
Electronic Communications of the EASST
Volume 9 (2008)

Guest Editors: David H. Akehurst, Martin Gogolla, Steffen Zschaler
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the Workshop
Ocl4All: Modeling Systems with OCL

at MoDELS 2007

Extended OCL for Goal Monitoring

William N. Robinson

12 Pages

 ECEASST

2 / 12 Volume 9 (2008)

Extended OCL for Goal Monitoring

William N. Robinson

Computer Information Systems Department, Georgia State University
wrobinson@gsu.edu

Abstract: Abstract. Monitoring human-computer interaction aids the analysis for
understanding how well software meets its purpose. In particular, monitoring human-
computer interactions with respect to a user’s goal model helps to determine user
satisfaction. By formalizing a goal model, runtime monitors can be automatically derived.

The REQMON system monitors the satisfaction of goal models. Recently, an OCL
compiler was developed for REQMON. The OCL was extended slightly to address
temporal and real-time constraints. Now, goal models can be represented in the extended
OCL, from which runtime monitors can be compiled. The resulting REQMON system
appears to be easier to use comes the abstract.

Keywords: OCL, message-based temporal logic, goal monitoring

1 Introduction
Software systems are becoming increasingly complex. It is difficult to know if we have “built
the system right”; that is, the system has been verified to meet its specification. It is also
difficult to know if we have “built the right system”; that is, the system meets the user’s needs.
Software verification has improved with models, formalization, and testing, the latter of which
is now creeping into runtime. Similarly, software validation occurs mostly towards the end of
development. However, validation during ‘natural’ usage and continuous validation are gaining
importance as developers are under increasingly competitive pressures to evolve software to
satisfy changing customer needs. Generally, system behaviour monitoring is growing in
importance, whether it is for verification or validation.

1.1 Monitoring home healthcare
As an illustration of software monitoring, consider home health care. The population of those
requiring personalized healthcare is increasing. Cognitive impairments, for example, are
expected to grow substantially over the next decades. These include autism and various forms
of dementia, such as Alzheimer’s and trauma-induced brain injury. Many of the cognitively
impaired (CI) can only function well when assisted in certain activities such as
communication, travel, and taking medications. Computer-supported monitoring provides a
cost-effective means to assist those requiring personalized health care.

In our recent study, software monitoring was used to assess the satisfaction of clinical goals
for a small group of CI patients[6]. As part of cognitive rehabilitation, the patients were given
goals of communicating through a very limited and personalized emailing application[21].
Software monitoring was used, in part, to track the clinical goals.

 Extended OCL for Goal Monitoring

Proc. Ocl4All 2007 3 / 12

The cognitive rehabilitation field uses a goal attainment scale to evaluate goal
satisfaction[20]. Each goal is refined into a set of attainment levels, or milestones, to provide a
measure of attainment. The goal of communicating through email can be refined as follows:

• Level 1 (not attained): will not be able to learn how to use email.
• Level 2: can email, but only with lots of prompting and help.
• Level 3: can email, with some prompting and help.
• Level 4: can email with no prompting and help.
• Level 5 (fully attained): can teach others how to email
These goal attainment levels can be measured through more refined subgoals, which

include the following:
• Gpresence: The period between viewings of the email in-box shall be no more than k days.
• Gread: After noticing a new email, a user shall read the email, within k hours.
• Greply: After receiving an email, a user shall read and reply to the sender, within k days.
Clinicians want to see: (1) a good success-to-failure ratio over sessions, and (2) a constant

or improving trend of this ratio. This leads to define ratio goals, such as the following:
Greply-ratio: The ratio of successes vs. attempts for email replies shall be ≥ 75%, with any two-week

period.
Representing and monitoring such goals at runtime is a goal of our research. We have achieved
some successes by applying a goal-oriented requirements engineering approach. Using our
monitoring system, called REQMON, goals are represented a variant of the UML Object
Constraint Language (OCL)[16] and monitored at runtime.

1.2 Goal-oriented requirements engineering
We use goal modeling to describe and explain behaviors. Other models are useful during
monitoring—for example, cost models or diagnostic models. Initially, however, we must
describe the goals of the software system, and later explain the software behavior. Goals
support description and explanation by providing[24]: criterion for sufficient
completeness[29]; criterion for requirements pertinence[29]; rationale—particularly
traceability—for requirements[3, 28]; a natural mechanism for structuring complex
requirements documents; abstractions for defining alternatives, detecting and resolving
conflicts[19]; and a means to drive the identification of supporting requirements[22].

“Goal-oriented requirements engineering (GORE) is concerned with the use of goals for
eliciting, elaborating, structuring, specifying, analyzing, negotiating, documenting, and
modifying requirements” [24]. Goal modeling is central to GORE:

Goals are prescriptive statements of intent whose satisfaction requires the cooperation of
agents (or active components) in the software and its environment. Goals may be organized
in AND/OR structures that capture how they are being refined or abstracted. Such structures
form the skeleton of goal models; goals there range from high-level, strategic objectives to
fine-grained, technical prescriptions that can be assigned as responsibilities of single agents.
The latter may be requirements on the software-to-be or expectations on its environment.—
[24]

GORE modeling includes three major phases: (1) identifying goals, (2) refining and
formalizing goals, and (3) deriving and assigning operations to agents[25]. Software
specifications in various formats—describing agents, their operations, and the data model—
can be automatically generated from a GORE model[24].

An analyst can apply refinement techniques to derive operational descriptions, including
pre- and post-conditions, from goals[4, 13, 14, 23]. Throughout the process, agent and object

 ECEASST

4 / 12 Volume 9 (2008)

models are refined. The resulting specification can be represented in the UML. Table 1
illustrates the correspondence between the GORE elements and the UML elements.

Table 1: Correspondence of GORE elements to the UML elements.
KAOS UML
Agent Class
Class Class
Operation Operation
Goal Extended OCL constraints

The research described here shows how certain properties, derived from goals, can be
represented within a variant of the OCL. Once represented in the OCL variant, the properties
can be monitored at runtime.

2 The monitoring system
A monitor is a software system that observes and analyzes the behavior of another (target)
system, determining qualities of interest, such as the satisfaction of the target system’s
requirements. A monitor determines the requirements status from a stream of inputs (INmon). A
monitor can be characterized as a function that processes its input data stream to determine the
status of requirements.

MON(INmon) → Sat(REQ)
In practice, the monitored event stream is comprised of complex objects, such as the XML

objects produced by event management and logging frameworks, such as Common Base Event
(CBE) or log4j.

2.1 Monitoring components
A two-component monitor architecture can be inferred from the preceding characterization. An
event listener acquires events from the stream of inputs (INmon). The requirements analyzer
reviews the events to determine requirements satisfaction Sat(REQ). An intervening event
repository simplifies event acquisition and analysis. Additionally, a user interface presents the
results of analysis.

Figure 1 illustrates the main REQMON components[18]. In the figure, each box is a
software component, which may be network distributed; alternatively, the whole system can be
deployed as one embedded program. Figure 1 illustrates component interactions that occur
when a monitored event is observed. The shaded portions toward the right indicate typical
process boundaries; thus, the monitored program and event sink typically comprise one
process, the event listener and repository comprise another process, finally the analyzer,
presenter and reactor each have their own processes. REQMON defines the components from
the event sink through the reactor.

 Extended OCL for Goal Monitoring

Proc. Ocl4All 2007 5 / 12

In this article, we are concerned with the analyzer. That is, we assume that an event stream

updates the repository. As events arrive, the analyzer executes in response. The analyzer
contains requirements monitors, which are compiled from a variant of OCL 2.0.

2.2 Language considerations
The requirements language has been a consideration for the REQMON monitoring system. The
REQMON monitor system is language neutral; it only requires a translator from a requirements
language to its evaluation subsystem. (REQMON includes a Jess rule-based evaluation
subsystem.) The REQMON research project aims to support GORE. This suggests the
following expression needs:

1. Matching and filtering expressions for selecting relevant events from the input stream,
INmon.

2. Object expressions for representing the goal, agent, and object models of GORE.
3. Relational, temporal, and real-time expressions for precisely describing goal, agent,

and object models.
4. Meta-requirements for representing expressions about property satisfaction.

Additionally, practical considerations are important:
5. User-defined libraries for extending the language.
6. Well-defined, documented, syntax and semantics that facilitate understanding and

external tool development.
7. A large user community, which can apply the monitoring tools.

 Initially, the REQMON requirements language was defined with macros over its

implementation language (e.g., Jess assertion macros)[6, 17, 18]. This addressed the preceding
expression needs 1 – 5; however, considerations 6 and 7 were not met. Therefore, the we
explored compilers for other languages, including Tropos[11] and KAOS [26]. Both met

Figure 1: Illustration of REQMON component interactions.

p: Program s:Event Sink l:Event Listener r:Reactor gui:Presenter a:Analyzer r:Repository

1: \raise\ 2: \raise\ 3: \assert\
4: \raise\

5: \property check\

6: \query\

7: \update\

8: \doAction\

 ECEASST

6 / 12 Volume 9 (2008)

considerations 1 - 4. One could argue that the remaining needs were only partially met or
described.

REQMON now supports a variant of the OCL 2.0 as a requirements language. The OCL
meets needs 1 - 7 with the exception of 3. In particular, temporal and real-time expressions are
not native to the OCL. To fulfill those needs, we have provided language extensions.

2.3 OCL temporal assumptions
As a requirements language, REQMON supports a variant of OCL 2.0, which we call OCLTM—
meaning OCL with Temporal Message logic. The OCL standard has been extended to include
temporal operations based on state[8, 9] and event[2, 12, 30, 31] semantics. Flake[7] addresses
temporal expressions over the events of sending and receiving messages. The OCL 2.0
specification allows for the specification of sent messages, but not received messages.
Moreover, the syntax can be considered confusing: ^message() returns true if the message is
sent, where as ^^message() returns a Sequence of OclMessage objects. Such syntax has led to
errors—for example, in the examples of the OCL 2.0 specification itself[7].

Flake’s message notation simplifies the message syntax and allows for the specification of
received messages. His definitions include sentMessages and receivedMessages defined for
the general type, OclAny.

In OCLTM, we apply Flake’s approach to messages[7]. Both sentMessages and
receivedMessages return a Sequence of OclMessage objects, and sentMessage and
receivedMessage returns the last, most recent message in the sequence.

Over the Flake OCL messages, we apply linear temporal logic semantics. The temporal
operators include[3, 15] the following (the OCLTM keyword is bold):
o (the next state) ● (the prior state)
◊ (some time in the future, eventually) (some time in the past, previously)

 (always in the future) (always in the past, constantly)
W (always in the future unless) U (always in the future until)

Using the operations, one can express “eventually class object obj will receive message
msg”. In OCLTM, this would be as follows:

context Class
 inv: msgArrives:
 eventually(self.receivedMessage(msg()))

2.4 Temporal patterns
Generalized from an empirical study[5], Dwyer et. al. defined five temporal scopes over eight
temporal patterns.

In all, we collected 555 specifications from at least 35 different sources. The specifications collected
were in many forms. … The specifications came from a wide variety of application domains, including:
hardware protocols, communication protocols, GUIs, control systems, abstract data types, avionics,
operating systems, distributed object systems, and databases. …Of the 555 example specifications we
collected, 511 (92%) matched one of our patterns.–Dwyer et. al.[5]

Their property patterns include universal, absence, existence, bounded existence,
response, precedence, chained precedence, and chained response. Their scope patterns
include global, before R, after Q, between Q and R, and after Q until R.
Distinguishing scoping properties from other properties seems to simplify property

 Extended OCL for Goal Monitoring

Proc. Ocl4All 2007 7 / 12

specifications through modularization. These patterns have been formalized in linear temporal
logic (LTL) and other logics.

OCLTM includes standard temporal operators, the Dwyer patterns, and timeouts. Figure 2
shows these extensions. The expressions extend OclExpression of the OCL 2.0 specification
[16]. In so doing, these extensions allow for nested expressions.

2.5 Timeouts
Timeouts are associated with scope, as Figure 2 shows. The @ character precedes a sequence of
comma separated timeouts. Thus, after@0d:3h:0m:0s (Q) P specifies a timeout that begins
with an after(Q) scope activation. The scope activation closes early if the timeout occurs
before the satisfaction of P, the scoped property.

Timeouts are also associated with response property sequences. Consider, for example, the
expression: global response@1s,2s (A,B,C). The response property has global scope, and
is satisfied when properties A, B, and C are satisfied in sequence. Moreover, the two response
timeouts specify, in order, that maximum time between property satisfactions: 1 second
between A and B, and 2 seconds between B and C. If property A is satisfied, and subsequently
either timeout occurs before the associated property is satisfied, then the whole response
property is violated.

2.6 Event and scope sharing
Input data sharing is a monitor design issue[1]. By default, a single event can satisfy multiple
properties, unless no sharing is specified. Sharing applies to both properties and scopes; by
default, a single event, property evaluation, or scope activation can satisfy multiple properties,
unless no sharing is specified.

As an illustration, consider the following constraints on a Buffer class, where Si specifies
the sharing, with either # or nothing.

OclExpression:: Temporal-scoped-pattern
Temporal-scoped-pattern:: [Temporal-scope] Temporal-pattern
Temporal-scope:: after TSE [until] TSE | before TSE | between TSE | global TSE
Temporal-op:: next | prior | eventually | previously | constantly
Temporal pattern:: Temporal-op TE | always TE [unless | until] TE | Response-exp | Precedence-exp
Response-exp:: response [#] [@timeout+] ‘(’ expression (, expression)* ‘)’
Precedence -exp: precedence [#] ‘(’ expression (, expression)* ‘)’
TSE: [#] [@timeout] expression
TE: [#] expression
Expression:: OclExpression-primitives | ‘(’ OclExpression ‘)’

Dywer specifies synonyms terms, some of which are used here: global is the default scope; absence becomes
never, universal becomes always, existence becomes eventually and is the default pattern; Dywer’s modifying term
chained is unnecessary because response and precedence accept sequences; Dywer’s modifying term bounded is
addressed by the standard OCL size() operation on collections.

Figure 2: Syntax of extended OCL 2.0 expressions.

 ECEASST

8 / 12 Volume 9 (2008)

-- Event and property sharing affects matching.
context Buffer
 def: clear : OclMessage = self.receivedMessage(clear())
 def: addObject : OclMessage =
 receivedMessage(addItem(?: Object))
 def: addTransaction : OclMessage =
 receivedMessage(addItem(?: Transaction))
 inv: eventualObject:
 after S1(clear) eventually S2(addObject)
 inv: eventualTransaction:
 after S3(clear) eventually S4(addTransaction)

If sharing is allowed by both S2 and S4, then a single message (addItem(?

:Transaction)) will satisfy both eventually clauses, because Transaction is a subclass of
Object, and thus both addObject and addTransaction will be satisfied. Conversely, if either
S2 or S4 specify no sharing (denoted by #) then it will require two addItem messages to satisfy
both eventually clauses. Similarly, a single scope activation can be shared by both invariants
if S1 and S3 specify sharing; conversely, no sharing requires two clear messages. Although it
is possible to specify sharing relationships directly in the property expression (e.g., addObject
<> addTransaction), like Bates[1], we have found it useful to support sharing directly in the
property language.

2.7 Compiling monitors
Compilation is outside the scope of this article. However, a concise overview may be helpful.
In short, each monitor specification is compiled into an property evaluation tree, where each
node is a rule set[10]. The compiler is written using Antlr 3.0 (a parser generator) and
StringTemplate (a template engine). The resulting monitor rules run in Jess 7.0[10].
Consider the following simple property as an illustration.

context ContextClasss
 def: m1 : OclMessage =
 self.receivedMessage(message1())
 def: m2 : OclMessage =
 self.receivedMessage(message2())
 inv: prop: after(eventually m1) eventually m2

Each temporal expression of prop is compiled to one main rule, and possibility some

auxiliary rules. A simple compilation of prop generates three main rules: (1)
evaluate(eventually m1), (2) evaluate(eventually m2) and (3) the root of the tree:
evaluate(after(eventually m1) (eventually m2)).

As events arrive on the input stream, rules evaluate node satisfaction in the property
evaluation trees. For example, for the leaf node eventually m1, a rule’s left-hand-side (LHS)
matches a repository assertion representing a received message1 by an instance of the
ContextClass; other LHS expressions may further constrain the evaluation. As nodes are
satisfied, their values are propagated up the tree, until finally the entire prop expression is
evaluated.

3 Discussion
Rather than defining our own custom monitoring language we have chosen to (slightly) extend
the standard OCL. The language supports typical GORE models. Additionally, specification

 Extended OCL for Goal Monitoring

Proc. Ocl4All 2007 9 / 12

and tool support for monitoring has been simplified. Moreover, simplified usage has been an
unanticipated benefit.

3.1 The OCL for Requirements
To illustrate usage, consider the following expressions, which include two invariants
(readEmail and replyEmail) that represent the Gread and Greply goals introduced in section 1.1.
Additionally, two meta-goals track the number of their satisfied evaluations during a two week
window, represented by readEmailProp and replyEmailProp. Finally, goodReadReplyRatio
represents the Greply-ratio goal of section 1.1. These expressions illustrate how typical GORE
goals can be represented in the OCLTM.

context EmailClient
 def: eArrival: OclMessage =
 receiveMessage(NewEmail)
 def: eReads: OclMessage =
 receiveMessages(ReadEmail)
 inv: readEmail:
 after@8h(a = eArrival)
 eventually (eReads->select(m |
 m.arguments('ID') = a.arguments('ID'))
 .size() > 0)
 inv: replyEmail:
 response@8h(cSends->select(m |
 m.arguments('ID') = a.arguments('ID'))
 .size() > 0,a = eArrival)

-- evaluations is the collection of all
-- properties, access from the Property class
 def: readEmailProp:
 Property->evaluations(p| p.name='readEmail'
 and p.satisfied = true
 and (new Date()
 .difference(p.dateTime,DAYS) <= 14))
 def: replyEmailProp:
 Property->evaluations(p|p.name='replyEmail'
 and p.satisfied = true
 and (new Date()
 .difference(p.dateTime,DAYS) <= 14))
 inv: goodReadReplyRatio:
 always((replyEmailProp.size() /
 readEmailProp.size()) >= 0.75)

The logical expressions of the OCLTM are similar to other languages that support some form

of predicate calculus and temporal logic over an object model (e.g., Tropos[11], KAOS [26]).
This kind of model is an improvement over prior REQMON expressions, based on Jess macros
(cf. [6]). Moreover, the OCLTM makes use of the OCL library mechanism. Object models can
be referenced, including the Java and other runtime models. For example, the preceding Date
class is defined in the Java runtime, and loaded into REQMON for property evaluation.

3.2 Monitor hierarchies
Goal hierarchies are the core modeling approach in GORE, as introduced in section 1.2.
Ideally, the monitoring model mirrors the goal model. Thus, monitored properties should be
specified in a hierarchy. This approach is supported in the OCLTM through the standard UML
class inheritance mechanism.

 ECEASST

10 / 12 Volume 9 (2008)

Inheritance can simplify the expression of monitors. Consider two classes, where Child is a
subclass of Parent. Each class has an associated property as illustrated below.

context Parent
 inv: propA: -- ...
context Child
 inv: propB: -- ...

Because of inheritance, both child and parent properties apply to child objects. The

monitoring system supports such inheritance. Each property is individually compiled to a
property evaluation tree. The evaluation system, running as Jess rules, matches objects
according to the class hierarchy. Thus, when instances of the child object are observed, then its
properties and ancestor properties are evaluated. Inheritance simplifies specification and
compilation of requirements monitors.

Analysts benefit from requirements on abstract classes. Subclasses can be checked for
requirements compliance, with little additional effort. Of course, subclasses can add
specialized requirements, in which case both the abstract and specialized requirements are
checked. More generally, a requirements annotated class hierarchy provides a means to
describe requirements at multi-levels of abstraction. Thus, hierarchical requirements support
the definition, refinement, and analysis of requirements monitors.

3.3 Tool Support
Simplified tool support is a consequence of fulfilling the practical considerations of §2.2. Early
development of REQMON required custom tool support for a custom language (c.f. [18]).
Although OCLTM is yet another custom language, it is only a slight extension of the standard
OCL. Thus, it has been relatively simple to extend existing OCL tools to support it. In
particular, we have developed plugins for the Eclipse platform. Currently, three basic plugins
types are being developed.

• An editor, which supports OCLTM
• A compiler, which translates OCLTM into a rule-based runtime system
• A pattern library, which supports instantiation and transformations of OCLTM

properties
Each of these plugins is based on an existing plugin for the OCL or the UML.

3.4 Simplified usage
REQMON has a small user base (about 10 off-site users). In reviewing our communications
over the past few years, we find that since the introduction of an OCL compiler have been a
decreasing number of requests for clarification. This supports our practical considerations of
§2.2—although, the user base provides little statistical significance. By minimally extending a
well-defined, documented, and widely used language, we gained many of the advantages of
the language itself (as well as its shortcomings[27].) On balance, we are encouraged that our
OCLTM gains from the OCL (semantics and user community). Alternatives, such as KAOS and
TROPOS, include temporal semantics, but have smaller user communities, and less
development of associated documentation, tutorials, and tools.

Simplified validation is a consequence of simplified usage. Of course, we have not solved
the software validation problem. However, use of the OCL has simplified the formal

 Extended OCL for Goal Monitoring

Proc. Ocl4All 2007 11 / 12

expression of user and system goals, which has simplified the runtime monitoring provided by
REQMON.

Acknowledgments
This work was supported in part by the National Science Foundation grant CCF-0613698.

References
1. P. C. Bates, "Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior," Acm

Transactions on Computer Systems, vol. 13, pp. 1-31, Feb 1995.
2. S. Conrad and K. Turowski, "Temporal OCL: Meeting Specifications Demands for Business Components,"

Unified Modeling Language: Systems Analysis, Design, and Development Issues, pp. 151–165.
3. A. Dardenne, A. van Lamsweerde, and S. Fickas, "Goal-Directed Requirements Acquisition.," Science of

Computing Programming, vol. 20, pp. 3-50, 1993.
4. R. Darimont and A. van Lamsweerde, "Formal Refinement Patterns for Goal-Driven Requirements

Elaboration," in Fourth Symposium on the Foundations of Software Engineering, San Francisco, CA,
1996, pp. 179-190.

5. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Patterns in property specifications for finite-state
verification," in Twenty-First International Conference on Software Engineering, pages, Los Angeles,
1999, pp. 411-420.

6. S. Fickas, W. Robinson, and M. Sohlberg, "The Role of Deferred Requirements: A Case Study," in
International Conference on Requirements Engineering (RE'05), Paris, France, 2005.

7. S. Flake, "Enhancing the Message Concept of the Object Constraint Language," in In Sixteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE 2004), Banff, Canada, 2004,
pp. 161-166.

8. S. Flake and W. Mueller, "An OCL Extension for Real-Time Constraints," in Object Modeling with the
OCL: The Rationale behind the Object Constraint Language. vol. 2263: Springer Berlin / Heidelberg,
2002, pp. 150–171.

9. S. Flake and W. Mueller, "A UML Profile for Real-Time Constraints with the OCL," Proceedings of the 5th
International Conference on The Unified Modeling Language, pp. 179-195, 2002.

10. E. Friedman-Hill, Jess in Action: Manning Publications Co, 2003.
11. E. Kavakli, "Goal-Oriented Requirements Engineering: A Unifying Framework.," Requirements Engineering

Journal, vol. 6, pp. 237-251, 2000.
12. M. Kyas and F. de Boer, "On message specification in OCL," in UML 2003 Workshop on Compositional

Verification of UML Models, San Francisco, CA, 2003, pp. 73-93.
13. E. Letier and A. v. Lamsweerde, "Agent-Based Tactics for Goal-Oriented Requirements Elaboration," in

Proceedings ICSE'2002 - 24th International Conference on Software Engineering, Orlando, FL, 2002.
14. E. Letier and A. v. Lamsweerde, "Deriving Operational Software Specifications from System Goals," in

FSE'10 - 10th ACM S1GSOFT Symp. on the Foundations of Software Engineering,, Charleston, NC,
2002.

15. Z. Manna and A. Prueli, The Temporal Logic of Reactive and Concurrent Systems: Springer-Verlag, 1992.
16. O. M. G. OMG, "Object Constraint Language Version 2.0," OMG, Object Management Group May 1 2006.
17. W. N. Robinson, "Implementing Rule-based Monitors within a Framework for Continuous Requirements

Monitoring, best paper nominee," in Hawaii International Conference On System Sciences (HICSS'05),
Big Island, Hawaii, USA, 2005.

18. W. N. Robinson, "A requirements monitoring framework for enterprise systems," in Requirements
Engineering Journal. vol. 11: Springer, 2006, pp. 17-41.

19. W. N. Robinson, S. Pawlowski, and V. Volkov, "Requirements Interaction Management," ACM Computing

 ECEASST

12 / 12 Volume 9 (2008)

Surveys (CSUR), vol. 35, pp. 132 - 190, June 2003.
20. M. M. Sohlberg and C. A. Mateer, Cognitive rehabilitation: An integrated neuropsychological approach.

New York: Guilford Publication, 2001.
21. A. Sutcliffe, S. Fickas, and M. M. Sohlberg, "Personal and Contextual Requirements Engineering,"

Requirements Engineering, 2005. Proceedings. 13th IEEE International Conference on, pp. 19-30, 2005.
22. A. van Lamsweerde, "From System Goals to Software Architecture," Springer, 2003, pp. 25–43.
23. A. van Lamsweerde, "From System Goals to Software Architecture," Formal Methods for Software

Architectures, pp. 25–43, 2003.
24. A. van Lamsweerde, "Goal-Oriented Requirements Engineering: A Roundtrip from Research to Practice,"

2004, pp. 4-8.
25. A. van Lamsweerde, R. Darimont, and P. Massonet, "Goal-Directed Elaboration of Requirements for a

Meeting Scheduler: Problems and Lessons Learnt," in IEEE, Second International Symposium on
Requirements Engineering, 1995, pp. pp. 194-203.

26. A. van Lamsweerde and E. Letier, "Handling obstacles in goal-oriented requirements engineering," in IEEE
Transactions on Software Engineering. vol. 26, 2000, pp. 978-1005.

27. M. Vaziri and D. Jackson, "Some Shortcomings of OCL, the Object Constraint Language of UML," TOOLS:
34th International Conference, pp. 555–560.

28. E. S. K. Yu, "Modeling organizations for information systems requirements engineering," in roceedings of
IEEE International Symposium on Requirements Engineering, 1993, San Diego, CA, USA, 1993, pp. 34-
41.

29. K. Yue, "What does it mean to say that a specification is complete?," in 4th International workshop on
software specification and design, Montery,CA, 1987, pp. 42-51.

30. P. Ziemann and M. Gogolla, "An Extension of OCL with Temporal Logic," Critical Systems Development
with UML, pp. 53–62.

31. P. Ziemann and M. Gogolla, "OCL Extended with Temporal Logic," Perspective of System Informatics.

	1 Introduction
	1.1 Monitoring home healthcare
	1.2 Goal-oriented requirements engineering

	2 The monitoring system
	2.1 Monitoring components
	2.2 Language considerations
	2.3 OCL temporal assumptions
	2.4 Temporal patterns
	2.5 Timeouts
	2.6 Event and scope sharing
	2.7 Compiling monitors

	3 Discussion
	3.1 The OCL for Requirements
	3.2 Monitor hierarchies
	3.3 Tool Support
	3.4 Simplified usage

	Acknowledgments
	References

