
Electronic Communications of the EASST

Volume 8 (2008)

Proceedings of the

Third International ERCIM Symposium on

Software Evolution

(Software Evolution 2007)

The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

Filippo Ricca, Marco Torchiano, Massimiliano Di Penta, Mariano Ceccato and Paolo Tonella

12 pages

Guest Editors: Tom Mens, Ellen Van Paesschen, Kim Mens, Maja D’Hondt

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

Filippo Ricca1, Marco Torchiano2, Massimiliano Di Penta3, Mariano Ceccato4

and Paolo Tonella5

1 filippo.ricca@disi.unige.it

Unit CINI at DISI, Genova, Italy

2 torchiano@polito.it

Politecnico di Torino, Italy

3 dipenta@unisannio.it

University of Sannio, Benevento, Italy

4 ceccato@fbk.eu
5 tonella@fbk.eu

Fondazione Bruno Kessler—IRST, Trento, Italy

Abstract: Acceptance testing is a kind of testing performed prior to software de-

livery. In the agile approach, acceptance test suites are specified by analysts and

customers during the requirement elicitation phase and used to support the develop-

ment/maintenance activities. This paper reports an experiment with master students

that investigates on the usefulness of executable acceptance test cases, developed

by using FIT (Framework for Integrated Test), during software maintenance and

evolution activities. The preliminary results indicate that FIT tables help students

to correctly perform the maintenance/evolution tasks with no significant impact on

time.

Keywords: Experiment with students, acceptance testing, FIT tables.

1 Introduction

FIT (Framework for Integrated Test) [MC05] is an open source framework used to express ex-

ecutable acceptance test cases in a simple way. FIT lets analysts write acceptance tests (FIT

tables) using simple HTML tables. Programmers write code (Fixtures) to link the test cases with

the System to verify. Then, in a test-driven development scenario, they perform their develop-

ment or maintenance task being supported by the execution of these test cases.

In this paper we describe a controlled experiment aimed at assessing whether FIT tables

are helpful in maintenance tasks. We asked some master students to execute four mainte-

nance/evolution tasks (two corrective maintenance tasks and two evolution interventions), pro-

viding them two Java Systems to be maintained with and without the FIT Tables. The devel-

opment environment is Eclipse with the plug-in Fitnesse1 that implements the FIT table-based

1 http://fitnesse.org/

1 / 12 Volume 8 (2008)

mailto:filippo.ricca@disi.unige.it
mailto:torchiano@polito.it
mailto:dipenta@unisannio.it
mailto:ceccato@fbk.eu
mailto:tonella@fbk.eu


The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

approach.

The research questions that we are interested in answering are:

RQ1: Does the presence of FIT tables help programmers to execute maintenance tasks?

RQ2: Does the presence of FIT tables improve the productivity in the execution of maintenance

interventions?

The dependent variable “correctness” was measured by exercising an alternative JUnit2 ac-

ceptance test suite, the variable “productivity” using time sheets where students annotated start

and stop time expressed in minutes.

Preliminary results of our experiment show that FIT tables help developers to correctly per-

form the four maintenance/evolution tasks given without affecting the productivity. The differ-

ence between the two groups considering the time to complete the tasks was similar and not

significant.

The paper is organized as follows: Section 2, briefly, presents the Framework for Integrated

Test (FIT) used in the experimental study. Section 3 describes the definition, design and settings

of the proposed experiment. Results are presented in Section 4 while related works, conclusions

and future works are given, respectively, in Section 5 and Section 6.

2 FIT tables, Fixtures and Test Runner

The FIT tables serve as the input and expected output for the tests. Figure 1 shows an example

of Column FIT tables, a particular kind of table where each row represents a test case (inputs

and output). The first five columns are input values (Name, Surname, Address, Date of birth and

Credit/Debit) and the last column represents the corresponding expected output value (Member

number()).

Other than Column FIT tables, it is possible to specify Action FIT tables, to test user inter-

faces or work-flows. An Action FIT table represents a test case where the first column contains

commands (start, enter, press, and check) used to simulate the actions that a user would per-

form on a screen while the other columns contain the parameters. Others types of FIT tables

(see [MC05]) are: Row FIT tables, to validate collection of objects produced as the result of

a query, and TimedAction FIT tables to deal with non functional requirements. With this large

set of different types of FIT tables we are fairly confident that each functional requirement of

a traditional business systems (this could not to be true in other contexts, for example reactive

systems) may be “transformed” in executable FIT tables.

Developers write the Fixtures to link the test cases with the System to verify. A component in

the framework, the Test Runner, compares FIT table data with actual values obtained from the

System. The Test Runner highlights the results with colors (green = correct, red = wrong). See

the relationships among FIT tables, Fixtures, Test Runner and System under test in Figure 2.

2 http://www.junit.org/

Proc. Software Evolution 2007 2 / 12



ECEASST

Figure 1: Example of Column FIT table. FIT table column’s names without parenthesis represent

input; parenthesis indicate output.

3 Experiment definition, design and settings

We conceived and designed the experiment following the guidelines by Wohlin et al. [WRH+00].

The goal of the study is twofold: to analyze the use of FIT tables with the purpose of evaluating

their usefulness during maintenance tasks and to measure the effort (if any). The perspective is

both of Researchers, evaluating how effective are the FIT tables during the maintenance activ-

ities, and of Project managers, evaluating the possibility of adopting the FIT tables in her/his

organization. The context of the experiment consists of two objects – two Java systems – and of

subjects, 13 students from a master course. All the material of the experiment (sources, docu-

ments, questionnaire, etc.) will be available for replications on a Website soon.

3.1 Hypotheses

The null hypotheses for the study are the following:

• H0a The availability of FIT test cases does not significantly improve the correctness of the

maintained source code.

• H0b The availability of FIT test cases does not significantly affect the effort in the mainte-

nance task.

The context in which we investigate the above question has the following characteristics: (1)

system requirements have been written in detail, (2) automated acceptance tests have been pro-

3 / 12 Volume 8 (2008)



The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

Figure 2: The complete testing process

duced in the form of FIT Tables and (3) some change requirements are expressed only in textual

form while other include also an automated FIT test case.

3.2 Treatments

The treatments for the main factor (availability of test cases) are:

(+) textual change requirements enhanced with FIT tables and fixtures, thus enabling test case

execution;

(-) only textual change requirements.

Other independent variables (not accounted in this paper) to be considered could be: the ob-

jects, the labs and the subjects’ ability, if available.

3.3 Objects

The objects of the study are two simple Java programs realized by students: LaTazza and Ave-

Calc.

LaTazza is a coffee maker management support application. LaTazza helps a secretary to

manage the sale and the supply of small-bags of beverages (Coffee, Tea, Lemon-tea, etc.) for the

Proc. Software Evolution 2007 4 / 12



ECEASST

Table 1: Some Requirements for LaTazza.

R1 The secretary can sell small-bags of Coffee, Arabic Coffee, Tea, Lemon-tea and

Camomile-tea. The cost of each small-bag is 0.62 euro. The secretary can select

the kind of beverage and the number of small-bags and select the button Sell. If there

are enough small-bags then the sale is done, otherwise the sale can not be done.

R2 The secretary can register a payment. She/He has to select the employee that perform

the payment. This payment can extinguish a debt of the employee or it can used in

future as advance fee. The payment must be > 0.

R3 The secretary can buy boxes of beverages. A box contain 50 small-bags of beverages

all of the same kind (i.e, 50 coffee or 50 Arabic coffee, etc.). Each box cost 31 euro.

R4 The secretary can request the list of debtors with their debts.

Coffee-maker. The application supports two kinds of clients: visitors or employees (university

employees and professors). Employees can purchase beverage cash or on credit, visitors only

cash. The secretary can: sell small-bags to clients, buy boxes of beverages (a box contains 50

beverage of the same kind), manage credit and debt of the employees, check the inventory and

check the cash account. The system consists of 18 Java classes for a total of 1121 LOCs. Its

requirement document comprises 9 requirements (see Table 1 for the first four requirements)

complemented with a total of 16 FIT tables.

AveCalc is a simple “desktop application” that manages an electronic register (record book)

for master students. A student can add a new exam to the register, remove an existing exam and

remove all exams. An exam has a name, a CFU (a positive number that represent the university

credits) and a (optional) vote. An exam without vote is an exam not taken. The vote must be

included between 0 and 30 (or equal). If the vote is >= 18 then the vote is positive, otherwise

it is negative. It is possible to save the register and to load it (all data or only positive exams).

AveCalc computes some statistics: average of the exams passed, total number of CFU, number

of exams passed, (hypothetical) degree vote and whether the student has passed a number of

exams sufficient to defend his/her thesis. The system consists of 8 Java classes for a total of

1827 LOCs. Its requirement document comprises 10 requirements complemented with a total of

19 FIT tables.

3.4 Population

The subjects were 13 students from the course of Laboratory of Software Analysis, in their

last year of the master degree in computer science at the University of Trento. The subjects

had a good knowledge about programming, in particular Java, and an average knowledge about

software engineering topics (e.g. design, testing, software evolution). Subjects have been trained

in meaning and usage of FIT tables and Fitnesse3 with two theoretical lessons and two practical

lessons (two hours each).

3 Fitnesse is the tool that implement the FIT table approach used in the experiment

5 / 12 Volume 8 (2008)



The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

Table 2: Experimental design (S1 = LaTazza, S2 = AveCalc; + = with FIT tables, - = without

FIT tables).

Group A Group B Group C Group D

Lab 1 S1+ S1- S2- S2+

Lab 2 S2- S2+ S1+ S1-

3.5 Variables and experiment design

The dependent variables to be measured in the experiment are the code correctness and the effort

required to perform the maintenance task. The code correctness is assessed by executing a JUnit

acceptance test suite — developed by someone different from who developed the FIT tables —

and measuring the percentage of test cases passed and failed. The effort was measured by means

of time sheets (students marked start and stop time for each change requirements implemented).

Time is expressed in minutes. Since the acceptance test suite for AveCalc was made up of 25 test

cases, while the one for LaTazza included just 24 test cases, a derived measure was adopted: the

fraction of test cases passed.

We adopt a balanced experiment design (see [WRH+00]) intended to fit two lab sessions (2-

hours each). Subjects were split randomly into four groups, each one working in Lab 1 on all

tasks of a system with a treatment and working on Lab 2 on the other system with a different

treatment (see Table 2 for a graphical representation of the design).

3.6 Material and Procedure

As already mentioned, the test cases are written in the form of FIT tables and the supporting

environment is a FitNesse wiki. The development environment is based on the Eclipse IDE with

the FitNesse plugin4. For each group we prepared an Eclipse project containing the software

and a FitNesse wiki with both requirements and change requirements. The projects were zipped

and made available on a Web server. The experiment was introduced as a Lab assignment about

FitNesse.

Every subject received:

• summary description of the application

• instructions to set-up the assignment (download the zipped Eclipse project, import it, and

start the embedded Fitnesse server)

• a post experiment questionnaire

For each Lab the subjects had two hours available to complete the four maintenance tasks:

CR1 - CR4 (see Table 3) . The first two change requirements (corrective maintenance) are very

easy to implement, while the third and fourth require more work to locate the code to be changed

and implementing the change (evolution). The maintenance/evolution tasks, for the two different

systems, are very similar and we think of comparable difficulty.

4 http://www.bandxi.com/fitnesse/

Proc. Software Evolution 2007 6 / 12



ECEASST

Table 3: Change requirements for LaTazza.

CR1 There is an error in show debtors. Only employees with negative

balance must be visualized. Fix the error.

CR2 There is an error in update employees. Not all the

fields are updated. Fix the error.

CR3 The vendor of boxes of beverages changed his selling policy.

Each five bought boxes one is added as a gift.

CR4 Change price of small-bags. Now the total price of the beverages that

an employee would like to buy depends on (i) the number of small bugs bought

(ii) if the beverage is seasonal or not. If a employee buys a number of small

bags minor than 5 no discount is applied. If a employee buys a number of small

bags included between 5 and 10 of a seasonal beverage, no discount is applied;

but if the beverages are not seasonal a 1 euro discount is applied.

The post experiment questionnaire aimed at both gaining insights about the students’ behavior

during the experiment and finding justifications for the quantitative results. It included questions

about the task and systems complexity, the adequacy of the time allowed to complete the task

and the perceived usefulness of the provided FIT tables.

Before the experiment, subject were trained by means of introductory lectures (2 lessons 2

hours each) and laboratories (4 hours) on FIT. After subject were randomly assigned to the four

groups, the experiment execution followed the steps reported below:

1. We delivered a sheet containing the description of the system.

2. Subjects had 10 minutes to read the description of the system and understand it.

3. Subjects had to write their name and start time on the delivered sheet.

4. Subjects had to download at the given URL the eclipse project and import it.

5. Subjects had to launch the Fitnesse wiki of the application.

6. Subjects had to write the stop time for installing the application.

7. For each change requirement (CR1-CR4):

(a) Subjects had to fix the application code (LaTazza or AveCalc) in order to make the

test cases pass (treatment +) or to satisfy the change requirement (treatment -).

(b) Subjects had to record the time they use to apply change task (start/stop time).

8. Subjects were asked to compile the Post Experiment Questionnaire.

7 / 12 Volume 8 (2008)



The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

4 Experimental results

There were 13 subjects divided into three groups of three and one group of four. They took a

median of 5 minutes to set up the environment and they worked for a median of 73 minutes

on the tasks. The subjects deemed as complete an average of 2.75 tasks over four tasks as-

signed. The subjects worked on each task for a time ranging from 11 to 39 minutes with an

average of 21 minutes. The distributions of passed tests and time required to complete tasks are

not normal (Shapiro-Wilk test p=0.026 and p=6.9 · 10−6 respectively) therefore we will use the

Mann-Whitney test for both hypotheses.

4.1 Data analysis

To test the first hypothesis (H0a) we compared the number of acceptance tests passed by the

program whose change requirements included FIT tables or not. The boxplot summarizing the

percentage (expressed as fraction) of passed test cases is presented in Figure 3. The percentage

of passed test cases for the Fit group is about 60% while that one for the Text only group is a

little bit more than 40%. By applying a one-tailed Mann-Whitney test, we found this difference

to be statistically significant (p-value=0.03), therefore we can reject the null hypothesis.

no
yes

0.0 0.2 0.4 0.6 0.8 1.0

Fit tables present

Fraction of tests passed

Figure 3: Boxplot of fraction of passed tests.

The second hypothesis can be tested by looking at the time required to complete the tasks.

Since not all students completed all the tasks and since the tasks’s difficulty varied both among

tasks and systems, we analyzed the time for each task. Figure 4 shows the boxplot of times used

by subjects to complete each task; filled boxes correspond to the presence of FIT tables. To

test the second hypothesis we used a Mann-Whitney test. Table 4 reports the p-values of Mann-

Whitney tests for each task. Overall in 5 cases out of 8 (see Figure 4) we observe a reduction

of time (considering the median) when FIT tables are present but the only significant difference

(highlighted in boldface in 4) is found for the first task on system AveCalc. With only these

data we cannot reject the null hypothesis H0b. Further experiments are necessary to answer our

Proc. Software Evolution 2007 8 / 12



ECEASST

second research question.

no yes no yes no yes no yes no yes no yes no yes no yes

10
20

30
40

50
60

70

Ti
m

e 
to

 c
om

pl
et

e 
ta

sk
 [m

in
]

1 2 3 4 1 2 3 4
AveCalc LaTazza

|
|
|

Fit present:
Task:

System:

Figure 4: Boxplot of time required to complete task.

System

AveCalc LaTazza

Task p-value median yes median no p-value median yes median no

1 0.01 8 18 0.83 12 15.5

2 0.33 6 12 0.57 15 9

3 1.00 40 43 0.53 39 29

4 0.63 28 17 0.45 10 26

Table 4: Analysis results on times to complete tasks.

4.2 Analysis of Survey Questionnaires

The analysis of the survey questionnaires that the subjects filled-in after each experiment can

be useful to better understand the experimental results. In this paper the analyses are supported

only by descriptive statistics. Answers are on a Likert scale [Opp92] from 1 (strongly agree) to

5 (strongly disagree).

Overall, all subjects agreed they had enough time to perform the tasks (I had enough time to

perform the lab tasks, overall mean = 2.35) and the objectives were clear enough (The objectives

9 / 12 Volume 8 (2008)



The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

of the lab were perfectly clear to me, overall mean = 1.73). The description of the systems were

clear (overall mean = 2.08) as the change requirements (overall mean = 2.35).

Similarly to Melnik et al. [MRM04], we can observe that the students deemed the FIT tables

and the capability of running tests automatically useful enough. The possibility of executing FIT

tables as tests was perceived useful for performing the change (Running FIT tables are useful in

maintenance/evolution tasks, mean = 1.69). Moreover, FIT tables were also considered useful

“per-se” to clarify change requirements (FIT tables are useful to clarify change requirements,

mean = 1.92). See [RTCT07] for another experiment with students treating the research question:

“FIT tables are able to clarify (change) requirements?”.

4.3 Threats to Validity

This Section discusses the threats to validity that can affect our results: internal, construct,

conclusion and external validity threats.

Internal validity threats concerns external factors that may affect a dependent variable (in our

case code correctness and effort). Since the subject had to perform a sequence of four tasks, a

learning effect may intervene: the subjects were previously trained and the tasks were of pro-

gressively increasing difficulty, therefore we expect learning not to have influenced significantly

the results. The experiment was proposed as an ungraded assignment within a university course,

thus the student should not have been subject to evaluation apprehension.

Construct validity threats concern the relationship between theory and observation. It is pos-

sible that the Junit test suite does not provides and adequate means to measure the quality of

change requirement implementation. We mitigated this risk by having the test suite and the Fit

tables developed independently from different people.

Threats to conclusion validity can be due to the sample size (only 13 subjects) that may limit

the capability of statistical tests to reveal any effect. However, attention was paid to not vio-

late assumptions made by statistical tests and, whenever conditions necessary to use parametric

statistics did not hold, we used non-parametric tests.

Threats to external validity can be related to (i) the simple Java system chosen and (ii) to the

use of students as experimental subjects. We do not expect the absolute performance of students

being at the same level as professionals, but we expect to be able to observe a similar trend of

improvement. Another threat to external validity is that (iii) the results are limited to FIT-based

acceptance test suites, which may be rather different from other approaches to acceptance testing.

We don’t think that obtained results could change using a different implementation of the FIT

table based approach5 or a different development environment. All the existing implementations

of FIT are very similar to Fitnesse.

Further studies with larger systems and more experienced developers are needed to confirm or

contrast the obtained results.

5 for example FitLibrary, MavenFit, etc. See http://fit.c2.com/wiki.cgi?FitTools

Proc. Software Evolution 2007 10 / 12



ECEASST

5 Related Work

Although there are several papers [Aar06, RMM05] and books [MC05] describing acceptance

testing with FIT tables, only a few works report empirical studies about FIT.

The most related work is the paper by Melnik et al. [MRM04]. It is a study focused on the use

of FIT user acceptance tests for specifying functional requirements. It has been conducted at the

University of Calgary and at the Southern Alberta Institute of Technology. In this experiment,

the authors showed that the use of FIT tables and the possibility to execute them improve the

comprehension of requirements.

Melnik et al. [MMC06] investigated whether acceptance tests can be authored effectively by

customers of agile projects. Results show that customers can specify functional requirements

clearly.

The paper [RTCT07] reports a controlled experiment with master students aimed at assessing

the impact of FIT tables on the clarity of requirements. The results obtained indicate that FIT

helps in the understanding of the requirements.

In another preliminary study [TRD07] some of the authors of the present paper found a statis-

tically significant evidence that the availability of FIT tables allows the programmers to complete

more maintenance tasks. However, they did not measure, as we did in the present study, whether

completed maintenance tasks were correct.

6 Conclusion and Future Work

This paper reported a controlled experiment with 13 master students aimed at assessing the use

of FIT executable acceptance test suites in the context of maintenance and evolution tasks.

The obtained results indicates that FIT tables significantly help developers to correctly perform

the maintenance tasks. Other than looking at requirements, developers continuously execute FIT

test cases to (i) ensure that FIT tables related to the change requirements passed and (ii) use

requirement FIT tables to regression test the existing pieces of functionality.

Regarding productivity, FIT tables may or may not help: on the one hand, they provide a

guideline to perform the maintenance tasks; on the other hand, they require time to be understood

and executed. Further investigation is anyway necessary to answer our second research question.

Future work aims at replicating this study with a larger population of students, with profes-

sionals and by using larger and more realistic software systems. Also, other metrics (e.g., number

of change requirements completed) and other factors such as subjects’ ability and experience will

be taken into account.

Acknowledgements: We thank all the students of the course of Laboratory of Software Anal-

ysis at the University of Trento who participated in the experiment. Without them this work

would not have been possible.

11 / 12 Volume 8 (2008)



The Use of Executable FIT Tables to support

Maintenance and Evolution Tasks

Bibliography

[Aar06] J. Aarniala. Acceptance testing. In whitepaper.

www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf. October 30 2006.

[MC05] R. Mugridge, W. Cunningham. Fit for Developing Software: Framework for Inte-

grated Tests. Prentice Hall, 2005.

[MMC06] G. Melnik, F. Maurer, M. Chiasson. Executable Acceptance Tests for communicat-

ing Business Requirements: customer requirements. In Proceedings of AGILE 2006

Conference (AGILE2006). Pp. 35–46. IEEE Computer Society, Los Alamitos, CA,

USA, 2006.

[MRM04] G. Melnik, K. Read, F. Maurer. Suitability of FIT user acceptance tests for specify-

ing functional requirements: Developer perspective. In Extreme programming and

agile methods - XP/Agile Universe 2004. Pp. 60–72. August 2004.

[Opp92] A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude Measurement.

Pinter, London, 1992.

[RMM05] K. Read, G. Melnik, F. Maurer. Examining Usage Patters of the FIT Acceptance

Testing Framework. In Proc. 6th International Conference on eXtreme Program-

ming and Agile Processes in Software Engineering (XP2005). Pp. Lecture Notes in

Computer Science, Vol. 3556, Springer Verlag: 127–136 2005. June 18-23 2005.

[RTCT07] F. Ricca, M. Torchiano, M. Ceccato, P. Tonella. Talking Tests: an Empirical Assess-

ment of the Role of Fit Acceptance Tests in Clarifying Requirements. In 9th Inter-

national Workshop On Principles of Software Evolution (IWPSE 2007). Pp. 51–58.

IEEE, September 2007.

[TRD07] M. Torchiano, F. Ricca, M. Di Penta. ”Talking tests”: a Preliminary Experimental

Study on Fit User Acceptance Tests. In IEEE International Symposium on Empirical

Software Engineering and Measurement. (to appear) 2007.

[WRH+00] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wesslén. Experimenta-

tion in Software Engineering - An Introduction. Kluwer Academic Publishers, 2000.

Proc. Software Evolution 2007 12 / 12


	Introduction
	FIT tables, Fixtures and Test Runner
	Experiment definition, design and settings
	Hypotheses
	Treatments
	Objects
	Population
	Variables and experiment design
	Material and Procedure

	Experimental results
	Data analysis
	Analysis of Survey Questionnaires
	Threats to Validity

	Related Work
	Conclusion and Future Work

