Electronic Communications of the EASST

Volume 9 (2008)

Proceedings of the Workshop
Ocl4All: Modelling Systems with OCL
at MoDELS 2007

Analyzing Semantic Properties of OCL Operations by Uncovering
Interoperational Relationships

Mirco Kuhlmann and Martin Gogolla

17 pages

Guest Editors: David H. Akehurst, Martin Gogolla, Steffen Zschaler

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Analyzing Semantic Properties of OCL Operations by Uncovering
Interoperational Relationships

Mirco Kuhlmann' and Martin Gogolla®

! mk @informatik.uni-bremen.de ? gogolla@informatik.uni-bremen.de,
http://db.informatik.uni-bremen.de/
University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

Abstract: The OCL (Object Constraint Language) as part of the UML (Unified
Modeling Language) is a rich language with different collection kinds (sets, multi-
sets, sequences) and a large variety of operations defined thereon. Without negating
the strong correlation between both fields we can say that these operations have their
origin partly in logic (like the operations forAll and exists) and partly in computer
science, in particular database systems (like the operation select). Some of these
operations may be expressed in terms of other operations. This paper presents a
systematic study of relationships which hold between OCL features like the men-
tioned operations. Apart from presenting the relationships between operations in
a conceptual way, the relationships are described by a formal metamodel allowing
systematic and computer supported access to the operation relationships by querying
an underlying formal description.

Keywords: UML, OCL, Collections, Equivalences, Semantics, Operations, Bench-
mark

1 Introduction

The aim of this paper is to compile and discuss the majority of relationships which hold between
OCL (Object Constraint Language) [WKO03] operations on collections in a single place. Partly,
these relationships are mentioned in the OCL standard, but there they are distributed over several
sections. However, some more interesting relationships do not show up in the OCL standard,
but are presented here. The motivation for our work is to state and clarify the basic semantic
relationships between OCL operations on collections. Collections play a central role in OCL,
and, for example, the universal and existential quantifiers are understood in OCL as collection
operations. Therefore it seems necessary to study whether usual properties from logic hold in
OCL as well and how the connection to other OCL operations looks like.

Another reason for our study is that we plan to develop an OCL benchmark as a quality check
for an OCL evaluation engine. With the upcoming of MDA (Model Driven Architecture) and
MDD (Model Driven Development), OCL becomes more and more popular, partly as a pure
expression language, partly as a language for expressing transformations, and more and more
OCL engines show up. We consider the relationships discussed in this paper as a starting point
for such an OCL benchmark, because they can be understood as pairs of OCL expressions which

1/17 Volume 9 (2008)

mailto:mk@informatik.uni-bremen.de
mailto:gogolla@informatik.uni-bremen.de
http://db.informatik.uni-bremen.de/

Semantic Relationships between OCL Operations E}

have to deliver the same evaluation results in every situation. In this context we defined techni-
cally oriented equivalences as well. Such a benchmark could be relevant for a variety of OCL
tools for which a comparison can be found in [TRF03]. Related work includes the Dresden OCL
compiler [HDF0O0] compiling OCL into Java code, the OCLE system having a similar scope
as the USE tool (see Sect. 3) but no automatic snapshot facility [ChiO1], the Kent Modeling
Framework KMF [APO5] allowing to use OCL for own Java projects, the Octopus [Kla05] OCL
2.0 syntax checker, BoldSoft’s tool ModelRun [Bol02], HOL-OCL an interactive proof environ-
ment for OCL [Bru07], the KeY system [ABB"00] based on TogetherJ and allowing interactive
verification of OCL properties, a recent approach compiling OCL to C# [Arn05], and work trans-
lating (a simplified version of) OCL into the theorem prover PVS [KFdB " 05]. Few commercial
UML tools (e.g., Poseidon, MagicDraw, MaxUML, Together, XMF-Mosaic) provide basic OCL
support.

The rest of this paper is structured as follows. Section 2 introduces the relationships in a
conceptual way and presents the basic relationships in tabular form. We distinguish between
database related, logic and functional programming related collection operations, whereas Sub-
sect. 2.5 focuses on more technical equivalences. Section 3 introduces a metamodel for the
relationship implemented in our USE system. This so-called relationship warehouse can be used
to formally query the OCL collection operations and the relationships. Section 4 finishes the
paper with a short conclusion.

2 Relationships between OCL Collection Operations

In this section we consider the database related operations select and reject, the logic operations
exists, forAll and one as well as the operation collect which is related to functional programming.
All of them are collection operations defined on all kinds of OCL collections, i.e., sets, bags and
sequences, and require an OCL expression for evaluation.

Table 1 presents a categorized list of relationships between the mentioned operations. The left
side shows an operation call with an OCL expression e on a collection ¢. The right side shows
an equivalent OCL expression. This implies the interchangeability of both sides within an OCL
expression. We neglect the definition of iterators (like e in c=>forAll (e .. .))in almost all
operation calls, because they do not play an explicit role except for the alternative expressions of
the operation one, in which two iterator declarations are required. The indexing of an expression
refers to the context of its evaluation (as, €.g., ey in c—>forAll (x,yler ande, implies x
=vy)).

Every operation shown on the left side of Tab. 1 features an equivalent iterate expression.
Table 2 lists all equivalences related to the operation iterate. The column ‘Operation’ presents
the considered collection operations and the collections (set, bag and sequence) for which the
equivalence holds. The general name Collection indicates that the alternative expression can be
applied to all three collection types. The variables et resp. ct represent the type of expression e
resp. collection c (et for element type, ct for collection type).

The order of the relationship kinds in Tab. 1 reflects the structure of the following sections.
At first we examine the relationships between the database related and the logic operations sepa-
rately. Then we analyze the interdisciplinary equivalences proceeding with the operation collect

Proc. Ocl4All 2007 2/17

Eg ECEASST

and its particular properties.

2.1 Database Related Operations

Both database related operations (select and reject) are strongly connected. The first operation
selects all elements of a source collection which fulfill a boolean expression, the other rejects
them. This fact implies the following relationship.

col —>reject (elem: elemtype | expr,,,) =

col —>select (elem: elemtype | not (exproiom))

On the left side all elements fulfilling the expression expr,,,, are removed from the original
source collection. The same result is provided by the selection of all objects not fulfilling the
boolean expression. The opposite direction considering select as source for translation is defined
analogously (see Tab. 1).

The iterate expression given below represents an alternative expression for a call of reject.
The accumulator of type coltype, i.e., the type of the collection col, is initialized with an empty
collection'. During the iteration, the accumulator is not changed if an element fulfills the expres-
sion expr,,,,. Otherwise the current element is included. Analogously the select expression is
translated by reversing the including condition.

col —>reject (elem: elemtype | expr,,,) =
col ->iterate (elem: elemtype ; res: coltype = oclEmpty (coltype) |
if expr

oem Chen res else res—>including (elem) endif)

2.2 Logical Theorems formulated in OCL

The logical relationships between the existential and universal quantification are well-known. In
OCL the domain of discourse is represented by the collection on which the operation forAll resp.
exists is invoked on. Based on the same domain of discourse (col) we can state the following
equivalence.

col —>exists (elem: elemtype | expry,,) =

not col —>forAll (elem: elemtype | not (expr,,,))

There is at least one element fulfilling the expression expr,,,, if and only if not all elements fal-
sify the expression. The opposite direction is also valid, because all elements fulfill the boolean
expression if and only if there is no element which does not fulfill it (see Tab. 1).

Both operations can be expressed with an iterate expression. The translation of exists is shown
below. We need a boolean accumulator initialized with the value false. The update function rep-
resents a disjunction of the former accumulator value and the evaluation result of expression
expr,..n- Once this expression is evaluated to true, the accumulator remains true during the iter-
ation.

1" The collection expression oclEmpty(T) is defined in USE to create an empty collection of type 7.

3/17 Volume 9 (2008)

Semantic Relationships between OCL Operations

= (SNI3) 3UNod<— (2| **) I0DSTTOO<-2 (2])sUuo<-2
(9|9)2U0<—8 pUB (2NI3) dUO<-S mwaﬂgEH () Aadugiou<—2

UT () 39Sse<— (*) 309 TT00<-I2 =5 397 Tt) TIYIOI<-2
(9SsTeJ) sopnioxa<— ***)309TT0D<-2 *) TIYIOT<—2
(9]9)2uo0<—()219SSse<— (2| ") A09TT00<-2 *) S31STXa<-I

(onx3) sepnIouUI<— ***)309TT00<-2 *t) SASTXS<-I | 199[[0D
T=()22TS<— (2] *)309T9S<-2 (2] °)suUuo0<-2
T- ()22TS<-0 = C@NHmA (2] °)2310alaa<-2 (2] °)2uo<-2
— (2] ") 309T8S<=0 | (2] ") TTYI0I<-2

() \SQEMwHA (2])309laa<—2 | (2] ") ITYIOF<—2 | Areurd

() Axdwugaou<— (2| *)2309T9S<—2 | (2| ") SISTXSD<-I -1OSIp

()®Z2TS<-2> ()22TS<— (2] * ") 30alax<-2 | (*) S3STXD<-D -Iu]

((K=xsoTTduTt 2| K) TTYIOTI<—2 PUR *2|X) SISTXS<-D (2] °)2uU0<-2 128
(K =xsoTTduT 9 pue ¥ | A x) TTYI0I<-2
pue (2| ") S3STXS<-I (2])sUu0<-2 128

(2 30u] - ") s3sTXa<-I 30U T t)TTYI0I<=2

(2 30U ") TTYIOI<—-2 30U *) S3STXD<-D o130

(2 30Ul -)309laa<-2 *t) 30eT8s<-2 | pIkl

(2 30u| ***)309T9S<-2 *+*)3o0elax<-2 qa

3y W1 | puny

Table 1: Relationships between the considered collection operations

4/17

Proc. Ocl4All 2007

ECEASST

(JTPpuS I 2STo (WST2) bUIPNTOUT<-I USY3I 2 IT

| (2) A3dWHTOO0 =0: I WSTD) 93RIDIT<K—I | uond2)0)
(2] °°)309T9s8<-2 1097T8s
(JTPUS (WSTS)LUTPNTOUTI<K-I BSTE2 I USY3I 2 IT
| (2) A3dWHTOO0 =0: I WSTD) 93RIDIT<—I | uond2)j0)
(2] +)300lax<-2 joslax
() 3SeT<- (FTPUS { (2 30 () ISBT<—I) 10X (2 pUE () ISET<—1)
‘2pue ()3seT<-I}o0usnbag asTs
{esTeI ‘onaa}edousanbag uayl () ASITI<-I IT
| {osTeJ ‘esTeI}oouanbag = (ueaToog)sdouanbag: I’ ")283RIDFT<-I | uond3|0)
(2] ***)2U0<=-2 2UuUo
(2pue I|9NI3 =UueSTo0g:I?!" " *)91RIDIT<—-I | uous2J0)
(2] ") TTYI0I<-D TTIYIOZ
(2 X0 I|osTeI =uUueaTo0g:I!{" " ")23]3RIS]T<-I | uoud2J0)
(2] °")s3asTXO<-2 S]3STXS
((Yus123eTI<-{{2}=s0ousnbag ‘1}o0usnbsg
| ((2) oousnbag) Aqdwud o0 = (2) @ousnbag:xf* * *)93RISFIT<-I 2ouanbag
((2)butpntout<-a 9[qIssod os[e) ((2) pusdde<—1
| ((12) oousnbag) Aqdug o0 = (y2) sousnbog:x ! * *)930I9]3T<—0 | aousnbog
((2)butpniouT<-I | ((y2) beg) AqdugToo = (J2) beg:1f°* *)93RIDIT<-I 3vg a8
(2] *°°)30STTO0O<=2 | 3DOSTTOD
uorssaxdxy 9jerd) | uoneaddQ

Table 2: Translation of the considered operations to iterate expressions

Volume 9 (2008)

5/17

Semantic Relationships between OCL Operations Eﬁ

col —>exists (elem: elemtype | expr,,,) =
col ->iterate (elem: elemtype ; res:Boolean = false |

res O expr e,)

In the case of operation forAll the accumulator is initialized with frue and the update function
changes to a conjunction. Once expr,,,,, is false, the accumulator becomes and stays false.

The operation one tightens the existence condition. It returns true if the boolean expression
evaluates to true in context of exactly one element. This fact is reflected in the following rela-
tionship, which is only valid for set-valued source collections, because bags and sequences may
include equal elements. Beside the existence of at least one element fulfilling expr,,,,, the equal-
ity of all fulfilling elements is required.

elem

col —>one (elem: elemtype | expr,,,,) =
col —>exists (elem: elemtype | expr .,) and
col ->forAll (eleml, elem?2: elemtype |

exPT 4oy, AN €XPTy,y, imMplies eleml = elem2)

The translation of one to iferate is more complex than the previous definitions, because the
accumulator should initially be false, become true if there is one element fulfilling expr,;,,, and
become false again if there is another fulfilling element. For this reason we initialize the accumu-
lator with a sequence of two boolean values. The last value represents the desired result value,
which can be accessed by appending the sequence operation last at the end of the whole OCL
expression. It indicates whether exactly one element fulfilling the boolean expression expr,,,,,
exists in the source collection col. We use the xor operation to formulate this requirement. The
right side of the expression (res->last () or expr,,,) becomes and remains true as soon as
one element fulfills the boolean expression. If another fulfilling element exists in col, the left
side become true as well (res—>1ast () and expr,,,). This situation implies that the xor
expression, i.e., the last value of the accumulator sequence, evaluates to false and the first value
of the accumulator to frue. The if expression assures in this case that the resulting accumulator
value Sequence{true,false} does not change anymore.

col —>one (elem: elemtype | exprojom) =
col ->iterate (elem: elemtype ;
res:Sequence (Boolean) = Sequence{false, false} |
if res->first () then Sequence{true, false}
else
Sequence{res—>last () and expr,,, ,

(res—>last () andexpr,,,) xor (res—>last () or expr i,)}
endif)->1last ()

An alternative for the presented solution with two boolean variables would be touse an iterate
which counts the number of positive elements and finally check whether this counting yields one.

Proc. Ocl4All 2007 6/17

Eg ECEASST

2.3 Interdisciplinary Relationships

In OCL we can join the database related and logic operations. In general, it is possible to trans-
late forAll, exists and one to select and reject, but not vice versa, because the logic operations do
not result in a collection. We can derive a boolean value from a collection, but it is infeasible
to construct a collection based on a single boolean value. In the following we will clarify the
available equivalences.

col —>exists (elem: elemtype | expr,,,) =
col —>re’ject (elem: elemtype | expr
col —>select (elem: elemtype | expr,

—>size () <col —>size () =
—>notEmpty ()

elem)

elem)

If all elements fulfilling the boolean expression expr,,,,, are rejected and the size of the result-
ing collection is smaller than the unfiltered collection, the existence of a particular element is
guaranteed. We achieve the same result by checking whether the collection which results from

selecting all elements fulfilling expr,,,,, is not empty.

col -=>forAll (elem: elemtype | expr,,,) =
col —>reject (elem: elemtype | expr, —->isEmpty () =
col —>select (elem: elemtype | expr, = col

elem)

elem)

All elements of a given collection induce the truth of expression expr,,,,, if and only if all el-
ements are rejected, i.e., the result is empty, or selected, i.e., the result equals the original collec-
tion.

For the translation of operation one more specific statements are necessary. Exactly one el-
ement has to be rejected, i.e., the size of the corresponding result must equal the size of the
original collection subtracted by 1. Analogously the operation select has to result in a collection
including exactly one element.

col —>one (elem: elemtype | expr,,,) =
col —>reject (elem: elemtype | expr,
col —>select (elem: elemtype | expr,

—>size () =col —>size() - 1=
->size() =1

elem)

elem)

2.4 Features of Collect

Finally we examine the operation collect which is related to functional programming. This oper-
ation is different from the operations discussed above, because the type of its body expression is
not predefined. Any desired ‘function’ may be used to map the elements of the source operation
and to collect them in a bag resp. sequence.

At first we consider the translation of collect to iterate. No other translation of this direction
is possible, because select and reject can only result in collections of the same type as the source
collection. In contrast to that collect may result in bags resp. sequences including elements of
any type. Invoking collect on a set or bag results in a bag. Otherwise we get a sequence. This
implies a distinction within the alternative iterate expression. Below we show the equivalence
which holds for sets and bags. The accumulator is initialized with an empty bag und updated by

including the evaluation result of expr,;,,,.

77117 Volume 9 (2008)

Semantic Relationships between OCL Operations Eﬁ

col —>collect (elem: elemtype | expr
col ->iterate (elem: elemtype ;

res:Bag (exprtype) = oclEmpty (Bag (exprtype)) |

res—>including (expr

elem) =

elem))

In case of a sequence the accumulator type changes to a sequence. The corresponding ex-
pression is accessible in the collect part of Tab. 2. There are two alternative expressions
for the operation collect which are based on sequence-valued source collections. The lower
entry refers to another possibility. Instead of appending or including values, we can construct
a sequence as well. Thus we replace the whole body of iterate by the equivalent expression
Sequence{res, Sequence{ expr,,, } }—>flatten ().

A call of collect always results in a collection of the same size as the source collection. The
database related operations normally result in smaller collections, because they are used as filters.
Therefore we cannot state a reasonable translation from select or reject to collect. On the other
hand we can state an equivalence by constraining the source collection to defined values. In this
particular case it is possible to map all values which should not be selected resp. be rejected to
the undefined value. Finally we exclude the undefined value and retrieve the same result as a
corresponding select resp. reject expression.

The definition of equivalences relating collect and the logic operations is unproblematic, be-
cause we can reuse their body, i.e., the boolean expression, as function mapping every element
to a boolean value. The truth values correspond to the evaluation results of the boolean expres-
sion in context of the considered elements. Hence the collect expression results in a bag resp.
sequence of boolean values.

col —>exists (elem: elemtype | expry,,) =

col —=>collect (elem: elemtype | expr,,,) —>includes (true)

At least one element fulfilling expr,,,, exists if and only if the bag (resp. sequence) result-
ing from the call of collect includes the value frue. In case of forAll the value false must not be
an element of the collection (->excludes (false)). The operation count counts the occur-
rences of a particular element in a collection. With the aid of this operation it is possible to check
whether the value true occurs exactly one time (—>count (true) = 1) what corresponds to a
call of one. The complete definitions are listed in the Collect part of Tab. 1.

The expressiveness of collect opens up the possibility to define additional relationships be-
tween the logic operations.

col —>exists (elem: elemtype | expr
col —=>collect (elem: elemtype |
expr

elem) =

elem) —>asSet () —>one (elem | elem)

Converting a bag (resp. sequence) of truth values to a set, limits the size to two elements
(Set{true}, Set{false} or Set{true,false}). The operation one, invoked on the resulting set,
returns true if one element represents the value frue. In this case one element of the original

collection col fulfills the boolean expression expr,;,,,.

Proc. Ocl4All 2007 8/17

Eg ECEASST

col =>forAll (elem: elemtype | expr,,,) =
let s =col —>collect (elem: elemtype | expr,,,) —>asSet () in
col->notEmpty () implies s—>one (true) and s—->one (elem | elem)

The alternative expression for the operation forAll is more complex. As aforementioned s—>
one (elem|elem) checks whether the value true is an element of the resulting set s. Be-
side this requirement we have to assure that no element of col does not fulfill expr,,,,,, i.€., the
value false must not be included in s. This implies that s is a singleton set. The expression
s—>one (true) is true if and only if s possesses this property, because every element in s
fulfills the expression true, even if the element represents the value false. The call of forAll
always results in frue when the source collection is empty. For this reason we have to define an
implication. An empty source collection results in a false premise.

2.5 Illustrative and Technical Relationships

This subsection focuses on more special aspects of the Object Constraint Language. First we
inspect elementary relationships concerning the operation iterate and conversions of singleton
collections. Subsequently we state several technical equivalences in terms of an OCL benchmark,
which should assure consistent evaluations.

The first presented relationship emphasizes the change of the result variable in an iterate ex-
pression. By substituting the body expr by an equivalent let expression including a local variable
res, we underline the updated value of the accumulator during the iteration.

col —>iterate (elem: elemtype ; res: restype = initexpr | expr) =
col —>iterate (elem: elemtype ; res: restype = initexpr | let res=expr in res)

In the following we discuss the possibilities to convert a singleton collection into the value of the
solely included element. An obvious way is the use of the operation any, which is invoked in the
first of three alternative expressions.

ifcol ->size ()=1
then col —>any (true)
else oclUndefined (elemtype) endif =
if col —>size () =1
then col ->iterate (elem: elemtype ;
res: elemtype =oclUndefined (elemtype) | elem)
else oclUndefined (elemtype) endif =
col ->iterate (elem: elemtype ;
res:Sequence (OclAny)=Sequence{oclUndefined (elemtype), false} |
if res—>at (2)=false
then Sequence{ elem ,true}
else Sequence{oclUndefined (elemtype),true} endif)->at (1)

The expression col —>any (true) results in an arbitrary element of the collection col. Due
to the fact that col is a singleton, the result value is deterministic. Collections with either no
or at least two elements result in the undefined value. Without changing the meaning we can

9/17 Volume 9 (2008)

Semantic Relationships between OCL Operations Eﬁ

replace the operation any by an iferate expression, which results in the value of the designated
element after one iteration (see the second alternative expression). The third approach does not
need an outer if expression. Here we differentiate the cases in the body of an iterate expression.
An accumulator initialized with a sequence of two OclAny values is the starting point for the
iteration. The first value of the accumulator represents the result value, which can be accessed
by calling the operation at afterwards. The second value indicates whether at least one iteration
has proceeded. We receive the element value if the source collection col includes exactly one
element. In all other cases the first element of the accumulator represents the undefined value.”

In consideration of the fact that we plan to develop an OCL benchmark for OCL evaluation en-
gines, we propose relationships concerning the conversion of sets and bags to sequences, i.e. we
inspect the call of the operation asSequence and the allowed result values. Originally the OCL
specification makes no statement about the order of the elements in the resulting sequences. To
standardize the evaluation of such expressions we state equivalences, which restrict the number
of possible evaluation results, but do not dictate any particular order.

1. set —>asSequence () =
set —>asBag () —>asSequence () =
3. set —>iterate (elem: elemtype ;
res:Sequence (elemtype) =oclEmpty (Sequence (elemtype)) |
res—>including (elem)) =
4. set —>iterate (u: elemtype ;
res:Tuple (theSet: Set (elemtype) , theSeq: Sequence (elemtype)) =
Tuple{theSet: set ,theSeqg:oclEmpty (Sequence (elemtype)) } |
let e=res.theSet->any (true) in
Tuple{theSet:res.theSet->excluding(e),
theSeqg:res.theSeg->including(e) }) .theSeq

Expression 1 is the source expression. It converts a set into a sequence. The order of the el-
ements in the resulting sequence should not be affected by a former call of the operation asBag
on the original set (cp. expression 2). Furthermore the elements of set must be considered in the
same order as they appear in the result of expression 1 during an iteration. We formulate this
requirement by an iterate expression in expression 3. Equally the order of the values obtained
by a repeated call of the operation any is restricted. Expression 4 shows a further iterate expres-
sion, which is misused to change elements of a tuple. The accumulator is initialized by a tuple
comprising two elements. The first element represents the original sef and the second element an
empty sequence. During the iteration the operation any chooses arbitrary elements from the set.
These elements are sequentially included in the sequence and excluded from the set, respectively.
Afterwards we receive the resulting sequence, which should conform to the result of expression
1. The expressions 1, 3 and 4 are equivalent for bag-valued source collections as well.

2 The last alternative expression only works for flat collections, i.e., when elemtype is not a collection. In case of

nested collections the sequence has to be substituted by a tuple.

Proc. Ocl4All 2007 10/17

EE ECEASST

3 Relationship Warehouse

We have implemented a relationship warehouse with the UML-based Specification Environment
(USE) [RGO1, GBRO5]. A USE specification defines a UML class diagram modeling the ware-
house, and an object diagram provides the information about OCL standard operations (including
the ones considered in Sect. 2) and their relationships. The warehouse was modeled in such a
way that precise queries can be defined on it. The purpose of this implementation is to get desired
information about relationships and the involved operations quickly and in a comfortable way.

3.1 Overview of the UML Model: The Class Diagram

Clazs diagram |:|K ﬂ' E
“ersion
name : String
wersion (0.1
Affiliation Hierarchy
availlableTypes |+« |special

[P Type [0
ParameterizedType general

name : String

type|1
OperationType

definedOperations | «

Operation

symbal - String
domainAndRange ;| Sequencel String)
notation : String
participatingOperations |« 1| zourcelperation

Participation Alterriative
involveding = + | atternatives
Relationship

relationship © Set(String)

Figure 1: Class Diagram of the Relationship Warehouse

Figure 1 shows the UML class diagram illustrating the concept of the relationship warehouse.
The information about the OCL operations and their relationships is synthesized by instantiating
that model (see Sect. 3.2).

The class Version referring to an OCL specification, e.g., ‘OCL 2.0 (06-05-01)’ [Obj06] or
‘Mark Richters (USE)’ [Ric02] is the starting point for the relationship warehouse. Every OCL
specification defines a number of types containing all possible OCL expressions. The association

Hierarchy is defined to realize subtyping, e.g., Real is a subtype of OclAny. Hereby, several type
hierarchy trees can be created.

11/17 Volume 9 (2008)

Semantic Relationships between OCL Operations E}

The roots in the type hierarchy are connected to exactly one version. OCL collections are
considered as parameterized types.

A type comprises a set of OCL standard operations characterized by their symbol, their
domain (the parameter types) and range (the return type), and their notation. The attribute
domainAndRange collects the formal parameters and the return type in a sequence. The last
element in the sequence always refers to the return type.

When there is an alternative expression resulting in the same value as a specific operation call,
this alternative can be added as a Relationship object linked to the operation. A Relationship
object stores an equivalence like the ones presented in Tab. 1 and Tab. 2 and is connected to
all Operations involved in it. We can navigate from a source operation to all of its alternative
expressions towards the participating operations. This makes powerful queries on the warehouse
possible.

The attribute relationship is defined as set of strings, because different equivalences with the
same set of participating operations may exist for a source operation (e.g., x + y == x -
(-y)andx + y ==y - (-x) forthe addition of integer values additionally involving the
subtraction and the operation for changing the sign). The object diagram in the next section will
show another, more involved example.

The class Queries defines queries in order to retrieve information about operations and rela-
tionships with specific properties.

3.2 Storing the Relationships: The Object Diagram

The relationship warehouse is implemented by a large object diagram. Due to the size of the
object diagram (we have about 150 operations), it does not make much sense to look at the
entire object diagram. Nevertheless we can inspect a part of the object diagram to clarify the
possibilities of this realization. Figure 2 presents a small part of the warehouse consisting of a
single relationship.

The focus of Fig. 2 is the operation one indicated by the symbol one. It is defined for the
type Collection in context of the OCL version Mark Richters (USE) [Ric02]. The first
element of the sequence available in attribute domainAndRange reflects the fact that one has to be
invoked on a collection (Set, Bag or Seq(uence)). Beside the collection, a boolean expression is
required for calling the operation (second element). The attribute notation specifies the concrete
syntax for the operation one. A successful call results in a boolean value, which is declared by
the last element of the mentioned sequence.

A single relationship, i.e., an alternative expression, is stored for the source operation one.
It represents an equivalence listed in the interdisciplinary part of Tab. 1. Three operations are
involved in the alternative expression, i.e., the right side of the equivalence: the two collection
operations size and select and the equality defined on integer values. Mark Richters (as well as
Standard OCL) specifies a subtype relation between Integer an Real.

The original object diagram includes all relationships presented in Tab. 1 resp. Tab. 2. Alto-
gether the current warehouse comprises 148 OCL standard operations and 108 equivalences. It
can be enriched as needed.

Proc. Ocl4All 2007 12/17

ECEASST

EP Object diagram

markRichters:Version
YEIEION | name="Mark Richters [USEY VErEIan

markRichtersOclAmy: Type [avallableTypes avallableTypes | markRichtersCollection: Parameterized Type
name="0clAny nathe="Callection’
general type type type
special

markRichtersOclAnyReal Type

name='Real
general
special
markRichter sCclAnyRealrteger: Type
name="nteger definedOperations
type markRichtersCallectiontne: Operation

symbal="one'

domainAndRange=Sequence{ 1St TIBaa(T Seq(Ti}, BooleanExpr', Boolean'}
niotation="x-=onelelem ; ElemType | Expr)

FourceCperation

afternatives
markRichtersCaollectionOneRelationshipd: Relationship

relationship=Set] X-=anelelem : ElemType | Exprl == X-=zelect(elem : ElemType | Exprl-=sizel) = 1"}

involeedin imvolvedin imvalvedin
definedOperations paricipatingOperations participatingOperations definedOperations
markRichtersOclAnyRealintegerEqualsinteger: Cperation markRichtersCallectionSize: Operation
symbal='=' symbol="size'
domainAndRange=Sequence{Integer’ Integer' 'Boolean'} | | | domaindndRange=Sequence Seb TIBag(TISeq(Ta Y Integer'
niotation="x = ' niotation="4-=size
participatingOperstions

markRichtersCallectionSelect Operation

symbol="select! . .
domainAndRange=Segquence{{Set TIBag(TISeqiT)} BooleanExpr {SetiTIBag T SeyT)y} |HefinedCperstions
notation="¥-=zelect(elem ; ElemType | Expr)’

Figure 2: Part of the Relationship Warehouse

13/17 Volume 9 (2008)

Semantic Relationships between OCL Operations Eﬁ

3.3 Querying the Warehouse

The entire object diagram is too large to be visually inspected. Thus,we have to query the rela-
tionship warehouse using OCL operations, especially navigation expressions. In the following
we exemplify the access of desired information.

Every available Operation is identified by its symbol, the name of its version and its type. We
defined the OCL query operation getOperationBySymbol to obtain the corresponding Operation
object. Strictly speaking, there are operations with the same symbol, version and type, but with
different formal parameters, e.g., there are two operations with symbol — defined on type Integer
namely — (i : Integer) : Integer and —(r : Real) : Real. In this case we can select the relevant
operation by filtering their domain resp. range.

To obtain the Operation object, e.g., one which was discussed in Sect. 3.2, we need the men-
tioned arguments:

queries.getOperationBySymbol (
"one’, ’'Mark Richters (USE)’, ’'Collection’)

USE evaluates the OCL expression and displays the resulting value and its type:
Set{@markRichtersCollectionOne} : Set (Operation)

Starting from this operation we can navigate to the alternative expressions and collect all
equivalences:

queries.getOperationBySymbol (one’, ’'Mark Richters (USE)’,
"Collection’) .alternatives.relationship

The resulting bag includes all available equivalences (cp. Tab. 1):

Bag {
'X->one (elem : ElemType | Expr) ==
X->collect (elem : ElemType | Expr)->count (true) = 17/,

"X->one (elem : ElemType | Expr) ==
X->exists(elem : ElemType | Expr) and
X->forAll (eleml, elem2 : ElemType |
Expr_eleml and Expr_elem2 implies eleml = elem2)’,

"X->one (elem : ElemType | Expr) ==
X->exists (eleml : ElemType | Expr_eleml and
X->forAll (elem2 : ElemType |
Expr_elem2 implies eleml = elem2))’,

'X->one (elem : ElemType | Expr) ==
X->iterate(elem : ElemType;

Proc. Ocl4All 2007 14 /17

Eﬁ ECEASST

res : Sequence (Boolean) = Sequence{false, false} |
if res->first () then Sequence{true, false}
else Sequence{res—>last () and Expr,
res—->last () or Expr} endif)->last()’,

'X->one (elem : ElemType | Expr) ==
X->reject (elem : ElemType | Expr)->size() = X->size() - 1/,

"X->one (elem : ElemType | Expr) ==
X->select (elem : ElemType | Expr)->size() = 1’} : Bag(String)

Alternatively we can use the query operation getRelationshipBySymbol, which returns all re-
lationships for an operation in context of a type and version:

queries.getRelationshipBySymbol (
"one’, ’'Mark Richters (USE)’, ’'Collection’)

For getting a more specific result it is possible to formulate more restrictive queries. We can
select the equivalences depending on the participating operations. The following expression
picks out the alternative expression defined for the source operation one in which the operation
select is involved.

queries.getOperationBySymbol (
"one’, ’"Mark Richters (USE)’, ’'Collection’) .alternatives—>
select (participatingOperations.symbol—->
includes (' select’)) .relationship

The result of the following expression represents the relationship considered in Fig. 2:

Bag {
'X->one (elem : ElemType | Expr) ==
X->select (elem : ElemType | Expr)->size() = 1’} : Bag(String)

The corresponding query operation getRelationshipBySymbolAndParticipating simplifies the
selecting expression. Its last argument must be a set of operations, which should be involved in
the equivalences.

queries.getRelationshipBySymbolAndParticipating(
"one’, ’'Mark Richters (USE)’, ’'Collection’, Set{’select’})

All expressions explained above need a source operation as starting point. However there
are also meaningful queries which do not need any symbols of source operations. For example
the available query operation getRelationshipByParticipating works backwards. Given a set of
operation symbols the query operation returns all relationships in which all stated operations are
involved:

15/17 Volume 9 (2008)

Semantic Relationships between OCL Operations Eﬁ

queries.getRelationshipByParticipating(
"Mark Richters (USE)’, Set{’one’})

The operation call results in two relationships. The left side of the equivalences show that one
is involved in alternative expressions for exists and forAll:

Set {
'X->exists(elem : ElemType | Expr) ==
X->collect (elem : ElemType | Expr)->
asSet () —>one (elem | elem)’,

"X->forAll (elem : ElemType | Expr) ==
let s = X->collect (elem : ElemType | Expr)->asSet () in
X->notEmpty () implies

s—>one (true) and s->one(elem | elem)’} : Set (String)

There are many other possibilities to filter the results, e.g., by considering the formal parame-
ters and return types or the number of operations participating in an alternative expression.

4 Conclusion

We have discussed basic semantic properties of OCL operations on collections. These OCL col-
lection operations play a central role and their relationships should be clearly expressed, which
includes the handling of the undefined value. Thereby it is possible to minimize the scope of
interpretation caused by informal definitions in the OCL standard. We plan to extend this work
and to develop an OCL benchmark which could be used to check the quality of an OCL evalu-
ation engine. With the upcoming of more and more OCL evaluators in the context of MDA and
MDD, such a quality assurance mechanism seems necessary to us.

The relationship warehouse presented in the second part of this paper can be extended in dif-
ferent ways. When other OCL versions are added, a slightly modified specification allows for
comparing operations in context of different versions. On the other hand we can multiply the pos-
sibilities of inspecting the relationships by substituting the strings representing the equivalences
for more sophisticated constructs, i.e., instances of the OCL metamodel.

Bibliography

[ABBT00] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hihnle, W. Menzel,
and P. H. Schmitt. The KeY approach: Integrating object oriented design and formal
verification. In M. Ojeda-Aciego, I.P. de Guzman, G. Brewka, and L. M. Pereira,
editors, Proc. 8th European Workshop Logics in Al (JELIA’2000), LNCS 1919,
pages 21-36. Springer, 2000.

[APO5] Dave Akehurst and Octavian Patrascoiu. The Kent Modeling Framework (KMF).
http://www.cs.kent.ac.uk/projects/ocl, University of Kent, 2005.

Proc. Ocl4All 2007 16 /17

E

ECEASST

[Arn05]

[Bol02]

[Bru07]

[ChiO1]

[GBRO5]

[HDFO0O0]

[KFdB*05]

[K1a05]

[Obj06]

[RGO1]

[Ric02]

[TRFO03]

[WKO3]

Dave Arnold. OCL/C# Compiler. www.ewebsimplex.net/csocl/, eweb-
simplex, 2005.

Boldsoft. Boldsoft OCL Tool Model Run. www.boldsoft.com, Boldsoft,
Stockholm, 2002.

Achim D. Brucker. An Interactive Proof Environment for Object-oriented Specifi-
cations. Ph.d. thesis, ETH Zurich, March 2007. ETH Dissertation No. 17097.

D. Chiorean. Using OCL Beyond Specifications. In A. Evans, R. France, A. Mor-
eira, and B. Rumpe, editors, Proc. UML’2001 Workshop Rigorous Development,
pages 57-68. LNI, GI, Bonn, 2001.

Martin Gogolla, Jorn Bohling, and Mark Richters. Validating UML and OCL Mod-
els in USE by Automatic Snapshot Generation. Journal on Software and System
Modeling, 4(4):386-398, 2005.

Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular architecture for a
toolset supporting OCL. In Andy Evans, Stuart Kent, and Bran Selic, editors, Proc.
3rd Int. Conf. Unified Modeling Language (UML’2000), pages 278-293. Springer,
LNCS 1939, 2000.

M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag, T. Arons,
and H. Kugler. Formalizing UML models and OCL constraints in PVS. Electr.
Notes Theor. Comput. Sci., 115:39-47, 2005.

KlasseObjecten. The Klasse Objecten OCL Checker Octopus.
www.klasse.nl/english/research/octopus—-intro.html, Klasse
Objecten, 2005.

Object Management Group, Inc. Object Constraint Language - OMG Available
Specification, Version 2.0, Mai 2006. http://www.omg.org/cgi-bin/doc?ptc/06-05-
01.

Mark Richters and Martin Gogolla. OCL - Syntax, Semantics and Tools. In Tony
Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL, pages
43-69. Springer, Berlin, LNCS 2263, 2001.

Mark Richters. A Precise Approach to Validating UML Models and OCL Con-
straints, volume 14 of BISS Monographs. Logos, Berlin, 2002.

A. Toval, V. Requena, and J.L. Fernandez. Emerging OCL Tools. Software and
Systems Modeling, 2(4):248-261, 2003.

J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 2003. 2nd Edition.

17 /17

Volume 9 (2008)

	Introduction
	Relationships between OCL Collection Operations
	Database Related Operations
	Logical Theorems formulated in OCL
	Interdisciplinary Relationships
	Features of Collect
	Illustrative and Technical Relationships

	Relationship Warehouse
	Overview of the UML Model: The Class Diagram
	Storing the Relationships: The Object Diagram
	Querying the Warehouse

	Conclusion

