Electronic Communications of the EASST

Volume 8 (2008)

Proceedings of the
Third International ERCIM Symposium on
Software Evolution
(Software Evolution 2007)

Refactoring of UML models using AGG
Alessandro Follit, Tom Mens

15 pages

Guest Editors: Tom Mens, Ellen Van Paesschen, Kim Mens, Maja D’'Hondt
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 This paper reports on work that has been carried out by the first author in the context of a masters thesis supervised

by the second author in the context of an ERASMUS exchange programme.

http://www.easst.org/eceasst/

E} ECEASST

Refactoring of UML models using AGG

Alessandro Folli?, Tom Mens

Service de Génie Logiciel, Université de Mons-Hainaut, Belgique

Abstract: Model refactoring is an emerging research topic that is heavily inspired
by refactoring of object-oriented programs. Current-day UML modeling environ-
ments provide poor support for evolving UML models and applying refactoring
techniques at model level. As UML models are intrinsically graph-based in nature
we propose to use graph transformations to specify and apply model refactoring.
More in particular, we use a specific graph transformation tool, AGG, and provide
recommendations of how AGG may be improved to better support model refactor-
ing. These recommendations are based on a small experiment that we have carried
out with refactoring of UML class diagrams and state machines.

Keywords: UML, model refactoring, AGG, graph transformation

1 Introduction

Model-driven engineering (MDE) is a software engineering approach that promises to accelerate
development, to improve system quality, and also to enable reuse. Its goal is to tackle the com-
plexity of developing, maintaining and evolving complex software systems by raising the level
of abstraction from source code to models. The mechanism of model transformation is at the
heart of this approach, and represents the ability to transform and manipulate models [SKO03].

Model transformation definition, implementation and execution are critical aspects of this
process. The challenge goes beyond having languages to represent model transformations. The
transformations also need to be reused and to be integrated into software development method-
ologies and development environments that make full use of them.

The term refactoring was originally introduced by Opdyke in his seminal PhD dissertation
[Opd92] in the context of object-oriented programming. Martin Fowler [Fow99] defines this
activity as “the process of changing a software system in such a way that it does not alter the
external behaviour of the code, yet improves its internal structure”.

Current-day refactoring techniques focus primarily on the source code level and do not take
into account the earlier stages of design. A need exists for refactoring tools that enable designers
to better manipulate their model, not just their source code. Furthermore, there is a need to
synchronise and maintain consistency between models and their corresponding code; source
code refactorings may need to be supplemented with model-level refactoring to ensure their
consistency. This article will focus on the problem of model refactoring, which is a particular
kind of model transformation.

The Unified Modeling Language (UML) [Obj05] is the industry standard used to specify, visu-
alize, and document models of software systems, including their structure and design. Therefore,

2 This paper reports on work that has been carried out by the first author in the context of a masters thesis supervised

by the second author in the context of an ERASMUS exchange programme.

1/15 Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

the goal of this article is to explore the refactoring of UML models. We use graphs to repre-
sent UML models, and graph transformations to specify and apply model transformations. This
choice is motivated by the fact that graphs are a natural representation of models that are intrin-
sically graph-based in nature (e.g., class diagrams, state machine diagrams, activity diagrams,
sequence diagrams).

Graph transformation theory has been developed over the last three decades as a suite of tech-
niques and tools for formal modelling and very high-level visual programming [Roz97, EEKR99,
EKMR99]. It allows to represent complex transformations in a compact visual way. Moreover,
graph transformation theory provides a formal foundation for the analysis and the automatic and
interactive application of model transformations. Among others, it provides the ability to for-
mally reason about such graph transformations, for example to analyse parallel and sequential
dependencies between rules.

In this article, we argue that the use of graph transformations for the purpose of model refac-
toring is both possible and useful. As a proof of concept, we implement a number of com-
plex model refactorings in AGG® [Tae04]. It is a rule-based visual programming environment
supporting an algebraic approach to graph transformation [EM93]. AGG may be used as a
general-purpose graph transformation engine in high-level Java applications employing graph
transformation methods. AGG is also one of the rare tools that incorporates mechanisms such as
critical pair analysis for formally analysing graph transformations, which can be very useful for
analysing refactoring rules [MTRO7, Men06].

Based on our experience, we provide recommendations on how the AGG tool, and graph
transformation tools in general, may be improved.

2 Motivating Example

In the field of software engineering, the Unified Modeling Language (UML) defined by the Ob-
ject Management Group (OMG) [Obj05] is the de facto industry standard specification language
for modelling, specifying, visualising, constructing, and documenting software-intensive sys-
tems. UML provides a standardized graphical notation to create abstract models of a system,
referred to as UML models. These models must be conform to the UML metamodel which de-
scribes the syntax and semantics. As an example, Figure 1 shows the metamodel of UML state
machine diagrams.

Model refactoring is a special kind of model transformation that aims to improve the structure
of the model, while preserving (certain aspects of) its behaviour. Like the process of source code
refactoring, the process of model refactoring is a complex activity. A definition of refactoring
has been introduced by Opdyke in his PhD dissertation [Opd92]. He defines refactorings as
program transformations containing particular preconditions that must be verified before the
transformation can be applied.

In [Fol07] we have discussed eight primitive model refactorings for UML Class diagrams and
UML State Machine diagrams. This clearly shows that it is possible to formalise the specification
and execution of model refactoring using graph transformation rules. Table 1 shows the list
of model refactorings that we have discussed and implemented. Each model refactoring was

3 http://tfs.cs.tu-berlin.de/agg/

Proc. Software Evolution 2007 2/15

http://tfs.cs.tu-berlin.de/agg/

Eg ECEASST

Befmvicr SETMIEE [——
P Ly Peeucisizieind
irkernal —
\ " initial
e ot eegrieiary
e Sﬂ;mire ks stelosHstory
licin
+staeMaching T—m
=Ubmets ravespace] juncticn
: choice
o1 ertrPoint
Nerespace | 0§ e eitFrirt
(TS K. ~] i {suUbssts renespacs} terminge
L¥| +region {sumets owr 3
P +oartairer MNarErSeEt
subxels nemespace} ftom k...
1 N
L [+regm +ransition \
{submets owredientarl | (isas omnedvienta} o1
+ouigang Transition (-
. _* |kind: TransiSonkind 0.1
+incoing . SE—
.
Mamespace
{rEm ke ' 04
7
Q| = . efiect
‘ FU‘ 4 - iy 0 {aubsats oanecBenent}
Siee {auzds omedBenet) B
[/ isConposite - Bodlean o1 nq ifomEsskBeEg.
3 |/isCrihogond - Bodean :
/isSinple: Bodean e
isSurecineSiste : Bodean {sutmets owrecBlemat
o1 o
o1 01)
{sbests onnedVienter} +dobchity
| CamedionPoinReferance |+umech‘m o1 {subests oanscBenent}
g
2 el o1 01
{sizdsravepacd |« /| po.1 01

L+wrirgSk!B

* |+oferralieTrigger

Trigge . +Tigger
FirgState {¥rom Communicatl.. o

+atdehvaiat
{suzds omedBenert}

o1,
)

Coretran +guerd
{fromm e, i {sumets onrecBenert}

o1

Figure 1: UML metamodel of state machines

formalised, explained and motivated using a concrete example. A detailed explanation of when
it should be used and how it can be realised precedes a discussion of the list of mechanisms to
accomplish the refactoring itself.

In this article, we explore the Introduce Initial Pseudostate model refactoring in more detail
in order to explain and illustrate the main concepts.* As suggested by the name, it adds an initial
pseudostate to a composite state, or region. The Introduce Initial Pseudostate refactoring is used
to improve the structure of a State Machine diagram. In general, it is a good convention not to
cross boundaries of a composite state.

Figures 2 and 3 show a simple example of using this kind of refactoring. An initial pseudostate

4 For reasons of simplicity, the representation of UML state machines used for this article does not consider the
actions attached to states, such as do, entry and exit actions.

3/15 Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

UML Class diagram H UML State Machine diagram

Pull Up Operation Introduce Initial Pseudostate
Push Down Operation Introduce Region
Extract Class Remove Region
Generate Subclass Flatten State Transitions

Table 1: List of model refactorings

has been added to the ACTIVE composite state. The target of the transition that initially referred
to the Ready state has been redirected to its enclosing region. An automatic transition has been
defined between the initial pseudostate and the Ready state. The Ready state has thus become
the default initial state of the ACTIVE region; a transition whose target is the ACTIVE state will
lead the State Machine to the Ready state. When the refactoring is used to introduce a final state
as well, similar changes to the transitions involved in the composite state will need to take place.

(T OFF) ButtonOff:) pover) ACTIVE
. Button Previous : / previous()

L_J\ Button Next : / next()

Button ©n : / power()
Button Previous : f previous()
Ready Pause
i c Button Next - / next0 |
i
Fnt\ ¥ chedkDrive €D Present] = Button Stop : /stop() |

Button Drive © /open drive() Button Drive : / close drive() Button Stop : /stop() Button Play: / play()

Button Next : /next() Button Pause : / pause()

— | Button Play . / play()
PLAY D Button Pause : [play()

Button Drive : f open drive()

Button Play: / play() [restart current song]

Button Previous : / previous()

Figure 2: UML state machine diagram - Before refactoring

Figure 4 shows the control flow of this model refactoring that is composed of more primi-
tive refactoring actions. The notation of UML Interaction Overview diagrams has been used
to formally depict the control flow and to specify in which order the action must be executed.
The interaction occurrence frames that compose the diagram indicate activities or operations to
be invoked. For the purpose of defining model refactoring, they have been associated to graph
transformation rules. Some custom notations have been added to enrich the diagram with all
necessary information. In particular, input and output parameters for each atomic step have been
specified.

In order to apply the refactoring, it is necessary to provide two input parameters r and s. The
parameter r specifies which composite state, or region, will be modified by the refactoring. The
parameter s specifies which will be the default state of the region. Before applying the refactoring
it is necessary to verify that the composite state does not contain an initial pseudostate; this check

Proc. Software Evolution 2007 4115

E

ECEASST

OFF

Button Off : { pover()

Blitton On : / power()

)

Init

entry/ chedDrive

[CD Present]

Buitton Drive : / open drive()

Button Drive : / close drive()

Wyait

Button Diive : {open drive()

Button Previous : / previous()

Button Next : / next()

Ready

ACTIVE

Button Previous : / previous(
Button Next - f next() ‘

2
D Button Stop : / stop() {

Pauss]

Button Stop : /stop()

Button Next : /next()

Button Play: / play()

Blitton Pause : /pauss()
[Buffon Play: 1 playl)

PLAY

Button Previous : / praviousy)

i Biffon Pause : [play0

Button Play: / play() [restart current sona]

Figure 3: UML state machine diagram - After refactoring

sd Introduce Initial Pseudns[aie)

{paramete= rRegion,sState }

®o———

[rer)
Create Initial P seudostate
{parameter=r:Region s:State;returr=present:boole an}

[(present) - Initial Pszudostate
is present]

&

>®

[F ailure]

[els=]

[ret)
Move Incom
{returremoved:hoole an}

ing Transition

[(moved) - A transition
has been mowved]

[el==]

Remove Temporary Reference

H@

[Success]

Figure 4: Introduce Initial Pseudostate model refactoring, specified as UML Interaction Overview diagram

will be implemented as a precondition.
If the precondition is respected, the refactoring proceeds by creating the initial pseudostate
inside the composite state. Subsequently, the refactoring changes the target of all transitions
pointing to the default state. The new target state of those transitions will become the composite
state that contains the region r.
For technical reasons, a final cleanup phase is needed in order to remove auxiliary elements

5/15

Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

that have been added during the transformation process.

3 Formal representation as graph transformation

UML models can be represented as a graph-based structure, and graphs must conform to the
corresponding type graph, much in the same way as models must conform to their metamodel.
A type graph corresponding to the UML metamodel is required to formally represent the UML
models as graphs and to formally define the UML model refactoring. °

For the purpose of this article, we have chosen to take into account a subset of the concepts
defined by the UML metamodel. In particular, we focus on UML State Machine diagrams only.
Figure 5 shows the type graph corresponding to the UML metamodel of figure 1. This type graph
has been created using the AGG graph transformation tool.

StateMachine ©
String name
AR L
R 05-1 =y &
containsT | containss
~ 7 refactoringTojy « G

containsT b
-1 . semi i containsT
!] ™ composed e i
% 70— S0 Type ~
L — pstate o IETITYPRE Bty ~
boolean isComposite O Y
boolean isFinal e Type Scontains & wagEontainge,
s Refactoring amy ¥
|String type L Mype Tm
L1 A source e 3

target

" contains / contains

0.1
Event AT] Guard B
String name String expression

Figure 5: UML State Machine diagram — Type Graph

PszudoState B
String pseudostatekind

AGG offers many concepts that are useful to define a type graph very similar to the corre-
sponding UML metamodel. AGG allows enrichment of the type graph with a generalisation
relation between nodes, and each node type can have one or more direct ancestors (parents) from
which it inherits the attributes and edges. Moreover, it is also possible to define a node type as
an abstract type, thereby prohibiting creation of instance nodes of this abstract type.

The primitive refactoring actions shown in figure 4 can be implemented by means of graph
transformation rules. Transformation rules are expressed mainly by two object structures: the
left-hand side (LHS) of the rule specifies a subgraph to search for, while the right-hand side
(RHS) describes modifications generated by the transformation. The LHS and the RHS of a rule
are related by a partial graph morphism. The applicability of a rule can be further restricted by

5 For a detailed account on the relation between refactoring and graph transformation, we refer to [Men06].

Proc. Software Evolution 2007 6/15

Eg ECEASST

additional negative application conditions (NACs). The LHS or a NAC may contain constants or
variables as attribute values, but no Java expressions, in contrast to an RHS.

In order to link all these primitive refactoring actions together (as specified in figure 4), we
need to ressort to some kind of controlled (or programmed) graph transformation mechanism.
Tools like Fujaba offer this possibility by relying on the notion of so-called story diagrams
[GZ04]. AGG, unfortunately, does not support controlled application of graph transformation
rules, so we were forced to implement such a mechanism ourselves, as will be explained in
section 4.

The first primitive refactoring, named Create Initial Pseudostate is shown in figure 6. It con-
tains a NAC to ensure that the region does not contain an initial pseudostate. The state s provided
as input parameter (node number 3 in the figure) will become the default state of the region. The
strName variable used in the rule is not an input parameter but is needed in order to define the
name of the initial pseudostate. The state s provided as input parameter must be part of a compos-
ite state otherwise application of this kind of refactoring is no longer possible. If the precondition
is respected, the transformation rule marks the default state with an auxiliary “Refactoring” node
in order to recognize it during the execution of the subsequent steps.

InitialPseudoStateNotPresent _; IntroducePseudoState-CreatelnitialPseudostate of ModelRefactoring @

-4
1:Region

[»

2:5tate
name=strhame

4:composed

Y @ O rMERaenl WE 0 |V:Regionf————- #|name="Initia"+strame

PseudoState T ! . pseudostatekind="initial"
pseudostatekind="initial" H i S:contains { | 5:contains .. conlains

4 : ! source

H 3:State : target A, Ll

3:State Transition

mype
i h 4
Refactoring]
type="Introduce Initial PseudoState”

cantains

containg PseudoState

[l 1 DL O 1 I [EE K 1 I

4]
[4]

Figure 6: Introduce Initial Pseudostate - Create Initial Pseudostate

Input Parameters r : Region => nodel; s: State = node3

The second primitive refactoring step, named Move Incoming Transition, is shown in figure 7.
It takes into account the transitions which have the default state defined as target (the auxiliary
“Refactoring” node is used to identify the default state). The transformation rule replaces the
target edge of a transition by one pointing to the composite state. For this transformation rule
a NAC has been added in order to ensure that only the transitions that are defined outside the
region will be modified. The rule must be repeated as long as possible (i.e., until no further
match can be found).

The last step, named Remove Temporary Reference is shown in figure 8. It removes the aux-
iliary “Refactoring” node that has been attached to the default state during the execution of the
first rule.

7/15 Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

RegionD Trasintion 4| IntroducePseudoState-MovelncomingTransition of ModelRefactoring @
~% ald y
H 1:State 7’ 1:State target [
:f T.composed T.composed
3:Region H - H
; SRegon _| [(Rem
E H i Bicontains
contains 3 Bcontains : ; H i
i v arge ; v
: 2State]
z § i L4 .. BrType
4:Transition) { BType E . —_
| v § ; A
4 (5:Refactoring H 5:Refactoring
5Refactoring : [p:Retactarng_ _
type="Introduce Initial Pseu-:\aslale“] ; (type="Introduce Initial PseudoState’)
= = ~
[0 Y K1 1 INDIE KD T ¥

Figure 7: Introduce Initial Pseudostate - Move Incoming Transition

IntroducePseudoState-RemoveTemporaryReference of ModelRefactoring

s

o

Mype

—p|Refattoring | . 1:State
1 State " |ype="Introduce Initial PseudoStale"| H

1 1 I L Tl]

Figure 8: Introduce Initial Pseudostate - Remove Temporary Reference

4 Tool support

In this section, we illustrate the feasibility of developing model refactoring tools using graph
transformations. For this purpose, we have developed a prototype application in AGG. The
choice of AGG was motivated by its good support for formal analysis techniques.

Based on our experience with implementing this prototype, we will discuss the current limita-
tions of AGG and graph transformation in general in section 5.

The AGG graph transformation engine is delivered together with an API (Application Pro-
gramming Interface) that allows to integrate the internal graph transformation engine into other
environments. We used this API to develop our prototype application. This allowed us to specify
the graph transformation rules of section 3, as well as the control flow specified in figure 4.

Figure 9 shows the graphical user interface of the model refactoring application that we devel-
oped in Java by making use of the AGG API. The application internally loads a file containing
the model refactoring specifications and the necessary graph transformation rules. It then allows
to open files containing the UML models to be refactored that respect the type graph. Using the
“Refactoring” context menu, the user can apply the different model refactorings. When neces-
sary the user will be prompted to enter the input parameter values and possibly to supply a match
if the model refactoring can be applied to different parts of the UML model.

The representation of the control flow explained in figure 4 has been a crucial point for the
implementation of the prototype application. The control flow describes the order in which the
individual graph transformation rules of each model refactoring have to be executed. At the
moment, the AGG tool does not provide a satisfactory solution for organizing and combining
rules, and the supplied mechanisms were not sufficient for describing model refactorings. The

Proc. Software Evolution 2007 8/15

E} ECEASST

£ Model Refactoring

5l Refactoring

IntroduceInitislPseudostake

FlattenstateOutgoingTransition = Name: 1] and g=WF oll0\D esktopiP| ple.ggs:
ExtractClass
| Name: PlayerMadel

PullUpCperation il Hame: ayemdodel
PushDownOperation
IntroduceReqion
RemoveReqgion
T

Generatesubclass

Start Graph Hame: | Player

I Check Consistency. l [Loadin AGG l [Save] I Ewit.

Log Informations:

» Layouter i= Dizabled. ~
» Grammar Layout Setting completed in 766ms.

» File opened successfuly.

» Grammar check completed successfully.

» Loading the Player Graph

» File intialization completed successfully. Ready to apply Model Refactoring

Figure 9: Model Refactoring Application

prototype application avoids the underlying problem by using a custom control structure that
represents the control flow of model refactorings. Based on the UML Interaction Overview
diagram syntax, we have represented the control flow as a graph structure, which is used to drive
the application of graph transformation rules. Figure 10 presents the type graph that we have
defined in AGG in order to represent this control flow.

When the prototype application needs to apply a model refactoring, it first loads the corre-
sponding graph representing the control flow. It searches the starting point and walks through
the graph to determine which graph transformation rules have to be applied. It continues explor-
ing the graph until it reaches a final point, and reports the result to the user.

Figure 11 shows the control flow we have implemented for the Introduce Initial Pseudostate
refactoring. It corresponds to the UML Interaction Overview diagram reported in figure 4. The
prototype application has been enriched with an interpreter in order to evaluate the expression of
decision points. That way, implementation of complex transformations is made possible.

5 Discussion

The main goal of this article was to present a practical study of the current limitations of graph
transformation technology. Seen in this light, we can use the insights gained during our experi-
ments to discuss some of the limitations of AGG, and of graph transformations in general. These
suggestions may be used to advance the state-of-the-art in graph transformation tool support in
the future.

9/15 Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

RefFinal 1"
boolean result
String description

RefRule " Refatch H
3
RefParameter String name String description
String name
String type «
hoolean userlinput Refinput

Figure 10: Interaction Overview Diagram — Type Graph

RefFinal
result=false

description="Initial pseudostate is already defined for the selected region.”

Reflext
RefFalse
|Re!Ru\e | REWE’{L RefDecision
|name:“\rmudunaPsaudnStale-Craate\ml\alPseudnslate“| condition="(present)"
Reflnp Sl Reflnput RefTrue
' Reflnput
RefParameter
name=r RefParameter
I RefParameter name="present |RerRu\? |
userinputirus name="s" type="hoolzan" |name="IntroducePseudoState-MovelncomingTransition” |
=" " userlinput=false
type="State L Refoutput
userinput=true RefNext

RefTrue

RefParameter
name="moved"
type="hoolean”
userlnput=false

Reflnput

RefDecision
condition="{moved)"

RefFalse
A
‘Remu\e ‘
|name="IntroduceP s eudoState-RemaveTemporaryReference” |
RefNext
RefFinal
result=true
description=""

Figure 11: Control Flow - Introduce Initial Pseudostate

5.1 Limitations of AGG

Concerning the AGG tool in particular, we encountered a number of limitations. AGG does not
allow to represent concepts like Aggregation and Composition used by the UML metamodel.
Therefore, the type graph needed to be simplified by using the more generic concept of asso-
ciation. Moreover, AGG does not have the notion of Enumeration type. The property kind of
the Pseudostate element has been represented using a String value. The type graph also did not
take into account OCL constraints imposed on the UML metamodel. These constraints typically

Proc. Software Evolution 2007 10/15

Eg ECEASST

specify invariants that must hold for the system being modeled. OCL expressions need to be
taken into account when specifying model refactorings in AGG. This can be achieved by ex-
pressing them using so-called “graph constraints” in AGG. Trying to formalise OCL constraints
as graph constraints, however, is a far from trivial task.

AGG does not provide a satisfactory control structure for organizing and combining rules, and
the supplied mechanisms for composing rules were not sufficient to describe model refactorings.
In order to reach our goal we needed to implement a notion of ““controlled” graph transformation
on top of AGG. This is nothing new, in the sense that other graph transformation tools (e.g.
PROGRES, Fujaba, GReAT, VIATRA?2) already support such mechanisms.

AGG also does not allow to specify optional patterns inside graph transformation rules. There-
fore, it is necessary to create similar graph transformation rules that take into account the different
optional patterns. For example, the “Guard” nodes may or may not be associated to a transition.
In order to match transitions with an associated “Guard” and transitions without “Guard™, cre-
ation of two different graph transformation rules is necessary. Again this limitation is not present
in some of the other graph transformation tools around.

Another limitation of AGG is that it does not support concrete domain-specific visual notation.
This would be a nice feature, in order to be able to specify model refactorings using a notation
that the designer is familiar with. As a solution to this problem, an Eclipse plug-in called Tiger
is being developed for specifying domain-specific visual editors on top of AGG [EETWO06].

Finally, in order to make model refactoring support acceptable to the community, it needs to be
integrated in standard UML modeling environments. This could be realised, for example, by re-
lying on the Tiger EMF transformation framework. It is a tool environment that allows to gener-
ate an Eclipse editor plugin based on the Eclipse Modeling Framework (EMF) and the Graphical
Editing Framework (GEF) using AGG as underlying transformation engine [BEK *06].

5.2 Limitations of graph transformation tools in general

For the purpose of model refactoring, an important advantage of graph transformation is that
rules may yield a concise visual representation of complex transformations. Unfortunately, as
identified by [DHJ"06], the current state-of-the-art in graph transformation does not suffice to
easily define model refactorings, so their expressive power needs to be increased. Two mecha-
nisms have been proposed by these authors: one for cloning, and one for expanding nodes by
graphs. These are mechanisms that allow one to write more generic graph transformation rules.

During our own experiments, we encountered the need for a reusability mechanism at the level
of transformation rules. In our large set of transformation rules, there were many similarities
among the rules, and we would like to have some mechanisms to capture these similarities, in
order to write some of the rules in a more compact way, and also in order to be able to reuse
(parts of) existing rules when specifying new ones. This reusability can take on many forms: the
ability to share application conditions between different rules, the ability to call some rule from
within another one (similar to subroutines and procedure calls), the ability to express multiple
rules with the same LHS (resp. RHS) without needing to duplicate the LHS (resp. RHS) each
time, to avoid redundancy, the ability to define a notion of specialisation between rules, and so
on. In VIATRAZ2, for example, graph patterns can be decoupled and manipulated separately
from the graph transformation rules themselves [BV06]. Recently, an even more sophisticated

11/15 Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

mechanism of recursive graph pattern matching has been introduced [VV07].

Better modularisation mechanisms are also needed. Whenever a large set of rules needs to be
specified, we need to modularise them in some way. The layering or prioritisation mechanism
offered by AGG is too rudimentary for this purpose. Other techniques for structuring transfor-
mations are therefore needed. One potentially useful approach could be the use of so-called
transformation units [KK99]. Other mechanism are available as well, and a detailed comparison
of them has been made by [HEET99]. Integration of such mechanisms in graph transforma-
tion tools is starting to emerge. To give but one example, a new grouping operator has been
introduced in the model transformation language GReAT to enable the concise specification of
complex transformations [BNN*07].

An important limitation of current graph transformation tools is that graphs and graph trans-
formations are represented in a different way. Ideally, graph transformations need to be treated
as first class values. If graph transformations could be expressed as graphs, we would gain a
lot of expressive power. For example, we could specify higher-order transformations, i.e., graph
transformations that transform graph transformations. We could also use graph transformations
to generate graph transformations from a graph specification (or vice versa). This could for ex-
ample be very useful in the approach suggested in [EKTWO6] to generate an equivalent graph
grammar specification for a given input metamodel.

5.3 Alternative graph transformation tools

Many different tools for graph transformation exist. They all have their own specific reason of
existence, and can be considered to be complementary in some sense. We already mentioned
the PROGRES [SAZ99] and Fujaba tool® [NZ00] that offer built-in support for controlled graph
transformation. VIATRA2 [BV06] and GREAT [AKN™06] are two other tools that perform
sophisticated support for dealing with complex graph transformations. The MOFLON meta
modeling framework’ [AKRS06] is an extension of Fujaba that additionally supports triple graph
grammars [KS06], a technique that can be quite useful for synchronising different model views
(such as class diagrams and state machines, for example). The MOFLON tool also offers a
more standardised way to represent UML models, due to the similarities between the UML
metamodel and the MOFLON concepts. ATOM? is a domain-specific modeling tool based on
graph transformation®. As such, it combines the virtues of visual concrete syntax with abstract
graph transformations. We could continue our list by discussing other graph transformation tools
such as MoTMoT, GROOVE, GrGen, and so on.

6 Conclusion
[MTO04] provided a detailed survey of research on software refactoring, and suggested model

refactoring as one of the future challenges. In this article, we have shown how the formalism
of graph transformation can be used as an underlying foundation for the specification of model

http://www.fujaba.de
http://www.moflon.org
8 http://atom3.cs.mcgill.ca

Proc. Software Evolution 2007 12 /15

http://www.fujaba.de
http://www.moflon.org
http://atom3.cs.mcgill.ca

Eg ECEASST

refactoring.

We have developed a prototype application in order to verify the feasibility of graph transfor-
mations for the purpose of model refactorings. The prototype application shows that it is possible
to develop model refactoring tools this way. However, it is necessary to improve current graph
transformation tool support in order to better support the specification of model refactorings.

Future work should formally explore the characteristics of model refactoring paying more
attention on the preservation of the behaviour. Model refactoring is a rather recent research issue
and such definitions of behaviour preservation properties have not yet been completely given.
There are some proposals about behaviour preservation but, in the context of the UML, such
definitions do not exist because there is no consensus on a formal definition of behaviour.

A UML model is composed of different diagrams that address different aspects of a software
system. The application of model refactorings may generate inconsistencies between these UML
diagrams. Future work should explore the possibility to preserve the consistency among different
kind of UML models after the application of model refactoring expressing inconsistency detec-
tions and their resolutions as graph transformation rules. Mens, Van Der Straeten and D’Hondt
[MVDO06] propose to express inconsistency detection and resolutions as graph transformation
rules, and to apply the theory of critical pair analysis to analyse potential dependencies between
the detection and resolution of model inconsistencies.

References

[AKNT06] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo. The design of a language
for model transformations. Journal on Software and System Modeling 5(3):261-288,
September 2006.

[AKRS06] C. Amelunxen, A. Konigs, T. Rotschke, A. Schiirr, MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In Rensink and
Warmer (eds.), Model Driven Architecture - Foundations and Applications: Second
European Conference. Lecture Notes in Computer Science (LNCS) 4066, pp. 361-
375. Springer Verlag, Heidelberg, 2006.

[BEK*06] E. Biermann, K. Ehrig, C. Kohler, G. Kuhns, G. Taentzer, E. Weiss. Graphical Defi-
nition of In-Place Transformations in the Eclipse Modeling Framework. In Proc. Int’l
Conf. Model Driven Engineering Languages and Systems (MoDELS). Lecture Notes
in Computer Science. Springer-Verlag, 2006.

[BNNT07] D. Balasubramanian, A. Narayanan, S. Neema, B. Ness, F. Shi, R. Thibodeaux,
G. Karsai. Applying a Grouping Operator in Model Transformations. In Proc. Appli-
cations of Graph Transformations with Industrial Relevance (AGTIVE). Pp. 406-421.
Wilhelmshdohe, Kassel, Germany, 2007.

[BVO6] A. Balogh, D. Varrd. Advanced model transformation language constructs in the VI-
ATRA2 framework. In Proc. 21st ACM Symposium on Applied Computing. Pp. 1280—
1287. ACM Press, April 2006.

13/15 Volume 8 (2008)

Refactoring of UML models using AGG Eﬁ

[DHJ*06] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. V. Eetvelde. Adaptive Star Gram-
mars. In Proc. Int’l Conf. Graph Transformation (ICGT). Lecture Notes in Computer
Science 4178, pp. 77-91. Springer Verlag, 2006.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific, October 1999.

[EETWO06] C. Ermel, K. Ehrig, G. Taentzer, E. Weiss. Object-Oriented and Rule-based Design
of Visual Languages using TIGER. In Proc. workshop on Graph-Based Tools (Gra-
BaTs). Electronic Communications of the EASST 1. 2006.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 3: Concurrency, Paral-
lelism and Distribution. World Scientific, September 1999.

[EKTWO06] K. Ehrig, J. Kuster, G. Taentzer, J. Winkelmann. Generating Instance Models from
Meta Models. In 8th IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’06). Lecture Notes In Computer Sci-
ence 4037, pp. 156-170. Springer Verlag, 2006.

[EM93] H. Ehrig, Michael Lowe. Parallel and distributed derivations in the single-pushout
approach. Theoretical Computer Science 109:123-143, 1993.

[Fol07] A. Folli. UML model refactoring using graph transformation. Master’s thesis, Institut
d’Informatique, Université de Mons-Hainaut, 2007.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

[GZ04] L. Geiger, A. Zundorf. Statechart Modeling with Fujaba. Electronic Notes in Theoret-
ical Computer Science, 2004.

[HEET99] R. Heckel, G. Engels, H. Ehrig, G. Taentzer. Classification and comparison of mod-
ule concepts for graph transformation systems. Pp. 669-689. World Scientific Publish-
ing Co., Inc., River Edge, NJ, USA, 1999.

[KK99] H.-J. Kreowski, S. Kuske. Graph transformation units and modules. Pp. 607-638.
World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1999.

[KS06] A. Konigs, A. Schiirr. Tool Integration with Triple Graph Grammars - A Survey. In
Heckel (ed.), Proceedings of the SegraVis School on Foundations of Visual Modelling
Techniques. Electronic Notes in Theoretical Computer Science 148, pp. 113-150. El-
sevier Science Publ., Amsterdam, 2006.

[Men06] T. Mens. On the use of graph transformations for model refactoring. In Ralf Ldmmel
(ed.), Generative and transformational techniques in software engineering. Lecture
Notes in Computer Science 4143, pp. 219-257. Springer, 2006.

Proc. Software Evolution 2007 14 /15

ECEASST

[MT04]

T. Mens, T. Tourwé. A Survey of Software Refactoring. IEEE Trans. Software Engi-
neering 30(2):126-162, February 2004.

[MTROQ7] T. Mens, G. Taentzer, O. Runge. Analysing Refactoring Dependencies Using Graph

Transformation. Software and Systems Modeling, pp. 269-285, September 2007.
doi:10.1007/s10270-006-0044-6

[MVDO06] T. Mens, R. Van Der Straeten, M. D’Hondt. Detecting and resolving model in-

[NZ00]

[Obj05]

[Opd92]

[R0z97]

[SAZ99]

[SK03]

[Tae04]

[VVO7]

consistencies using transformation dependency analysis. In Nierstrasz et al. (eds.),
Model Driven Engineering Languages and Systems. Lecture Notes in Computer Sci-
ence 4199, pp. 200-214. Springer-Verlag, October 2006.

J. Niere, A. Ziindorf. Using Fujaba for the development of production control systems.
In Nagl et al. (eds.), Proc. Applications of Graph Transformations with Industrial Rel-
evance (AGTIVE). Lecture Notes in Computer Science 1779, pp. 181-191. Springer-
Verlag, 2000.

Object Management Group. Unified Modeling Language: Superstructure version 2.0.
formal/2005-07-04, August 2005.

W. F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks. PhD thesis, University of Illinois at Urbana-
Champaign, 1992.

G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation. Volume 1: Foundations. World Scientific, February 1997.

A. Schiirr, Andreas Winter, A. Ziindorf. The PROGRES approach: Language and en-
vironment. Pp. 487-550. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999.

S. Sendall, W. Kozaczynski. Model Transformation: The heart and soul of model-
driven software development. IEEE Software 20(5):42-45, 2003. Special Issue on
Model-Driven Software Development.

G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In Proc. Applications of Graph Transformations with Industrial Rel-
evance (AGTIVE). Lecture Notes in Computer Science 3062, pp. 446-453. Springer-
Verlag, 2004.

G. Varrd, D. Varré. Recursive Graph Pattern Matching. In Proc. Applications of Graph
Transformations with Industrial Relevance (AGTIVE). Pp. 453-467. Wilhelmshohe,
Kassel, Germany, 2007.

15/15

Volume 8 (2008)

http://dx.doi.org/10.1007/s10270-006-0044-6

	Introduction
	Motivating Example
	Formal representation as graph transformation
	Tool support
	Discussion
	Limitations of AGG
	Limitations of graph transformation tools in general
	Alternative graph transformation tools

	Conclusion

