
Electronic Communications of the EASST
Volume 7 (2007)

Proceedings of the Workshop on the
Layout of (Software) Engineering Diagrams

(LED 2007)

A Pattern-Based Layout Algorithm for Diagram Editors

Sonja Maier and Mark Minas

16 pages

Guest Editors: Andrew Fish, Alexander Knapp, Harald Störrle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Pattern-Based Layout Algorithm for Diagram Editors

Sonja Maier 1 and Mark Minas 2

1 sonja.maier@unibw.de
2 mark.minas@unibw.de

Institut für Softwaretechnologie
Universität der Bundeswehr München, Germany

Abstract: The diagram editor generator framework DIAMETA utilizes meta-model-
based language specifications and supports free-hand as well as structured editing.
We presented a generic layout algorithm that meets the demands of this kind of
editors. The algorithm combines two concepts, constraint satisfaction and attribute
evaluation, to a powerful methodology for specifying the layout for a particular
visual language. As the layout specification for this algorithm is rather complex, we
encapsulated basic functionality into reusable patterns. This paper describes this
pattern concept of the generic layout algorithm, and shows how they simplify the
layout specification of a specific language.

Keywords: Pattern, Constraint Satisfaction, Attribute Evaluation, Visual Language,
Free-hand Editing, Structured Editing

1 Introduction

Several approaches and tools have been proposed to specify visual languages and to generate
editors from such specifications. These attempts can be characterized by the way the diagram
language is specified and by the way the user interacts with the editor and creates respectively
edits diagrams. Most visual languages have a meta-model as (abstract) syntax specification. A
model is essentially a class diagram of the data structure that is visualized by a diagram. When
considering user interaction and the way how the user can create and edit diagrams, structured
editing is usually distinguished from free-hand editing. Structured editors offer the user some
operations that transform correct diagrams into (other) correct diagrams. Free-hand editors, on
the other hand, allow to arrange diagram components from a language-specific set on the screen
without any restrictions. The editor has to check whether the drawing is correct and what its
meaning is. In both cases, a layouter may be used to beautify the diagram. In free-hand mode,
the editor user has more freedom, which implies that the layouter is more complex.

In [MM07] we designed a generic layout algorithm that works for model-based visual lan-
guages. It meets the demands of structured as well as free-hand editing. Our algorithm was
designed for the framework DIAMETA, that follows the model-driven approach to specify dia-
gram languages. From such a specification an editor, offering structured as well as free-hand
editing, can be generated. In Fig. 1 we can see an editor that was generated with DIAMETA.

For structured editors, layout algorithms were studied in the past [CMP99]. For free-hand
editors, these layout algorithms cannot be applied in a straightforward way - the layouter has
to deal with the increase of flexibility and should restrict the user only in a moderate way. In

1 / 16 Volume 7 (2007)

mailto:sonja.maier@unibw.de
mailto:mark.minas@unibw.de

Pattern-Based Layout

the world of grammar-based editors, some layout algorithms have been established in the past
[Min04]. Our layout algorithm operates on a meta model instead. It allows for defining a layout
that is specialized for a certain model, i.e. a certain visual language.

One frequently used concept is attribute evaluation. An attribute evaluator is fast and best
suited if the layout is unambiguous. This concept cannot deal with the situation that the same
diagram may be represented in different ways. Especially in free-hand mode, a conventional
attribute evaluator is not sufficient. Another concept that is frequently used for layout [Min04,
CMP99] is constraint satisfaction. The disadvantages of this concept are that constraint satisfac-
tion is slow in some cases and its behavior is unpredictable in some situations.

Figure 1: Petri net editor

In [MM07] we presented an algorithm that combines the two concepts, constraint satisfaction
and attribute evaluation, to a powerful algorithm that is fast, flexible and behaves exactly the
way we desire: Declarative constraints ensure the characteristics of the layout. If they are not
fulfilled, a set of certain attribute evaluation rules is switched on. These rules are evaluated, and
the associated attributes are updated.

We realized that writing such a specification is rather complicated and complex. Therefore
we encapsulated basic functionality as packages, as it is done in [SK03, Sch06], and give the
user the opportunity to use (and reuse) these packages. They contain a set of constraints and
corresponding attribute evaluation rules that are tailored to a specific problem, e.g. to the problem
of arranging arrows in a graph-based visual language. These packages are called patterns in
the following, the terminology used in [SK03, Sch06]. These patterns introduce another level

Proc. LED 2007 2 / 16

ECEASST

of abstraction on top of the specification, as design patterns [GHJV95] do for object-oriented
software design. In order to use such a predefined pattern, the model must contain some special
components, e.g. for the GraphPattern, the model must contain a class representing edges and a
class representing nodes.

For most visual languages, standard layout algorithms may be specified, using predefined pat-
terns. Using them simplifies the layout specification. If the predefined patterns are not sufficient,
e.g. for unusual visual languages or a fancy layout, the patterns may be adjusted to the special
needs or new patterns may be created. And of course it is also possible to use the algorithm
in the traditional way and benefit from the complete functionality the generic layout algorithm
offers.

In Sect. 2 we introduce the model of Petri nets, the visual language that is used as a running
example. In Sect. 3 we explain the generic layout algorithm that we have proposed for meta
model based editors. In Sect. 4 we introduce the pattern concept for the generic layout algorithm.
In Sect. 5 we show how to use this concept to create the layout for Petri net editors. Sect. 6
summarizes some implementation details and gives an overview of DIAMETA, the environment
in which the pattern concept was tested. Sect. 7 concludes the paper.

2 Running Example

In this section we introduce an editor for Petri nets as running example. First we describe the
underlying meta model of the Petri net language. Then we explain how the diagram is visualized.
Finally we give a short overview of the layout that we are going to define throughout the paper.

Each diagram consists of a finite set of visual components. In Petri nets, these are places,
transitions, tokens, and arrows between places and transitions. Each component is determined
by its attributes.

Figure 2: Meta model of Petri nets

3 / 16 Volume 7 (2007)

Pattern-Based Layout

Fig. 2 shows the meta model for Petri nets. It contains the class Node as an abstract base class
of a Petri net’s Place or Transition. The classes Place and Transition have a member attribute
label. Edge is the abstract base class of a connection between places and transitions. Concrete
classes of the abstract model are Place, Transition, PTArrow, TPArrow, and Token respectively.
Transition-Place relations are represented by the associations between Transition, TPArrow and
Place, Place-Transition relations by the associations between Place, PTArrow and Token. Place-
Token relations are represented by the association between the classes Place and Transition.

In the meta model, the abstract syntax is described. Besides that, some aspects of the concrete
syntax are included. This additional information is needed to perform layout computations. The
classes CPlace, CTransition, CArrow and CToken represent aspects of the concrete syntax.

A place is visualized by a circle whose center position is determined by its attributes (xPos,
yPos) and its radius by the attribute radius. A transition is visualized by a square whose cen-
ter position is defined by the coordinate point (xPos, yPos) and its size by the attributes width
and height. A token is visualized by a circle whose center position is again defined by (xPos,
yPos). Its radius is a fixed value that cannot be modified by the user. PTArrow and TPArrow
are visualized by arrows whose position is defined by its two end points, i.e. by two coordinate
pairs (xStart, yStart) and (xEnd, yEnd).1 In Fig. 1 we can see a sample Petri net, visualized as
described above, and layouted (incrementally) as described in the following.

We are going to specify a layout for the Petri net editor that is based on the model presented
above. During user interaction, we want to support the user with some special behavior. After
user interaction, we want to get a beautified diagram as result.

• After user interaction: Arrows start and end exactly at the border of a component, i.e.
exactly at the border of a transition or place. Arrows must have a minimal length, i.e. the
components must have a minimal distance. Tokens are completely inside a place. They
may not intersect the border line of the place. If possible, tokens are arranged as a list, as
long as the list fits into the place.2

• During user interaction: When we move a place (or change the size of a place), arrows
and tokens have to follow the place. When we move a transition (or change the size of
a transition), arrows also have to follow the transition. This gives the user an easy and
intuitive way of changing the visual appearance of the Petri net. He may for example
rearrange tokens and places without changing the semantics of the diagram. When we
move an arrow or token, nothing else is changed. With this functionality, the user may
change the dynamic behavior of the Petri net. He may for example move a token from one
place to another.

In our specification we make use of three patterns. The GraphPattern being responsible for
layouting the arrows, the ListPattern that is responsible for arranging the tokens inside a place
and the ContainmentPattern that ensures that tokens are completely inside the place. To demon-
strate the possibilities offered by the concept, we will adjust a pattern and we will add some
additional functionality that is not supported by the patterns.

1 They can be substituted by a list of bends. The editor that was created via DIAMETA actually supports bends.
2 This is not the most intuitive layout. This behavior was introduced for explanatory reasons, as we will see later.

Proc. LED 2007 4 / 16

ECEASST

3 Generic Layout Algorithm

In Fig. 3 we can see a birds-eye view of the layout algorithm that has been presented in [MM07].
The algorithm is based on the idea that we have a set of declarative constraints (and a set of all
attributes), that assure the characteristics of the layout. If all constraints are satisfied, the layouter
terminates. If one or more constraints are not satisfied, the layouter needs to change some at-
tributes to satisfy the constraints. Therefore it switches on one or more attribute evaluation rules.
These rules in turn are responsible for updating the attributes, i.e. to satisfy the constraints.

In this section we describe this layout algorithm in more detail. First we describe the input pa-
rameters of the layouter. Then we summarize what components the layout specification consists
of. As a last step we describe the layout algorithm itself. In the next section we will introduce
the pattern concept for this layout algorithm.

3.1 Input

The algorithm gets as input one or two sets of attribute values - the old values (values before
user interaction), the user-desired values (values after user interaction) or both. Furthermore, the
layouter is aware of the current state. It knows whether the user is in the process of modifying
a component, e.g. is currently moving a place, or has finished a modification already. It also
knows, which component(s) the user has changed. In addition, the layouter has access to the
model of the visual language.

We have to distinguish three types of user interaction: adding, modifying and removing. The
selection of old values and user-desired values depends on the type of user interaction. When
the user adds a component at a desired position, the layouter gets one set of values as input - the
user-desired values. When the user modifies a component, e.g. moves a place from the position
characterized by xPosold and yPosold to a new position xPosuser and yPosuser, the layouter has
two sets of values as input - the old values and the user-desired values. In case of deletion, the
layouter gets only the old values as input.

10

Diagram
[updated]

Diagram
[modified] Layout Algorithm

calculate
new values

switch on
rules

check
constraints

update
diagram

[otherwise]

[all satisfied]

check
semantics

[otherwise]

[semantics
 maintained]

undo
changes

user
interaction

update
attribute
values

Figure 3: Birds-eye view of the generic layout algorithm

5 / 16 Volume 7 (2007)

Pattern-Based Layout

After user

interaction

During user

interaction

Before user

interaction

Figure 4: Moving a place

We distinguish between two states, during modification and after modification that we treat
in different ways. During modification only the layouter is called, after modification first the
model is updated and then the layouter is called, using the updated model. During modification,
some layouting constraints should be satisfied immediately. The satisfaction of other constraints
may be postponed to the end of the user interaction. Suppose we change the position of a place,
as we can see in Fig 4. While we move the component (during modification), we want arrows
to follow the place. As the layouter is responsible for updating the attributes, he needs to be
called several times during modification of the diagram via user input in order to update the
arrows. After we finished moving the place, for example, we want to satisfy the constraint
that arrows have a minimal length. If an arrow does not satisfy this constraint, it is extended
automatically. Minimizing the number of computations during user interaction not only speeds
up the computation of the new visualization, it also gives the user more freedom.

Another aspect we take care of is the information, what component, i.e. what attributes, the
user changed. In our example we distinguish between moving arrows and moving places or
transitions. When we move an arrow, we just want the arrow to be moved. The places and
transitions remain unchanged. If we move a place or transition, we want the arrows to remain
connected to these components, and hence the arrows are changed.

3.2 Layout Specification

The layouter uses the attributes, the state and the model of the visual language to calculate
new values that represent the updated diagram. To do that, it needs a layout specification, as
introduced in [MM07]. This specification consists of a set of constraints, each of them associated
with a concrete class like Place or PTArrow. For every constraint there exists a list of attribute
evaluation rules. If a constraint is violated, it is its evaluation rules’ task to update attributes such
that the constraint is satisfied (again).

The constraints and attribute evaluation rules use the standard OCL syntax, as specified in
[OMG06]. Only current values are changed during execution of the layout algorithm. All other
attributes remain unchanged. Intermediate results are created each layout iteration.

Constraints are responsible for switching on and off attribute evaluation rules. Attribute eval-
uation rules are responsible for calculating the set of new values. For example, constraint (1)
switches on rule (2) if xPos≤ in.xPos. If this is not the case, xPos remains unchanged.

[after modification]xPos > in.xPos (1)

xPos ← in.xPos+5 (2)

Proc. LED 2007 6 / 16

ECEASST

We may restrict constraints and attribute evaluation rules to be checked and executed only if
we are in a special state (indicated by [state] in front of the constraint or rule). For example, if we
add [after modification] in front of the constraint, this constraint is checked after modification.
Otherwise, this constraint is checked each time the layouter is called.

We may also add [o1 changed] in front of the constraint. This means that the constraint is only
executed if one of the attributes of the object o1 has changed.3

3.3 Layout Algorithm

In Fig. 3 we can see a birds-eye view of the generic layout algorithm. The layouter is called
each time the diagram was changed via user interaction. The set of current values consists of
user-desired values for the attributes changed via user interaction, and old values for attributes
the user did not change. All potentially violated layout constraints (that need to be checked for
the current state) are checked, and the rules that were switched on are collected. Thereafter the
new values of the attributes are calculated via attribute evaluation.

The current values are substituted by the new values and the constraints are checked again,
since new constraints may have become unsatisfied due to changes performed by the layouter.
If all constraints are satisfied, the layouter succeeds and reports all new values. Otherwise, the
layouter has to evaluate the rules again. If the layouter does not succeed after a certain number
of iterations (may be user defined), the layouter stops and returns the user values as result.

4 Pattern Concept for the Layout Algorithm

Creating an editor with DIAMETA is tool supported. The only part the editor developer had
to write by hand had been the layouter. With the layout algorithm presented above, the editor
developer is no longer burdened with this task. He now only has to provide a layout specification.

We are aware that writing such a specification is still rather complicated and complex. There-
fore we encapsulated basic functionality, as it is done in [SK03, Sch06], and give the user the
opportunity to use these patterns. In Fig. 5 we can see some patterns that were already defined.
GraphPattern, ContainmentPattern and ListPattern will be explained in the next section, as they
form the basis of the layout specification for the Petri net editor.

Graph Pattern Containment

Pattern

List Pattern Matrix Pattern List Pattern

& Cont. Pattern

Figure 5: GraphPattern, ContainmentPattern, ListPattern, MatrixPattern

3 Note that not only the editor user may change an object, but also the layouter may be responsible for changes.

7 / 16 Volume 7 (2007)

Pattern-Based Layout

In order to use these patterns, the user simply has to specify which pattern he wants to apply on
what part of the model. For example, for the GraphPattern, he has to specify which component
plays the role Node, and which component the role Edge. For our Petri net editor, places and
transitions will play the role Node and arrows will play the role Edge. In our meta model,
places are represented by the two classes CPlace and Place and transitions by the two classes
CTransition and Transition. Arrows are represented by the two classes CArrow and PTArrow or
by the two classes CArrow and TPArrow, as shown in Fig. 6.

The editor developer has the opportunity to adjust these patterns to his own needs. He may also
combine different patterns, or refine a pattern. Of course he may also add additional functionality
or create new patterns from scratch.

4.1 Pattern Requirements

A pattern contains a set of constraints and corresponding attribute evaluation rules. These con-
straints and attribute evaluation rules need some associations and attributes for their calculations.
Consequently, a pattern may only be used if some requirements are fulfilled. In Fig. 6 (in the
middle) we see the requirements that need to be met in order to use the GraphPattern. There
need to be two associations between Node and Edge with the roles from and to respectively.
Node must have the attributes xPos, yPos, width and height. Edge must have the attributes xStart,
yStart, xEnd and yEnd.

Figure 6: Requirements for the GraphPattern

In our example place does not offer the attributes width and height. All other requirements
are already met. We could add these attributes, but we do not want to change the meta model.
In this case, the editor developer may introduce a mapping between a required component and
another available component. We introduce a bidirectional mapping between height and radius
and a bidirectional mapping between width and radius:4

height ← 2∗ radius width ← 2∗ radius
radius ← height/2 radius ← width/2

4 Both directions are required to implement the methods getWidth(), setWidth(), getHeight() and setHeight().

Proc. LED 2007 8 / 16

ECEASST

4.2 Pattern usage and Pattern adjustment

If all requirements are met, the pattern may be used (pattern usage). A pattern consists of a
set of constraints and attribute evaluation rules. E.g. the GraphPattern consists of the following
constraints and attribute evaluation rules.

The following four constraints (left side) associated with the classes PTArrow and TPArrow
assure that arrows start and end exactly at the top or bottom of a component, as we can see in
Fig. 4. (xPos, yPos) is located in the top left corner of a component. The first (last) two constraints
are checked if the component, at which the arrow starts (ends) has changed. The associated
attribute evaluation rules (right side) update arrows, if they are not at the right position.

[from changed] xStart = f rom.xPos+ f rom.width
2 xStart ← f rom.xPos+ f rom.width

2
[from changed] yStart = f rom.yPos+ f rom.height yStart ← f rom.yPos+ f rom.height

[to changed] xEnd = to.xPos+ to.width
2 xEnd ← to.xPos+ to.width

2
[to changed] yEnd = to.yPos yEnd ← to.yPos

To assure that arrows have a minimal length, we introduce a constraint associated with the
classes PTArrow and TPArrow. This constraint is checked after user interaction has finished:

[after modification] (xEnd− xStart)2 +(yEnd− yStart)2 > 1000

The associated rules extend an arrow, if it is shorter than the minimal length required. If the
component, at which the arrow starts (ends) has changed, the component, at which the arrow ends
(starts) is moved. As the arrow stays connected to this component, it is automatically extended
to the required length.

[from changed] to.xPos ← to.xPost(i−1) +
to.xPost(i−1)− f rom.xPos
|to.xPost(i−1)− f rom.xPos|

[from changed] to.yPos ← to.yPost(i−1) +
to.yPost(i−1)− f rom.yPos
|to.yPost(i−1)− f rom.yPos|

[to changed] f rom.xPos ← f rom.xPost(i−1) +
f rom.xPost(i−1)−to.xPos
| f rom.xPost(i−1)−to.xPos|

[to changed] f rom.yPos ← f rom.yPost(i−1) +
f rom.yPost(i−1)−to.yPos
| f rom.yPost(i−1)−to.yPos|

In each pattern we introduced some constants. These constants have an initial value and may
be overridden by the user (pattern adjustment). They are used in the constraints and attribute
evaluation rules. E.g. for the GraphPattern, the attribute minLength (the 1000 in the constraint)
may be overridden. This changes the minimal length of an arrow. This mechanism made pattern
more flexible. Experiments showed that they were now applicable in more situations.

4.3 Pattern combination and Pattern refinement

It is possible to use more than one pattern for layout specification (pattern combination). In our
example, we will combine the two patterns ContainmentPattern and ListPattern. The Contain-
mentPattern will be responsible to keep tokens inside a place. The ListPattern is responsible for
arranging tokens as a list, if the constraints of the ContainmentPattern still can be satisfied.

Right now, pattern combination is done by applying the patterns one after another.

9 / 16 Volume 7 (2007)

Pattern-Based Layout

Pattern Pattern
refinement

Figure 7: Pattern refinement

In our example, first the ListPattern is applied, and then the
ContainmentPattern. This mechanism will be substituted by an
enhanced priority concept in future implementations.

We may also add additional constraints and attribute evalu-
ation rules to a pattern (pattern refinement). In our example
we add a constraint that assures that transitions have a minimal
width and height (Fig. 7). Up to now, all constraints and attribute
evaluation rules are collected. No simplification or error check

is utilized. The editor creator has to ensure that constraints and attribute evaluation rules are
reasonable.

5 Pattern-Based Layout for the Petri net editor

We now explore a concrete example - the layout declaration for the Petri net editor. We present
the patterns that are used in more detail, and show how they are adjusted, combined and refined
to the language specific layout desired.

5.1 ContainmentPattern

The ContainmentPattern assures that components are completely inside a surrounding compo-
nent. They may not intersect the border line of the surrounding component.

In order to apply the ContainmentPattern, the model must contain the following components.
Between Container and Element, there must be a 1-to-many association. Container must have
the attributes width, height, xPos and yPos. Element must have the same attributes (Fig. 8).

(a) Requirements

User input Cont. Pattern

applied

(b) Application

Figure 8: ContainentPattern

We apply the ContainmentPattern to places as Container, and tokens as Element. In order to
use the pattern we need to add the attributes width and height to places and tokens. For places we
introduce a bidirectional mapping between height and radius and between width and radius, as
described in Sect. 4.1. For tokens, these are fixed values: 20 for both, an unidirectional mapping
(height ← 20, width← 20).5 In Fig. 8 we see an excerpt of a Petri net. On the left side we see
the user input, on the right side the result after applying the ContainmentPattern.

5 Note that all tokens are moved inside the square width*height, not into a circle. To change this, we would need
to define a specialized pattern.

Proc. LED 2007 10 / 16

ECEASST

5.2 ListPattern

The ListPattern is responsible for arranging a set of components as a list. The ListPattern re-
quires that the meta model contains a 1-to-many association between List and Element. Further-
more, the List must have the attributes listPosX and listPosY. These are the coordinates where
the list starts. Element must have the attributes width, height, xPos and yPos. We can see the
requirements in Fig. 9.

(a) Requirements

User input List Pattern

applied

(b) Application

Figure 9: ListPattern

We apply the ListPattern to places as List and tokens as Element. In order to use the pattern,

User input LP & CP

 applied

Figure 10: Cont. and ListPattern

we must add the attributes listPosX and listPosY to place.
For listPosX and listPosY we define a bidirectional map-
ping. (listPosX ← xPos + width/2, xPos ← listPosX −
width/2 and listPosY ← yPos, yPos← listPosY). Transi-
tion already has all attributes required.

The ListPattern provides several customization options.
For example we may choose whether to align elements ver-
tically or horizontally. By default they are aligned verti-

cally, as used for our Petri net editor. In Fig. 9 we see an excerpt of a Petri net. On the left side
we see the user input, and on the right side the result after applying the ListPattern. In Fig. 10
we can see what happens if we apply both - the ContainmentPattern as well as the ListPattern.

5.3 GraphPattern

As the third and last pattern we use the GraphPattern, the pattern that was already described in
the last section. It demands that arrows start and end at the border of transitions and places.

User input Graph Pattern

applied

Figure 11: GraphPattern

In addition, arrows must have a minimal length. The Graph-
Pattern may be applied if the requirements shown in Fig. 6 are
met. We apply the GraphPattern to places and transitions as
Node and arrows as Edge. The GraphPattern also provides sev-
eral customization options. For example, we may change the
minimal length of arrows. This opportunity is used in order to
specify our layout. Or we may arrange components from left-
to-right, instead of top-to-bottom. In Fig. 11 we can see the user
input on the left side. On the right side we see the result after applying the GraphPattern.

11 / 16 Volume 7 (2007)

Pattern-Based Layout

5.4 Complete Layout

To demonstrate the simplicity and flexibility of the pattern concept, we include all concepts
described in Sect. 4 in the complete layout. We use the patterns described above (pattern usage
and pattern combination). We change the minimal length of arrows required (pattern adjustment)
and we require that transitions must have a minimal size (pattern refinement). We override the
attribute minLength of the GraphPattern to change the minimal length of arrows, and we add an
additional constraint and its corresponding attribute evaluation rules to assure the minimal size
of transitions. The interesting part of the layout specification is the following:

gp = new GraphPattern(CArrow,CPlace,CTransition);
lp = new ListPattern(CPlace,CToken));
cp = new ContainmentPattern(CPlace,CToken);

gp.adjust("minLength := 100");

Constraint constr = new Constraint("width > 100",CTransition);
constr.addRule("width := width + 10");
gp.refine(constr);

6 Implementation

In this section, we will give an overview of DIAMETA, the environment in which the algorithm
was tested and explain how the algorithm was integrated in the framework. We will then examine
the layout algorithm and the pattern concept in terms of usability and performance.

6.1 Integration of the Layout Algorithm in DIAMETA

DIAMETA provides an environment for rapidly developing diagram editors based on meta-
modeling. Each DIAMETA editor is based on the same editor architecture which is adjusted
to the specific diagram language.

6.1.1 Architecture

Fig 12. shows the structure which is common to all DIAMETA editors [Min06a, Min06b]. The
editor supports free-hand editing by means of the included drawing tool which is part of the editor
framework, and can be adjusted by the DIAMETA Designer. With this drawing tool, the user is
able to create, arrange and modify the diagram components of the particular diagram language.
Editor specific program code, which has been specified by the editor developer and generated by
the DIAMETA Designer, is responsible for the visual representation of these language specific
components. The drawing tool creates the data structure of the diagram as a set of diagram
components together with their attributes (position, size, etc.).

The sequence of processing steps necessary for free-hand editing starts with the modeler and
ends with the model checker; the modeler first transforms the diagram into an internal model, the
graph model. The reducer then creates the diagrams instance graph that is analyzed by the model
analyzer. This last processing step identifies the maximal sub diagram which is (syntactically)

Proc. LED 2007 12 / 16

ECEASST

Diagram

Drawing

tool

Editor user

selects

operation

5

Graph

model
Modeler

Instance

graph
Reducer

Model

checker

Java

objects

selects

operation

Graph

Transformer

(optional) reads

reads

adds/rem
oves

modifies reads

Layouter

(optional)

Highlights syntactically correct sub-diagrams

Figure 12: Architecture of a diagram editor based on DIAMETA

correct and provides visual feedback to the user by drawing those diagram components in a
certain color; errors are indicated by another color. However, the model analyzer not only checks
the diagrams abstract syntax, but also creates the object structure of the diagram’s syntactically
correct sub diagram.

Then the layouter is (optionally) called. It modifies attributes of diagram components and thus
the diagram layout is based on the (syntactically correct sub diagrams) object structure that was
created in the last processing step.

6.1.2 Framework

This section completes the description of DIAMETA and outlines its environment supporting
specification and code generation of diagram editors that are tailored to specific diagram lan-
guages. The DIAMETA environment shown in Fig. 13 consists of an editor framework, the
DIAMETA Designer and the DIAMETA Layout Generator.6

The framework that is basically a collection of Java classes, provides the generic editor func-
tionality, which is necessary for editing and analyzing diagrams. In order to create an editor for
a specific diagram language, the editor developer has to provide two specifications: First, the
abstract syntax of the diagram language in terms of its model, and second, the visual appear-
ance of diagram components, the concrete syntax of the diagram language, the reducer rules and
the interaction specification. Besides that, he may provide a layout specification, if he wants to
define a specific layout. We may use the pattern concept in this specification.

DIAMETA can either use the Eclipse Modeling Framework (EMF version) [AKRS06, Min06a]
or MOFLON (MOF version) [BBM03, Min06b] for specifying language models and generating
their implementations. Our algorithm implementation is based on the EMF version. But with
minor changes, the algorithm and the pattern concept may also work with the MOF version in-
stead. A languages class diagram is specified as an EMF model that the editor developer creates

6 The Layout Generator is the implementation of the generic layout algorithm presented in this paper.

13 / 16 Volume 7 (2007)

Pattern-Based Layout

Editor developer

Diagram editor

DiaMeta

editor

framework

DiaMeta

DesignerDiaMeta

Generated

program

code

EMF

Compiler

operates ECore

Modeller

ECore

Specification

operates

DiaMeta

Layout

Generator

Generated

Program

code

Editor

Specification

Layout

Specification

Figure 13: Generating diagram editors with DIAMETA

by using the EMF modeler. The EMF compiler, being part of the EMF plugin for Eclipse, is used
to create Java code that represents the model. The EMF compiler creates Java classes (respec-
tively interfaces) for the specified classes. The editor developer uses the DIAMETA Designer for
specifying the concrete syntax and the visual appearance of diagram components, e.g. places
are drawn as circles, transitions as rectangles, and edges as arrows. The DIAMETA Designer
generates Java code from this specification. In addition, we can provide a layout specification,
e.g. we may iapply the GraphPattern to arrows, places and transitions. The DIAMETA Layout
Generator generates Java code from this specification. This Java code, together with the Java
code generated by the DIAMETA Designer, the Java code created by the EMF compiler and the
editor framework, implement an editor for the specified diagram language.

6.2 Usability and Performance

In the last subsection we described how the layout algorithm (and thus the pattern concept) was
integrated in DIAMETA. We examine the algorithm in terms of usability and performance, as it
is done in [DFAB98].

Schmidt demonstrated in [SK03, Sch06] that a small number of patterns is sufficient to im-
plement a great variety of visual languages. After investigation of several visual languages, we
specified via DiaMeta in the past, we came to the same result. For these languages, the editor
developer can use the predefined patterns. This simplifies the layout specification. For a visual
languages’ layout that needs more flexibility, these patterns may be adjusted or refined. The
editor developer may create new ones or use the generic layout algorithm in the traditional way.
Consequently, the specification of the layout becomes rather complex and complicated, but on
the other hand we have the whole functionality available. The language used is OCL, a standard
language. This has the advantage that only a short training phase is needed, if OCL is known.
The week point of the specification is that you have to write a correct specification with no tool
support, e.g. you have no error reporting or error correction. Besides that, no constraint or rule
simplification is performed.This will be the focus of further research. All in all the generic layout
algorithm in combination with the pattern concept is a powerful tool for specifying a layout for

Proc. LED 2007 14 / 16

ECEASST

a specific visual language. The editor developer himself may decide how much effort he wants
to put onto the layout specification.

The weak point of most algorithms solely based on constraint satisfaction is performance
[CMP99]. In our algorithm we provide the constraints as well as the solution to these constraints
(attribute evaluation rules). This has the consequence that layout computation is no longer time
consuming. Thus performance is (up to now) no issue. E.g. for the presented example, layouting
a diagram that contains 200 components (50 places, 50 transitions, 50 tokens and 50 arrows)
takes less than 0.5 seconds. For further details, please refer to [MM07].

7 Conclusions and Prospects

The diagram editor generator framework DIAMETA makes use of meta-model-based language
specifications and supports free-hand as well as structured editing. The algorithm described in
[MM07] is a modular and generic layout algorithm that meets the demands of this kind of edi-
tors. The fundamental concept of the algorithm is constraint satisfaction combined with attribute
evaluation in the sense that constraints are used to activate particular attribute evaluation rules.
This combination gives the layouter the flexibility it needs to support free-hand as well as struc-
tured editing. By means of the example we saw that it is possible to define a layout algorithm for
diagrams that supports the user during user interaction (incrementally), and meanwhile grants
the user plenty of freedom. Furthermore, a layouted diagram is displayed at any time.

We realized that writing such a specification is rather complicated. Therefore we encapsulated
basic functionality, and give the user the opportunity to use (and reuse) these patterns. Patterns
introduce another level of abstraction on top of the specification, as design patterns do in object
oriented software design. A pattern is basically a set of constraints and attribute evaluation rules
that is tailored to a specific problem, e.g. to the problem of arranging arrows in a graph-based
visual language. Patterns may be used if some requirements are satisfied. It may be adjusted
to a visual language as required. The editor developer has the opportunity to combine different
patterns or refine a pattern. Of course he may also add additional functionality or create new
patterns from scratch. Using the pattern concept made writing a specification easier, without
loosing the flexibility of the original, sufficiently efficient generic layout algorithm.

Up to now creating a specification or defining a pattern has to be done by hand. The next step
will be to introduce GUI support for creating patterns and also for creating a whole specification.

Extensive case studies are planned, and may lead to an enhanced pattern concept. The exten-
sion will include a priority concept for constraints and will offer a possibility to integrate existing
layouter and constraint solver. We will apply the concept to graph-based as well as other visual
languages. We will examine the applicability to diagrams of different sizes. We will define
different views for the same visual language. Till now we focused on an incremental layout,
in future case studies we will also examine a complete automatic layout. We will investigate
free-hand as well as structured editing.

Identifying patterns in the model automatically is also imaginable. Then the program could
suggest patterns applicable, and the only thing the user has to do is selecting the pattern desired.
The program could even change the model such that a specific pattern is applicable. This idea
will be the focus of further research.

15 / 16 Volume 7 (2007)

Pattern-Based Layout

Bibliography

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In Rensink and
Warmer (eds.), Model Driven Architecture - Foundations and Applications: Second
European Conference. Lecture Notes in Computer Science (LNCS) 4066, pp. 361–
375. Springer Verlag, Heidelberg, 2006.

[BBM03] F. Budinsky, S. A. Brodsky, E. Merks. Eclipse Modeling Framework. Pearson Edu-
cation, 2003.

[CMP99] S. S. Chok, K. Marriott, T. Paton. Constraint-Based Diagram Beautification. In VL
’99: Proceedings of the IEEE Symposium on Visual Languages. P. 12. IEEE Com-
puter Society, Washington, DC, USA, 1999.

[DFAB98] A. Dix, J. Finley, G. Abowd, R. Beale. Human-computer interaction (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley
Professional, January 1995.

[Min04] M. Minas. VisualDiaGen – A Tool for Visually Specifying and Generating Visual
Editors. In Applications of Graph Transformation with Industrial Relevance, Proc.
2nd Intl. Workshop AGTIVE’03, Charlottesville, USA, 2003, Revised and Invited
Papers. Lecture Notes in Computer Science 3062. Springer-Verlag, 2004.

[Min06a] M. Minas. Generating Meta-Model-Based Freehand Editors. Appears in Electronic
Communications of the EASST, Proc. of 3rd International Workshop on Graph
Based Tools (GraBaTs’06), Natal (Brazil), September 21-22, 2006, Satellite event
of the 3rd International Conference on Graph Transformation, 2006.

[Min06b] M. Minas. Generating Visual Editors Based on Fujaba/MOFLON and DiaMeta. In
Giese and Westfechtel (eds.), Proc. Fujaba Days 2006, Bayreuth, Germany, Septem-
ber 28-30, 2006. Pp. 35–42. 2006. Technical Report tr-ri-06-275 Universität Pader-
born, Fakultät für Elektrotechnik, Informatik und Mathematik, Institut für Infor-
matik.

[MM07] S. Maier, M. Minas. A Generic Layout Algorithm for Meta-model based Editors.
In Applications of Graph Transformation with Industrial Relevance, Proc. 3rd Intl.
Workshop AGTIVE’07, Kassel, Germany. 2007.

[OMG06] OMG. Object Constraint Language (OCL) Specification, Version 2.0. 2006.

[Sch06] C. Schmidt. Generierung von Struktureditioren für anspruchsvolle visuelle
Sprachen. PhD thesis, Universität Paderborn, D-33098 Paderborn, Germany, 2006.

[SK03] C. Schmidt, U. Kastens. Implementation of visual languages using pattern-based
specifications. Softw. Pract. Exper. 33(15):1471–1505, 2003.

Proc. LED 2007 16 / 16

	Introduction
	Running Example
	Generic Layout Algorithm
	Input
	Layout Specification
	Layout Algorithm

	Pattern Concept for the Layout Algorithm
	Pattern Requirements
	Pattern usage and Pattern adjustment
	Pattern combination and Pattern refinement

	Pattern-Based Layout for the Petri net editor
	ContainmentPattern
	ListPattern
	GraphPattern
	Complete Layout

	Implementation
	Integration of the Layout Algorithm in DiaMeta
	Architecture
	Framework

	Usability and Performance

	Conclusions and Prospects

