivation
tree of G is a rooted, ordered tree t whose vertices are labeled by production copies in copy(P),
such that

(1) the right-hand sides of all the production copies that label the vertices of t are mutually
disjoint, and do not contain the root of t as a node, and

(2) if vertex v of t has label X → (D,C), then the children of v are the nonterminal nodes of D,
and their order in t is the same as their order in D; moreover, for each child w, the left-hand
side of the label of w in t equals its label in D.

If the root of a derivation tree, t, is labeled with production X → (D,C), then we also say that
t is a derivation tree for X (note that not necessarily X = S).

B AGG and attribute evaluation

B.1 Definition of AGG

An AGG in this work is defined by referring to [7].

Definition 8 An attribute graph grammar (AGG) is a tuple AG = < G, A, F >, where

(1) G = (Σ,∆,Γ,Ω,P,S) is an edNCE grammar that generates order graphs and we call it an
underlying graph grammar of AG.

(2) Each node label X ∈ Σ of G has two disjoint finite sets Inh(X) and Syn(X) of inherited
and synthesized attributes, respectively. We denote the set of all attributes of nonterminal
node symbol X by A(X) = Inh(X)∪Syn(X). A =

⋃
X∈Σ

A(X) is called the set of attributes of

G. We assume that Inh(S) = φ , and that for each X ∈ ∆ Syn(X) = φ . An attribute of X is
denoted by a(X), and the set of possible values of a is denoted by V (a).

(3) Associated with each production p : X0 → (D,C) is a set Fp of semantic rules, which
define all the attributes in Syn(X0)∪ Inh(X1)∪ ·· ·∪ Inh(Xn) where VD = {v1, · · · ,vn} and
λD(vi) = Xi,1 ≤ i ≤ n. A semantic rule defining an attribute, a(Xk),0 ≤ k ≤ n, has form
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a(Xk) := f (a1(Xi1), . . . ,am(Xim)), where f is a mapping, V (a1(Xi1)) × . . .×V (am(Xim))
into V (a(Xk)). In this situation, we say that a(Xk) depends on a1(Xi1), · · · ,am(Xim) in p.
The set, F =

⋃
n∈P

Fp, is called the set of semantic rules of AG.

B.2 Attribute evaluation algorithm

The graph nodes generated by AGGs have no natural linear ordering. Therefore, to evaluate
attributes properly, we need to first decide the order in which the vertices of the c-derivation trees
of the AGG are traversed. To do this, we use an edNCE grammar that generates ordered graphs
as the underlying grammar of the AGG. The vertices of c-derivation trees are then traversed in
the node order of the right-hand side graphs of the edNCE grammar’s productions.

An AGG G is a simple one-pass if the simple-pass evaluator given in Figure 16 evaluates all
attribute instances of every c-labeled derivation tree for the S of G. The simple-pass evaluator
traverses the vertices of a c-derivation tree t in depth-first and then from left to right.

procedure EVALUATE(v0); vertex v0;
{Let the label of vertex v0 be X → (D,C) and let the nodes
of D be ordered as v1,v2, · · · ,vn.}

begin
compute all inherited attributes of X ;
for i := 1 to n do

begin
if vi is a nonterminal node then EVALUATE(vi);
else compute all attributes of λD(vi);

end
compute all synthesized attributes of X ;

end

Simple one-pass
begin

EVALUATE(root);
end

Figure 16: Simple one-pass evaluator
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