
Electronic Communications of the EASST
Volume 8 (2008)

Proceedings of the
Third International ERCIM Symposium on

Software Evolution
(Software Evolution 2007)

Evolutionary Success of Open Source Software:
an Investigation into Exogenous Drivers

Karl Beecher, Cornelia Boldyreff, Andrea Capiluppi and Stephen Rank

14 pages

Guest Editors: Tom Mens, Ellen Van Paesschen, Kim Mens, Maja D’Hondt
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



ECEASST

Evolutionary Success of Open Source Software:
an Investigation into Exogenous Drivers

Karl Beecher, Cornelia Boldyreff, Andrea Capiluppi and Stephen Rank1

1 (kbeecher,cboldyreff,acapiluppi,srank)@lincoln.ac.uk
Centre of Research on Open Source Software – CROSS

Department of Computing and Informatics
University of Lincoln, UK

Abstract: The “success” of a Free/Libre/Open Source Software (FLOSS) project
has often been evaluated through the number of commits made to its configuration
management system, number of developers and number of users. Based on Source-
Forge, most studies have concluded that the vast majority of projects are failures.

This paper argues that the relative success of a FLOSS project can depend also on
the chosen forge and distribution. Given a random sample of 50 projects contained
within a popular FLOSS forge (Debian, which is the basis of the successful De-
bian distribution), we compare these with a similar sample from SourceForge, using
product and process metrics, such as size achieved and number of developers in-
volved.

The results show firstly that, depending on the forge of FLOSS projects, researchers
can draw different conclusions regarding what constitutes a successful FLOSS project.
Secondly, the projects included in the Debian distribution benefit, on average, from
more evolutionary activity and more developers than the comparable projects on
SourceForge. Finally, the Debian projects start to benefit from more activity and
more developers from the point at which they join this distribution.

Keywords: FLOSS, repositories, metrics, success, evolvability

1 Introduction

In terms of Lehman’s first law of software evolution, it can be anticipated that a useful and widely
used real-world software system, known as an evolutionary (or E-type) software system, must
undergo continuing change, i.e. that it must evolve [LRW+97]. Some well-known Open Source
projects, such as the so-called LAMP (Linux, Apache, MySQL, Perl), the Debian family, and
*BSDs, have achieved higher evolvability than others [MFH02]; these systems are categorised as
E-type. Their evolvability is made possible through these projects attracting a large community
of users as well as a strong base of developers. The user community initiates the need for change
while the developers make it happen; both are key factors in the evolution process.

The term “success” of FLOSS projects has been often empirically evaluated via endogenous
characteristics, such as the amount of development activity, the number of developers, or by
using proxies of their pool of users. Moreover, FLOSS literature has traditionally tackled this
research topic by sampling well-known FLOSS forges (mostly SourceForge), and concluding

1 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

that the vast majority are “unsuccessful”, or “dead” projects [ES07]. Perhaps this is because they
are too specialised in their functionality, but also it could be that through lack of publicity, they
have never achieved the wide spread usage, nor attracted the developers that would drive their
evolution. Using the literature terms, those projects never gained a ‘bazaar’ state, where users
join in a self-sustaining cycle and become developers on the project [SM04, RG06, CM07].

Unless an open source evolutionary software project has enough developers to satisfy its users’
needs for change, it is likely to fail. An interesting case arises when one open source project
becomes incorporated into another, larger one; this is often found in the Open Source operating
system projects, such as Debian, e.g. in the case of new packages. In such a case, the incorporated
package project becomes as widely-distributed as the incorporating project and potentially is able
to reach the same user base and benefit from the developer base of the incorporating project.

This paper investigates the exogenous drivers of FLOSS evolvability, and studies whether the
inclusion of a specific project in the same forge and distribution of a successful FLOSS project
(Debian) has an influence on its evolutionary characteristics. In order to understand the influence
of these drivers, we randomly sampled 50 projects from both forges: Debian and SourceForge,
and studied their evolution. Our goal is to determine whether the visibility given by the inclusion
into Debian increases the number of developers and their activity, compared to the SourceForge
sample. Also, we studied the “entry point” of each project into the Debian forge and distribution,
and evaluated its activity both prior to and after this event.

This paper is structured as follows: Section 2 reviews related work in the area of FLOSS char-
acterisation and section 3 introduces the traditional Goal-Question-Metric approach [BCR94],
as applied to the research topic of this paper. Two major questions will be introduced and later
instantiated in several hypotheses in section 4. Section 4.1 empirically evaluates and tests the
hypotheses derived from the first question, while section 4.2 presents the results for the second
question and section 4.3 discusses threats to validity. Section 5 presents our conclusions.

2 Related work

There are two main types of FLOSS literature, tentatively termed external and internal to the
FLOSS phenomenon: based on the availability of FLOSS data, the former has traditionally used
FLOSS artefacts in order to propose models [HG05], test existing or new frameworks [CCP07,
LHMI07], or build theories [ACPM01] to provide advances in software engineering.

The latter includes several other studies that have analysed the FLOSS phenomenon per se
([SAOB02, Cap03, Ger04] with their results aimed at both building a theory of FLOSS, and
characterising the results and their validity specifically as inherent to this type of software and
style of development. In this section we review some of the works of the latter category.

The success and failure of FLOSS projects has been extensively studied in the past. Specific
forges have been analysed and metrics computed from data extracted from the forges themselves.
Examples include the use of the vitality and popularity indices, computed by the SourceForge
maintainers, which have been used to predict other factors of the same forges [SA02], or to com-
pare of the status of the projects between two different observations [FFH+02]. Also data has
been collected from SourceForge about community size, time to fix bugs, and the popularity of
projects, and this has been used to review some popular measures for success in information sys-

Proc. Software Evolution 2007 2 / 14



ECEASST

tems to the FLOSS case [CAH03a]. Popularity of FLOSS projects has also been assessed using
web-search engines [Wei05]. Other studies have observed projects from SourceForge, and from
their release numbers, their activity or success within a sample has been inferred [CAH03b],
while other researchers have sampled the whole SourceForge data space, and have concluded
that the vast majority of FLOSS projects should be considered as failures [RG05]. Finally,
other researchers have created 5 project categories for the overall SourceForge site, based on
dynamic growth attributes, using the terms “success” and “tragedy” within the FLOSS develop-
ment. Again, it has been shown that some 50% of the FLOSS projects should be considered as
tragedies [ES07].

There are several tools and data sources which are used to analyse FLOSS projects. FLOSS-
mole1 is a single point of access to data gathered from a number of FLOSS forges (e.g., Source-
Forge, Freshmeat, Rubyforge). While FLOSSmole provides a simple querying tool, its main
function is to act as a source of data for others to analyse. CVSAnaly2 is a tool that can be used
to measure and analyse large FLOSS projects [RKG04]. It is used in this research to determine
such information as the number of commits and developers associated with a particular project.

3 Goal, Question, Metrics – GQM

The Goal-Question-Metric (GQM) method evaluates whether a goal has been reached by associ-
ating that goal with questions that explain it from an operational point of view and providing the
basis for applying metrics to answer these questions. The aim of the method is to determine the
information and metrics needed to be able to draw conclusions on the achievement of the goal.

In the following, we applied the GQM method to first identify the overall goal of this research;
we then formulate a number of questions related to the FLOSS projects and their success relative
to their host forge and distribution to which they belong; and finally we collect adequate product
and process metrics to determine whether the goal has been achieved.

Goal: The long-term objective of this research is to evaluate metrics to identify success-
ful FLOSS projects, and to provide guidelines to FLOSS developers about practical actions to
foster the successful evolution of their applications. Based on two samples from Debian and
SourceForge, a comparison of their product and process characteristics will be evaluated to de-
termine which sample should be considered more successful in terms of their evolution. This
will also give an indication of the forges and distributions in which developers should include
their projects so that they may achieve the best outcomes for their project’s future development.

Question: The purpose of this study is to establish differences between samples of FLOSS
projects extracted from Debian and SourceForge. Two sets of questions will be evaluated, one
comparative and one internal to Debian: the first will deal with a direct comparison of the evolu-
tionary characteristics achieved by the projects in the two samples, and the latter will study the
projects in the Debian sample, and evaluate whether their evolution after being included in the
distribution is different from that before this date. The date when a FLOSS project was inserted
into the Debian distribution will be termed “entry point”. The difference before and after the
entry point will be evaluated by comparing the activity and number of developers in each phase.

1 http://ossmole.sourceforge.net/
2 http://cvsanaly.tigris.org/

3 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

As a summary the two main questions underlying this study can be formulated as follows:
1. Are projects in Debian statistically different from projects in SourceForge?
2. After being inserted into the Debian forge and distribution, do FLOSS projects leverage

more activity and developers than before?
In section 4, the first question will be articulated in four research hypotheses, while the second

question will lead to two further hypotheses.
Metrics: This study uses three sources of information to assess the above questions: the

SourceForge and the Debian forges to select two random samples of projects; each project’s
own repository (either their CVS or SVN); and, among the projects within the Debian sample,
their entry into Debian. Each of these sources has been analysed to obtain the metrics needed to
perform the investigation. The metrics for the study will be introduced in each section below.

3.1 Debian and SourceForge samples

The Debian forge (http://www.debian.org/) hosts a large number of FLOSS projects under a com-
mon name. At the time of writing, more than 20,000 projects are listed under the “stable” label
of the latest version. Using a randomiser, we selected 50 of these stable projects. A summary of
the projects retrieved from Debian can be found in the first column of table 1.

The SourceForge site (http://sourceforge.net/) hosts more than 150,000 projects. In order to
draw an accurate comparison, the sample from SourceForge has been extracted only from the
pool of the “stable” projects, i.e. those projects whose core developers labelled the status of the
project with the tag “Production/Stable”. The number of projects from Debian and SourceForge
in this category is comparable (around 22,000). A summary of the projects that have been chosen
from the SourceForge site can be found in the first column of table 2.

3.2 Code repositories

The CVS/SVN repository of each project from the Debian or the SourceForge sample has been
searched. In the sample of 50 Debian projects, 42 existing repositories were found. In order to
provide a similar sample, 42 repositories were also selected from the SourceForge sample.

The following concepts and attributes have been used to build a table of results for each
project:

Commit: the atomic action of a developer checking in one or more files (being source code
or other) into a central repository.

Modules and subsystems: at a fine level of granularity, both CVS and SVN repositories
record activity on files (here termed as “modules”) and their containing folder (termed “subsys-
tem”).

Date: CVS/SVN repositories record the time when the module and its subsystem has been
modified or created from scratch. A date with ISO formatting “YYYY-MM-DD” is recorded.

Developers: we record this information in two ways: firstly by assigning the activity to the
actual committer who placed the file into the repository; secondly by using any further devel-
opers mentioned in the commit, as being in the coding or patching. This information is used to
characterise the input provided to each project.

Touch: Since many modules and subsystems can be committed in the repository within the

Proc. Software Evolution 2007 4 / 14



ECEASST

project oldest date entry date newest date days touches Dev. SLOC
acpidump 2003-05-01 2005-09-26 2003-05-01 1 34 1 2349

apmud 2001-12-07 2000-05-23 2001-12-24 18 95 1 2502
clamav 2003-07-29 2002-05-09 2007-06-02 1405 5382 9 116731

dia 1998-10-01 1998-09-02 2007-06-07 3172 12828 126 146550
EtoileWildMenus 2006-03-04 2006-10-03 2007-04-16 409 46 3 1711

fte 2000-01-30 1996-12-25 2007-03-15 2602 1937 16 51498
geomview 2000-08-15 1998-08-02 2007-05-21 2471 7777 6 101844

grass6 1999-12-29 2003-11-10 2007-06-02 2713 42135 77 107648
gwenview 2006-06-20 2001-09-16 2007-06-06 352 449 5 4580
kdegames 1997-09-11 1997-09-20 2007-06-07 3557 19659 243 118479

kdenetwork 1997-11-26 1997-10-19 2007-06-06 3480 43130 818 272576
kmouth 2003-01-17 2004-01-30 2007-06-05 1601 647 31 5240
liboil 2004-01-07 2004-11-04 2007-05-29 1239 3106 4 52996

mimedecode 2006-06-19 1996-11-29 2006-06-19 1 16 1 631
mod auth kerb 2002-05-01 2004-02-21 2006-11-22 1667 349 2 119
myphpmoney 2002-11-20 2003-01-15 2007-05-27 1650 741 5 19434
octaveforge 2001-10-10 2001-02-25 2007-06-02 2062 16044 48 78150

Pike 1996-09-22 2002-05-05 2007-05-30 3903 21449 69 173196
prelude-manager 2001-08-23 2002-04-11 2007-05-02 2079 1557 44 10854

ProofGeneral 1996-03-15 2002-09-03 2007-05-25 4089 10425 20 48692
ruby 1998-01-16 2003-08-23 2007-06-05 3428 23968 143 419942
scid 2002-04-04 2001-02-13 2003-12-12 618 633 2 89402

shorewall 2002-05-01 2001-12-30 2007-06-06 1863 79498 4 25159
skel 2001-05-20 2003-07-13 2007-01-24 2076 219 13 120

sylpheed 2005-01-12 2000-09-30 2007-06-04 874 2719 2 106087
tcl 1998-03-26 1997-08-19 2007-05-30 3353 39124 109 165306
tdb 2000-08-14 2001-05-07 2005-08-02 1815 295 9 3261

tiobench 2000-03-23 2000-11-08 2003-12-22 1370 110 3 1689
txt2html 2007-01-15 2001-03-30 2007-05-10 116 4 1 3623

vlc 1999-08-08 2000-03-13 2007-06-06 2860 34736 113 401256
wxWidgets 1998-05-20 2000-02-13 2007-06-01 3300 246022 104 2142713
xmakemol 1998-04-03 2001-10-31 2006-09-23 3096 1386 4 18724

yaml4r 2002-06-22 2003-08-23 2003-04-24 307 498 1 10728
fig2ps 2005-11-16 2003-10-28 2007-02-19 461 105 1 397

syncekde 2003-02-11 2003-08-15 2006-11-26 1385 622 5 21684
noteedit 2004-09-15 2001-07-01 2005-07-30 319 590 4 63456

grub 1999-02-28 1997-11-19 2007-02-22 2917 5101 76 3536
libsoup 2000-12-06 2003-03-19 2007-06-01 2369 1548 42 15012
prcs1 2001-06-25 1997-03-28 2005-02-07 1324 858 5 37360

kphoneSI 2005-10-12 2002-12-20 2007-05-23 589 1630 1 41829
cdparanoia 1999-08-15 1998-05-16 2006-11-15 2650 297 6 9182

rlplot 2002-06-06 2004-04-16 2007-05-28 1818 1405 1 69493

Table 1: Summary of attributes of the Debian projects: in bold, the projects where there is a
recorded evolution before and after the entry-point

5 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

project oldest date newest date days touches developers SLOC
audiobookcutter 2006-05-06 2007-05-22 381 958 2 4229

pf 2005-10-03 2006-08-29 330 3207 2 84489
seagull 2006-06-06 2007-05-31 359 707 5 62875
csUnit 2002-12-16 2006-08-14 1337 2147 1 16241
fitnesse 2005-03-26 2007-06-04 800 5172 12 39503
galeon 2000-07-06 2007-04-20 2479 10839 82 93374

expreval 2006-08-29 2007-04-11 225 282 1 3588
cdlite 2005-12-06 2007-04-12 492 46 1 1116

txt2xml 2002-04-27 2006-07-26 1551 155 3 1345
wxactivex 2005-01-26 2005-01-27 1 59 1 3264

ustl 2003-03-21 2007-03-31 1471 11470 1 11416
neocrypt 2003-05-23 2005-06-25 764 108 2 2135

cpia 2000-03-02 2004-10-17 1690 429 15 22954
moses 2002-05-07 2007-02-20 1750 5170 8 105955

critical care 2002-01-18 2002-09-22 247 1708 5 38994
xmlnuke 2006-03-27 2007-03-07 345 888 2 57944

jtrac 2006-03-18 2007-06-06 445 1577 1 12771
QPolymer 2006-01-10 2007-05-24 499 459 1 86971

kasai 2004-08-31 2007-05-30 1002 673 3 8786
fourever 2005-02-23 2007-05-28 824 1795 2 15163

xqilla 2005-11-01 2007-05-28 573 8867 3 107320
uniportio 2006-05-29 2007-02-03 250 32 1 1096
genromfs 2002-01-18 2005-08-18 1308 94 3 654

Beobachter 2006-08-31 2006-12-10 101 376 1 2715
perpojo 2003-06-10 2003-07-31 51 70 1 1677
oliver 2004-07-22 2006-01-14 541 187 3 1429
hge 2005-11-18 2007-03-18 485 1183 3 45654

fnjavabot 2004-06-18 2007-06-05 1082 660 8 10142
ozone 2001-12-17 2005-12-12 1456 6108 7 63790
juel 2006-05-13 2007-04-25 347 990 1 7284
edict 2002-12-06 2006-12-28 1483 82 1 2556

Aquila 2004-05-04 2004-05-28 24 78 1 893
swtjasperviewer 2004-11-21 2007-05-21 911 188 1 3214

eas3pkg 2006-10-26 2007-05-22 208 274 2 43724
formproc 2001-05-10 2004-12-22 1322 1338 1 3514
toolchest 2002-01-03 2005-07-16 1290 15 1 494

ogce 2006-11-27 2007-06-03 188 26596 3 350997
simplexml 2002-08-23 2002-08-23 0 64 1 1691
intermezzo 2000-11-12 2003-09-30 1052 2276 15 34792
whiteboard 2003-06-15 2003-06-27 12 49 1 4910

modaspdotnet 2004-07-16 2007-03-02 959 688 1 2445
kpictorial 2002-05-09 2002-06-04 26 339 1 18214

Table 2: Summary of attributes of the SourceForge projects

Proc. Software Evolution 2007 6 / 14



ECEASST

same commit, and the same module could have been modified by more than one developer in the
same commit, the term “touch” is used to isolate the atomic information of a unique date, unique
union on module and subsystem, and unique developer.

3.3 Entry date

Every project within the Debian distribution has its own page under the Debian website, where
the ChangeLog (typically a dated but otherwise unstructured list of amendments to the project)
can be used to determine its introduction into Debian. shows the first entry in terms of changes
made since its introduction into Debian. Thus, information on the project’s lifecycle “before”
and “after” its inclusion into Debian can be investigated and recorded. For instance, the Debian
Changelog for “clamav” is shown at http://tinyurl.com/2njfon. At the bottom of the page, the first
date indicates that this project entered Debian on May 9th, 2002, in its 0.11-1 release. All project
history before that date is treated as pre-Debian, after that date it is treated as the post-Debian
lifecycle.

4 Hypotheses and Results

Hypotheses have been formed concerning the two questions derived from the GQM approach.
Here they are grouped by the question to which they belong along with their results. These
hypotheses are concerned with comparing the two samples and establishing specific properties
of the Debian sample.

Two statistical test have been used in this evaluation: the t-test and the Wilcoxon test. The
t-test is a parametric test: the populations are typically assumed to be normally distributed. On
the other hand, the Wilcoxon test is non-parametric [Wil45], and the assumption of normality is
not needed to run this test. Since it was not possible to clarify whether the two populations could
be considered as normally distributed, the t-test was first applied. Nonparametric tests are more
powerful in detecting population differences: therefore, since the normality assumptions are not
clearly satisfied, the Wilcoxon tests were applied.

4.1 Empirical evaluation of question 1

The first research question has been designed as a direct comparison between the Debian and
SourceForge samples, and its objective is to highlight any significant difference on the selected
characteristics. Each of these hypotheses is evaluated empirically: given the null hypothesis in
the second column of table 3, a statistical test will either reject it or not. A summary of the tests
and their results will be provided at the end of this section to wrap up the relevant conclusions.

4.1.1 Hypothesis 1.1 – Period of Activity

This hypothesis posits that the duration of time that projects from each forge have been evolved
over differs significantly, measured by the number of days for which activity could be observed
on a project’s repository. The null hypothesis states that Debian and Sourceforge projects have a
similar time-span; this should be rejected if the sample projects display a significant difference.

7 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

Hypothesis 1.1: Days of evolution
H0: Debian and sf.net projects have a similar time
span

H1: Debian projects have a longer time span

min Q1 median Q3 max
debian 1 588 1740 2916 4088
sf.net 1 247 495.5 1290 2479
t-test t = -5.279 D.F. = 82 p≤ 1.142×10−6

Wilcoxon W = 1320 p≤ 3.248×10−5

Hypothesis 1.2: Distribution of size
H0: Debian and sf.net projects have a similar size H1: Debian projects are larger than sf.net

min Q1 median Q3 max
debian 119 3,782 48,686 110,945 2,142,554
sf.net 654 2,346 11,416 49,854 106,478
t-test t = -1.627 D.F. = 82 p≤ 0.11

Wilcoxon W = 1550 p≤ 0.036
Hypothesis 1.3: Distinct developers

H0: Debian and sf.net projects have a similar amount
of developers

H1: Debian projects have more developers than sf.net

min Q1 median Q3 max
debian 1 2 5,5 48 818
sf.net 1 1 2 3 82
t-test t = -2.294 D.F. = 82 p≤ 0.02436

Wilcoxon W = 1343 p≤ 7.829×10−5

Hypothesis 1.4: Overall touches
H0: Debian and sf.net projects have a similar amount
of touches

H1: Debian projects have more touches than sf.net

min Q1 median Q3 max
debian 1 2 5,5 48 818
sf.net 1 1 2 3 82
t-test t = -2.029 D.F. = 82 p≤ 0.04577

Wilcoxon W = 1548.5 p≤ 0.03475

Table 3: Summary of the hypotheses, tests and results of the tests

Table 3 shows that, apart from the minimum values (just 1 day of activity recorded in the
repository), the two samples have different medians, different quartiles Q1 and Q3, and different
maximum values. Applying both the t-test and the Wilcoxon test for two independent samples,
we can reject the null hypothesis with 99.99% confidence for each test.

4.1.2 Hypothesis 1.2 – Size Achieved

The second hypothesis postulates that the typical size of a project differs significantly for each
forge, in terms of SLOC (sources lines of code), with the null hypothesis stating that both forges
have similar sizes, to be rejected if project sizes are shown to be significantly different.

The results are based on an evaluation of the extracted data using the R programming lan-
guage. They show that projects from Debian are larger than those in SourceForge (although we
found several outliers in the Debian distribution of sizes). The size of Debian packages also
has a greater range, with a greater number of outliers of larger magnitude found in the Debian

Proc. Software Evolution 2007 8 / 14



ECEASST

distribution, implying the presence of larger communities.

Figure 1: Boxplots of the size distribution (in SLOCs) in the Debian and SourceForge samples

From Table 3 and the boxplot in Figure 1, it can be seen that the two samples show different
distributions in terms of size achieved. The null hypothesis is based on the assumption that the
two sample come from the same population, and therefore have the same average; based on the
tests, we can reject the null hypothesis with 89% and 96% of confidence (for the t-test and the
Wilcoxon test, respectively).

4.1.3 Hypothesis 1.3 – Developers

This hypothesis posits that the number of developers that a project attracts is, on average, sig-
nificantly different for each forge, measured according to the number of unique developers who
have contributed source code. The null hypothesis states that Debian and SourceForge projects
have approximately equal numbers of contributing developers, to be rejected if this is not the
case.

The final column of tables 1 and 2 shows the number of distinct developers (i.e. CVS or SVN
committers or external developers acknowledged during a specific commit).

We found several outliers in the Debian sample which rendered the average of the population
sample to 51 developers, while the SourceForge sample has an average of some 5 developers
only. In table 3 the summaries for the boxplot evaluation are visualised, as well as the results of
the t-test (with 82 degrees of freedom) and the Wilcoxon test.

Since the null hypothesis is that the two sample have the same median, the two tests show
that, for a confidence of 97.5% and 99.99% (for the t-test and the Wilcoxon test, respectively),
we can reject the null hypothesis. That means that there is a statistically significant difference in
the distribution of the evolution days in the two samples.

9 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

4.1.4 Hypothesis 1.4 – Activity (Touches)

The final hypothesis for question 1 postulates that the amount of activity (or output) observed
differs between each forge. Specifically, the null hypothesis states that, on average, individual
Debian projects and individual SourceForge projects will have a total number of file touches that
does not differ significantly. We may reject this if it is shown that either forge tends to harbour
significantly more active projects than the other.

The results are summarised in tables 1 and 2 . As seen in the previous test, some projects
(notably wxWidgets and shorewall) clearly skew the distribution of the Debian sample. The
two tests show that, for a confidence of 0.04 and 0.03 (for the t-test and the Wilcoxon test,
respectively), there is a statistically significant difference in the distribution of the activity (in
terms of the amount of overall touches) of the two samples.

4.2 Empirical Evaluation of Question 2

This section examines Debian only, and investigates whether it can be considered an external
driver for achieving a better software evolvability. Each project in this sample has been analysed
with regards to the two phases of its lifecycle, i.e. before and after the date when it was first
included into Debian. If the projects experienced two statistically different behaviours before
and after the entry date, we could conclude that the “Debian treatment” is responsible for this
difference.

As shown in table 1, the bold entries in the entry date column represent the date of each
project’s first appearance in Debian. This entry point, e, has been used to separate each project
into two phases, so the dependent variable in each hypothesis can be measured between both the
earliest available date and e, and between e and the latest available date. For some projects the
entry date appears before any data was collected in their repository, hence there is no data to draw
a comparison of activities and developers before and after the entry date. For hypotheses 2.1 and
2.2 only projects with data available both before and after the entry point will be considered.

4.2.1 Hypothesis 2.1 – Developers

The first hypothesis for this question postulates that the number of contributing developers a
project has before insertion into Debian is significantly different to that figure after insertion.
The null hypothesis assumes that no significant difference will be observed between the two
durations. The metric used is the number of distinct developers.

The results are shown in the first two columns of Table 4. As can be observed the number
of distinct developers in the second part of the lifecycle is always more than or equal to that of
the first part. In 18 projects out of 22, the number of distinct developers after the introduction
into Debian is strictly larger than before, while 4 projects out of 22 have the same amount of
developers both before and after the inclusion. These latter 4 are relatively smaller projects,
where at most 1 or 2 developers are currently responsible for the overall development.

Since the majority of the observed projects show a larger number of developers in the second
part of the lifecycle, we can reject the null hypothesis.

Proc. Software Evolution 2007 10 / 14



ECEASST

4.2.2 Hypothesis 2.2 – Activity (Touches)

The second hypothesis posits that the amount of activity a project displays before appearing
in Debian is significantly different to that after the event. The null hypothesis states that no
significant difference in activity is apparent in the two durations. As in hypothesis 1.4, activity
is measured by number of file touches.

The results are summarised in table 4 where each project is given an ID, while the overall
number of touches before, T (pre), and after, T (post) are shown in the second and third columns.
Considering these unadjusted values, all considered projects show a larger number of touches
after joining Debian; these results lead us to reject the null hypothesis.

ID D (pre) D (post) T (pre) T (post) T/D (pre) T/D (post)
1 9 10

√
10 1417

√
1.11 12.88

√
2 17 41

√
10 88

√
0.59 2.15

√
3 1 2

√
14 18

√
14 6 X

4 5 44
√

15 117
√

3 2.66 X
5 1 1

√
18 18

√
18 18

√
6 2 2

√
22 22

√
11 7.33 X

7 22 42
√

25 86
√

1.14 2.05
√

8 1 1
√

31 37
√

31 37
√

9 2 243
√

32 954
√

16 3.93 X
10 9 31

√
40 41

√
4.44 1.32 X

11 10 13
√

43 50
√

4.3 3.85 X
12 7 9

√
44 55

√
6.29 6.11 X

13 2 2
√

46 49
√

23 24.5
√

14 2 5
√

49 63
√

24.5 12.6 X
15 2 4

√
53 74

√
26.5 18.5 X

16 1 5
√

60 82
√

60 16.4 X
17 1 1

√
67 67

√
67 67

√
18 1 4

√
160 576

√
160 144 X

19 14 20
√

436 779
√

31.14 38.95
√

20 61 69
√

1666 1673
√

27.31 24.25 X
21 50 76

√
3972 6429

√
79.44 84.59

√
22 41 104

√
6923 18595

√
168.85 178.8

√

Table 4: Summary of the number of distinct developers and overall touches in the two samples

Considering the dates shown in table 1, some projects have had a longer time span within the
Debian distribution than outside. To consider this point, columns 5 and 6 of table 4 report an
adjusted value, given by the touches divided by the relative interval of time spent either outside or
inside Debian (T/D (pre) and T/D (post) respectively). As shown by the ticks in the final column,
12 projects out of 22 experienced an adjusted number of touches which was larger before joining
Debian than afterwards. This did not allow us to reject the null hypothesis, and hence to consider
the observed differences in the two phases as related to the applied treatment.

As reported, the only case where the null hypothesis can be rejected is that concerning the
amount of touches done in projects within the Debian forge. In general, projects achieve a larger

11 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

amount of activity after the insertion into Debian, but this is not accomplished with the same
amount of touches per day (i.e., productivity) than before the entry point.

4.3 Threats to Validity

The limited information (from hypothesis 2) affects the ability to demonstrate a temporal rela-
tionship; what exists does not consistently confirm that cause precedes effect. However sugges-
tive the data is of such a relation, more measures applied to these and other forges of similar
prestige would help form a stronger position on the relevance of temporal precedence.

The ability to generalize from this study may be threatened by the Debian forge (and others of
similar prestige) possessing attributes unique to themselves that may adversely effect their ability
to, for example, attract new developers. To provide more confidence of generalizability a future
study would need to establish that other forges acting as repositories – yet providing different
services, such as Mozilla or KDE – exhibit the same characteristics as those measured here.

5 Conclusions

This research has investigated the presence of exogenous drivers to software evolvability, and
proposed that the inclusion in a successful FLOSS forge (Debian) has an influence on the evo-
lutionary characteristics of FLOSS projects (a summary of the hypotheses tested is displayed in
5).

The intended recipients of this paper are both researchers and practitioners. On the researchers’
side, it aims to show that by investigating and comparing different FLOSS forges, they are likely
to draw different results, and to characterise differently the FLOSS phenomenon. On the practi-
tioners’ side, the paper shows that FLOSS developers, if interested in further fostering the devel-
opment of their project, should consider their project’s inclusion in one large distribution-based
forges such as Debian.

The paper leveraged the well-known GQM method; two research questions were then for-
mulated, the first based on a direct comparison between the two samples, the second regarding
the Debian sample only. The first question postulated that the Debian forge would have signif-
icantly different attributes to Sourceforge. Debian projects were shown to have a longer period
of evolution, were larger in size, attracted more developers and experienced greater activity than
SourceForge projects. All of the designed hypotheses showed a difference in the two random
samples, and this positively assessed the first overall research question: Debian projects do in-
deed show different characteristics than projects from SourceForge.

The second research question was based on the Debian sample only and assessed the presence
of two phases of evolution, i.e. before and after the inclusion into the Debian forge. In statistical
terms, we studied whether there existed differences before and after applying a treatment to the
sample. The first hypothesis proposed that there are more developers after being inserted into
Debian, and the majority of projects showed this to be the case. The second hypothesis concerned
the activity before and after the entry point. From the results we gathered, we could not conclude
that there was a statistically significant difference before and after the treatment. This could be
the result of measuring activity in terms of touches.

Proc. Software Evolution 2007 12 / 14



ECEASST

ID H0 H1 Metrics Outcome
1.1 Debian and sf.net

projects have a
similar time span

Debian projects have
a longer time span

Days H0 rejected

1.2 Debian and sf.net
projects have a
similar size

Debian projects are
larger than sf.net

SLOCs H0 rejected

1.3 Debian and sf.net
projects have a
similar amount of
developers

Debian projects have
more developers than
sf.net

Developers H0 rejected

1.4 Debian and sf.net
projects have a
similar amount of
touches

Debian projects have
more touches than
sf.net

Touches H0 rejected

2.1 Same amount of de-
velopers before and
after the treatment

More developers af-
ter the treatment

Debian
develop-
ers

H0 rejected

2.2 Same amount of
touches before and
after the treatment

More touches after
the treatment

Debian
touches

H0 NOT re-
jected

Table 5: Summary of the empirical hypotheses tested in this study (sf.net refers to SourceForge)

Further research is required to substantiate the more general proposition that widespread dis-
tribution builds the user base of a FLOSS project thus drives its evolution, while incorporation
into a distribution with an existing developer base provides the basis for sustainable evolution.

Bibliography
[ACPM01] G. Antoniol, G. Casazza, M. D. Penta, E. Merlo. Modeling Clones Evolution Through Time

Series. In Proc. IEEE Intl. Conf. on Software Maintenance 2001(ICSM 2001). Pp. 273–280.
Fiorence, Italy, Nov 2001.

[BCR94] V. R. Basili, G. Caldiera, D. H. Rombach. The Goal Question Metric Approach. In En-
cyclopedia of Software Engineering. Pp. 528–532. John Wiley & Sons, 1994. See also
http://sdqweb.ipd.uka.de/wiki/GQM.

[CAH03a] K. Crowston, H. Annabi, J. Howison. Defining Open Source Software Project Success. In
Proceedings of ICIS 2003. Seattle, Washington, USA, Dec. 2003.

[CAH03b] K. Crowston, H. Annabi, J. Howison. Defining open source software project success. In ICIS
2003. Proceedings of International Conference on Information Systems. 2003.

[Cap03] A. Capiluppi. Models for the Evolution of OS Projects. In Proceedings of ICSM 2003. Pp. 65–
74. Amsterdam, Netherlands, 2003.

[CCP07] G. Canfora, L. Cerulo, M. D. Penta. Identifying Changed Source Code Lines from Version
Repositories. Mining Software Repositories 0:14, 2007.

13 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

[CM07] A. Capiluppi, M. Michlmayr. From the Cathedral to the Bazaar: An Empirical Study of the
Lifecycle of Volunteer Community Projects. In Feller et al. (eds.), Open Source Development,
Adoption and Innovation. Pp. 31–44. Springer, 2007.

[ES07] R. English, C. Schweik. Identifying Success and Tragedy of FLOSS Commons: A Prelimi-
nary Classification of Sourceforge.net Projects. In Proceedings of the 1st International Work-
shop on Emerging Trends in FLOSS Research and Development. Minneapolis, MN, 2007.

[FFH+02] J. Feller, B. Fitzgerald, F. Hecker, S. Hissam, K. Lakhani, A. van der Hoek (eds.). Character-
izing the OSS process. ACM, 2002.

[Ger04] D. M. German. Using software trails to reconstruct the evolution of software. Journal of
Software Maintenance and Evolution: Research and Practice 16(6):367–384, 2004.

[HG05] A. Hindle, D. M. German. SCQL: a formal model and a query language for source control
repositories. SIGSOFT Softw. Eng. Notes 30(4):1–5, 2005.

[LHMI07] S. Livieri, Y. Higo, M. Matushita, K. Inoue. Very-Large Scale Code Clone Analysis and
Visualization of Open Source Programs Using Distributed CCFinder: D-CCFinder. In ICSE
’07: Proceedings of the 29th International Conference on Software Engineering. Pp. 106–
115. IEEE Computer Society, Washington, DC, USA, 2007.

[LRW+97] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M. Turski. Metrics and Laws
of Software Evolution—The Nineties View. In El Eman and Madhavji (eds.), Elements of
Software Process Assessment and Improvement. Pp. 20–32. IEEE CS Press, Albuquerque,
New Mexico, 5–7 Nov. 1997.

[MFH02] A. Mockus, R. T. Fielding, J. Herbsleb. Two case studies of open source software develop-
ment: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology
11(3):309–346, 2002.

[RG05] A. Rainer, S. Gale. Evaluating the Quality and Quantity of Data on Open Source Software
Projects. In Feller et al. (eds.), First International Conference on Open Source Systems. 2005.

[RG06] G. Robles, J. M. Gonzlez-Barahona. Contributor Turnover in Libre Software Projects. In
Damiani et al. (eds.), OSS. IFIP 203, pp. 273–286. Springer, 2006.

[RKG04] G. Robles, S. Koch, J. M. González-Barahona. Remote analysis and measurement of libre
software systems by means of the CVSAnalY tool. In Proceedings of the 2nd ICSE Workshop
on Remote Analysis and Measurement of Software Systems (RAMSS ’04). 26th International
Conference on Software Engineering. Edinburgh, UK, May 2004.

[SA02] K. J. Stewart, T. Ammeter. An Exploratory Study of Factors Influencing the Level of Vi-
tality and Popularity of Open Source Projects. In ICIS 2002. Proceedings of International
Conference on Information Systems 2002. 2002.

[SAOB02] I. Stamelos, L. Angelis, A. Oikonomou, G. L. Bleris. Code Quality Analysis in Open-Source
Software Development. Information Systems Journal 12(1):43–60, 2002.

[SM04] A. Senyard, M. Michlmayr. How to Have a Successful Free Software Project. In Proceedings
of the 11th Asia-Pacific Software Engineering Conference. Pp. 84–91. Busan, Korea, 2004.

[Wei05] D. Weiss. Measuring Success of Open Source Projects Using Web Search Engines. In Scotto
and Succi (eds.), Proceedings of The First International Conference on Open Source Systems
(OSS 2005), Genova, Italy. Pp. 93–99. 2005.

[Wil45] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6):80–83,
1945.

Proc. Software Evolution 2007 14 / 14


