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Abstract: Software systems evolve over time incrementally and sections of code
are modified. But, how much does code really change? Lehman’s laws suggest that
software must be continuously adapted to be useful. We have studied the evolution
of several public domain object-oriented software systems and analyzed the rate as
well as the amount of change that individual classes undergo as they evolve. Our
observations suggest that although classes are modified, the majority of changes are
minor and only a small proportion of classes undergo significant modification.
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1 Introduction

It is a well-established fact that software systems change and become more complex over time as
they are used in practice [LB85]. However, it is less well-understood how change and complexity
are distributed over time, and there has been little research conducted into understanding how
change is distributed over the parts of object-oriented software systems.

In previous work, we have studied typical growth and change patterns in open-source, object-
oriented software systems and shown that although software grows and changes over time, the
structure and scope of both growth and change is, in general, predictable rather than erratic or
purely random [VSWC05, VLS07, VSN07]. This leads us to ask whether we can gain a more
detailed insight into where change occurs, and the degree to which change can be expected.

Not only do we need a suitable distance measure to indicate how much a class or component
changes, but we should also collect information about change both at a fine-grained level to gain
insights into change of individual artefacts, and at a coarse-grain to gain insight into system-level
change. This will then allow us to address questions such as:

• What proportion of a release contains code that has never been touched since creation?

• What is the probability that a class is modified after it is created?

• How is modification frequency distributed for classes that do change?
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• Does a class or component tend to change a lot or are most modifications minor adjust-
ments?

Continuing our previous work, we have analyzed a number of open source applications that
have evolved over at least 18 releases during a period of at least 28 months. For each of these ap-
plications we have collected information on the amount of change individual classes go through
as they evolve over time. The key results of our studies show that:

1. Most classes will be modified at least once during their lifetime, but a substantial propor-
tion of classes stay unchanged during their entire history.

2. Of the classes that are modified, the probability that a class is modified multiple times is
quite low.

3. The amount of change that most classes undergo is also minimal. However, a small pro-
portion of classes is modified significantly.

The rest of this paper is organized as follows: in Section 2 we provide an overview of our
experimental method, and we justify the selection of the case studies. Section 3 presents the
results of our studies. In Section 4 we suggest possible interpretations and consequences of
our observations, followed by a discussion of some limitations of our approach in Section 5.
Section 6 provides a brief overview of related work. We conclude in Section 7 with some remarks
about future work.

2 Experimental method

In this section, we briefly present the systems studied. Next, we describe the means by which
measurements are performed, followed by a discussion about the measures that we collected.
Finally, we illustrate the approach used to detect clones and measure change.

2.1 Input data set selection

As in our previous work [VSWC05, VLS07, VSN07], we have restricted our study to open-
source software developed using the Java programming language. The main reasons for selecting
open source software are their availability, access to change logs (e.g., such as developer release
notes), as well as licensing practices that allow access to both source and object code. The choice
of the systems using the Java programming language was influenced by its use in a variety of
application domains, as well as by the availability of a suitable infrastructure to implement the
necessary metrics tool.

Although there is a large pool of candidate systems, we have limited our selection to 12 rep-
resentative systems (cf. Table 1) for this study. Our data set contains a total of 310 releases.
All systems analyzed in this study have at least 18 releases and a development history of 28
months or more. A Release Sequence Number (RSN) [CL66] is used to uniquely and consis-
tently identify each release version of a given system. The first version of a system is numbered
1 and then each subsequent version increases by one. Hence, RSNs are universally applicable
and independent of any release numbering schedule and/or scheme.
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Name Releases Time Span Initial Size Current Size Description
Axis 23 65 mo. 166 636 Apache SOAP server
Azureus 21 41 mo. 103 4780 Bittorent Client
Castor 27 48 mo. 483 691 Data binding framework
Checkstyle 26 75 mo. 18 309 Coding standard checker
Findbugs 20 36 mo. 308 839 Automated bug finding application
Groovy 20 38 mo. 170 886 Dynamic language for JVM
Hibernate 47 73 mo. 120 1055 Object-relational mapping framework
Jung 21 44 mo. 157 705 universal network/graph framework
Spring 42 43 mo. 386 1570 Light-weight container
Struts 18 28 mo. 106 300 Servlet/JSP framework
Webwork 20 36 mo. 75 473 Web application framework
Wicket 25 30 mo. 181 631 Web application framework

Table 1: Systems under analysis for this study with size being the number of classes and inter-
faces.

2.2 Extracting Measures

In order to perform the analysis, we developed a metrics extraction tool [VSWC05], which
analyzes Java Bytecode and extracts data to capture the degree of change of a system with respect
to its size and complexity. Java Bytecode generally reveals almost as much about a system as its
source code, and only some subtle changes to a software system cannot be detected using this
approach (e.g., use of local variables).

Our metrics extraction tool takes as input the core JAR files for each release of a system, and
extracts metrics by processing the raw Java Bytecode. This approach allows us to avoid running
a potentially complex build process for each release, and limits analysis to “code” that has been
correctly compiled as the developers intended. For each class1 in a system under analysis, we
extract simple measures such as the number of methods, fields, branches as well as the set of
classes that this class depends upon, either as direct client or direct subclass. Type dependency
graph analysis [VCS02] can then be used to compute other measures such as Fan-In [VSN07].

2.3 Software measures

Using the metrics extraction tool, we have extracted 43 different count measures for each class
in each system analyzed. The names we have given to these measures are listed in Table 2 and
include, amongst others, Fan-Out and Branch Count (i.e., the number of branch instructions in
the Java Bytecode), Load Instruction Count (i.e., the number of load instructions), and Store
Instruction Count (i.e., the number of store instructions).

A detailed discussion of all these measures is beyond the scope of this work. However, they
naturally align with the most common instructions of the Java Bytecode as well as covering some
basic structural relationships.

Furthermore, to support a more detailed comparison, we store the name of each class, its
superclass name, all method names (including full signatures), field names and the name of all

1 To improve readability we will refer to “classes” when we mean “classes or interfaces”. We will only refer to
“types” in the context of the formal measures.

3 / 11 Volume 8 (2008)



On the Resilience of Classes to Change

abstractMethodCount branchCount constantLoadCount exceptionCount
externalMethodCallCount fanOutCount fieldCount finalFieldCount

finalMethodCount iLoadCount incrementOpCount innerClassCount
interfaceCount internalFanOutCount internalMethodCallCount isAbstract

isException isInterface isPrivate isProtected
isPublic iStoreCount loadFieldCount localVarCount

methodCallCount methodCount privateFieldCount privateMethodCount
protectedFieldCount protectedMethodCount publicFieldCount publicMethodCount

refLoadOpCount refStoreOpCount staticFieldCount staticMethodCount
storeFieldCount superClassCount synchronizedMethodCount throwCount

tryCatchBlockCount typeInsnCount zeroOpInsnCount

Table 2: Java Bytecode measures extracted for analysis.

other classes that a class depends upon. This information is then used in our clone detection
method discussed in the next section.

2.4 Detecting clones and measuring change

In order to perform our analysis, in particular to detect clones and measure changes between
versions of a given system, we consider the following information for each class under analysis:
(i) the fully qualified class name, including its class modifier (i.e., public, private, protected,
interface, final or abstract) (ii) the name of its direct super class, (iii) the name, types and class
modifier(s) of all fields, (iv) the name, signature and class modifier(s) of all methods, and (v) the
set of classes this class depends upon. Additionally, we extract all 43 class level measures for
each version of a class under investigation.

For our analysis, we consider two classes to be clones of each other (we treat them as being
identical) if all metrics for each class are identical (i.e., all 43 measures have the same value,
same class name with the same modifiers etc.). Furthermore, the distance between two classes
is defined as the number of measures (out of the 43) that differ (i.e., if two of the 43 measures
differ between two classes, then they have a distance of 2). Note that even if two classes have
a distance of 0, they may not be identical (e.g., the name of a field is modified). However, our
analysis has revealed that this is only rarely the case and over all 310 versions we analyzed, at
most 4% of modified classes have a distance of 0. Finally, we consider the history of a system
as the set of versions, ordered by RSN, whereas a version is the set of all classes contained in a
particular release.

We compare the final version of each system with all previous versions (i.e., over the entire
evolutionary history) in order to compute the following information:

• The proportion of classes in the final version that remain unchanged since creation as well
as the proportion that are modified after being created.

• The number of times a class has been modified since its creation.

• The amount of modification that each class has undergone since its creation (i.e., modifi-
cation amplitude).
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The information gathered from the first point gives us an overall picture of the number of
classes that stay unchanged over their lifetime. The last point indicates if changes are substantial,
and can provide an indication of the distribution of small and large changes.

3 Observations

We now summarize our observations from analyzing the 12 systems listed in Table 1. First, we
analyze the percentage of classes that have not changed since being added into the respective
system. We then consider the set of modified classes and analyze the number of times they have
been modified. Finally, we illustrate how much modified classes change over time.

3.1 Probability of change

At a class level, systems evolve by addition of new classes, modification of existing classes or
removal of classes. Hence, given an evolutionary history, for any given version we can identify
three types of classes: new classes, classes that have been modified at some point in their life,
and classes that have not changed since their creation.

In our analysis, we use the last release of a given system as the base-line for comparison. We
consider a class as being unchanged if it is a clone of its first release, i.e., the release in which it
was first defined. Any potential changes in between are not analyzed in our approach. Similarly,
we consider a class as having changed (at least once) if it is not identical to its first release. A
class is considered to be new if it did not appear in any release before the last one.

The results of our analysis are illustrated in Figure 1. Except for Webwork and Jung, the
percentage of unchanged classes is lower than the percentage of modified classes. However,
it is interesting to see that the percentage of unchanged classes ranges between 20% and 55%,
depending on the system. The lower end of the range indicates that in general there is a certain
proportion of classes that are never touched and the average, which is closer to 40%, suggests
that there is a certain inherent resistance to change in many of the classes once they have been
added. Also, our analysis shows that the number of new classes introduced in the last release is
small and generally tends to be under 5%.

3.2 Rate of modification

As noted in the previous section, only a small proportion of all classes undergoes some change.
However, how often are these classes modified? What does the distribution of this modification
look like?

Again, we use the last release as our base-line and only report on classes that are part of this
release – any classes that have been removed before then are not considered. From our previous
work [VSN07] we know that only about 2% to 5% of classes fall into this category.

Only considering classes that have been modified at some point in their life cycle and counting
the number of times that they have been modified, we can observe that, on average, 50% thereof
are modified less than 3 times. In Jung, for example, 90% of modified classes are changed less
than 3 times. Furthermore, as shown in Figure 2, all of the systems have a similar modification
profile. Due to the way we have charted the values using absolute modification count, Axis and

5 / 11 Volume 8 (2008)



On the Resilience of Classes to Change

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

St
ru
ts

Az
ur
eu
s

Gr
oo
vy

Ax
is

Hi
be
rn
at
e

Ca
st
or

Sp
rin
g

Ch
ec
ks
ty
le

W
ick
et

Fin
db
ug
s

W
eb
wo
rk

Ju
ng

%
 C

la
ss

e
s

Unchanged
Modified
New

Figure 1: Proportion of new, unchanged, and modified classes using final version as base-line.

Jung show up as minor outliers. On average, 5% or less of all modified classes are changed more
than 8 times in their life cycle. This suggests that the probability that a class is modified multiple
times is quite low and that this probability reduces non-linearly, as is shown in Figure 2. Please
note that only 0.01% of classes were modified more than 25 times.

3.3 Distribution of the amount of change

As software evolves, we have observed that there is a proportion of code that changes, but the
number of modifications is in most cases minimal. But how much change does happen, i.e., how
many measures do actually change? Is there a typical profile for most systems, like the one we
observe in the modification frequency?

In order to detect the amount of change, we focus on the classes in the final version that have
been modified at least once in their life cycle. We then compute the number of measures (out
of the 43 possible) that have changed between the version the class was first defined and the
final version. This high-level approach allows us to see if there is a common profile across the
various systems, but does not indicate how big the changes in each of the 43 measures are. Our
observations for all systems under analysis are shown in Figure 3.

The reader may first notice that a few classes do not indicate a change in any of the measures
at all. This is possible since the clone detection technique that we apply also takes into consid-
eration method signatures, field names etc. (cf. Section 2.4). However, there is a probability that
some other measure that we do not collect has changed in such a situation. On average, in our
data less than 4% of the classes fall into this category.

When exploring the data for a profile, we observed that 6 systems are much more closely
aligned than the other 6 systems, and one of the systems, Groovy, has a substantially different
profile. However, despite the broad range, much of the cumulative growth is fairly linear for 90%
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Figure 2: Cumulative distribution of the modification frequency of classes that have undergone
a change in their lifetime.

of the classes across multiple systems and only 10% of the modified classes have more than 23
measures modified. The cumulative growth for the remaining 10% is not linear any more and
needs further analysis.

The reader may note that as some of the measures are closely related (e.g., a store instruction
is generally aligned with at least one load instruction), it can be expected that they change in a
similar way. Early analysis indeed suggests that the number of load instructions and the number
of store instructions have a very close relationship. However, further analysis is required to
clarify the correlation between the various measures.

4 Interpretation

Probability of change: In all of the systems that we have studied, a good proportion of classes
remained unchanged. This indicates that some abstractions tend to stay very stable after they
are created. The range of values for different systems suggests that this stability depends on the
domain and possibly the development approach as well as the architectural style that the team
has adopted early in their life cycle.

Rate of modification: Of the classes that have changed, most have been touched a few times –
only a small proportion is modified several times. This modification profile is very similar in all
systems under analysis, suggesting that most classes in a system tend to reach a stable state very
quickly. Combined with our earlier observation that a good proportion of code is never touched,
this suggests that development teams tend to create a stable set of abstractions very quickly. Our
findings provide further support to a similar conclusion reached by Kemerer et al. [KS97].
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Figure 3: Number of measures that change for modified classes.

Distribution of the modifications: Modifications are unavoidable as systems evolve. How-
ever, very few of the classes tend to experience a high level of modification (as computed by the
number of measures that change). Although our approach does not reveal the actual amount of
code changed, it provides us a broad indicator which may serve as a starting point for further
analysis.

5 Limitations

In order to place our study in context, we highlight some of the known limitations of our approach
in addition to our findings.

The clone detection method used in this work may pick up false positives since there may be
changes to a class that our 43 metrics are unable to detect. We intend to improve this by adding
further metrics and additional aspects like the method calls and the call sequence. Furthermore,
our distance measure compares the initial version of a class to the final version. This may miss
edits where a class is modified and returned back to its original shape, as seen by the metrics. This
limitation can be addressed by looking at distance incrementally. As a consequence, the analysis
approach would have to be adjusted to take into consideration the way the metric information is
being collected.

Our method of computing modification misses classes that have been renamed; they will be
considered as a deletion and an addition. This is a weakness that we are addressing in future
work by improving clone detection to accept a certain level of name changes (e.g., package
name change).

We have restricted our input data set to open-source software targeting the Java VM. This lim-
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its the ability to interpret our findings in other languages, since every language tends to promote
a certain culture and a different language may have a different outcome. Furthermore, com-
mercially developed software systems, or systems that are substantially larger than those in our
investigation, may reveal different patterns of stability and maintenance profiles.

6 Related work

Kemerer and Slaughter have studied the profile of software maintenance in five business systems
at the granularity of modules. They conclude that very few modules change frequently, and those
that do are considered to be strategic [KS97]. Gı̂rba has noted that classes that have changed in
the past are also those most likely to change in the future, but these classes are in the minority
[Gir05].

A number of researchers have studied methods of detecting existence of a class in previous ver-
sions (i.e., a clone) using a range of different techniques from string matching [?, Joh94, RD03],
abstract syntax trees [BYM+98] and metrics-based fingerprinting [ACCD00, KDM+96]. In our
study we detect clones by combining metrics as well as string matching. We collect string in-
formation to the extent possible by bytecode analysis (for example, method signatures and de-
pendent type names). Although definitions and methods to detect clones have been provided, a
comprehensive study with an intention of understanding change and stability using clone detec-
tion has not previously been done.

Origin analysis [ZG05] uses a semantic perspective of the context and usage of code in order to
determine where, why and how changes have occurred. The technique also makes use of version
control log data to determine the true origin of code components and changes. Their technique
is in contrast to metrics-based methods, such as our own and those proposed by Demeyer et al.
[DDN00] designed to identify specific components rather than origins.

Barry et al. [BKS03] describe software volatility as a concept with 3 dimensions: amplitude
(size of change), periodicity (frequency of change) and deviation (consistency of change). Using
a phase sequence analysis approach, they detected a distinct set of volatility patterns. Their data
set involved studying maintenance activity log from 23 different systems. In our approach, we
have focused on information that can be collected automatically rather than by parsing log files.

7 Conclusions and Future Work

In this paper, we have investigated where change occurs within 12 open-source Java systems
that have evolved over a period of at least 2 years at the granularity of classes through bytecode
analysis.

Our study shows that when we look at the latest version of a given system, around a third (or
more) of the classes are unchanged since being added into the code base. Of the modified classes,
very few are changed multiple times, suggesting an inherent resistance to change. Further anal-
ysis suggests that only a small minority of the classes tend to undergo substantial change. These
findings show that maintenance effort, which is considered to be a substantial proportion of the
development effort (post initial versions) is spent on adding new classes. Furthermore, when
existing classes need to be modified, the probability of large alterations is generally quite low.
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Our work leads us to ask the following questions as possible future work: is there an inherent
profile for classes that tend to change significantly? Are there any factors that correlate with
classes becoming stable? When changes are made, are large modifications made in a single
version or do they tend to make these over multiple versions? When a class is modified a few
times, are the changes minor? Is there any strong correlation that suggests that either size or
complexity play a role in the tendency for a class to be modified? Can one characterize the
nature of frequently occurring changes?
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