
Electronic Communications of the EASST
Volume 8 (2008)

Guest Editors: Tom Mens, Ellen Van Paesschen, Kim Mens, Maja D’Hondt
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Third International ERCIM Symposium on

Software Evolution
(Software Evolution 2007)

A Requirements-Based Taxonomy of
Software Product Line Evolution

Klaus Schmid, Holger Eichelberger

13 Pages

 ECEASST

2 / 13 Volume 8 (2008)

A Requirements-Based Taxonomy of
Software Product Line Evolution

Klaus Schmid, Holger Eichelberger

Software Systems Engineering. Universität Hildesheim

Marienburger Platz 22, D-31141 Hildesheim
{schmid, eichelberger}@sse.uni-hildesheim.de

Abstract: Software product lines are, by their very nature, complex software systems.
Due to the interconnectedness of the various products in the product line any form of
evolution becomes significantly more complex than in a single system situation. So far
most work on product line evolution has focused on specific approaches to supporting
special cases of the evolution problem. In this paper, we take a different approach and
provide a broad taxonomy of requirements-driven evolution in software product lines.
This serves as a basis for the identification of requirements on evolution support.

Keywords: Software Product Lines, Evolution, Traceability, Requirements

1 Introduction
Software product line (SPL) engineering [5, 11] is an important approach to the efficient
development of large numbers of software systems that promises major improvements in terms
of time, costs, and quality based on large-scale reuse. Experience shows that product
development costs can be reduced by 80% and that cost of quality can be reduced to 50% [11].
However, as a result, the various products in a SPL become interconnected: they share various
assets and any change that is relevant to one product may actually have ramifications for
several other products due to product interdependencies. This range of shared assets is also
called the product line infrastructure and covers the whole range of product development
starting from requirements through implementation and up to test assets.

Product Line Engineering
Software product line development consists of two main development cycles: domain
engineering, which aims at developing software assets for reuse and effectively establishes the
product line infrastructure, and application engineering. Application engineering aims at
development with reuse and develops the final products based on the product line
infrastructure. This is shown in Figure 1. The distinction between application engineering and
domain engineering is also referred to as the two-lifecycle model.

Software Product Line Evolution

Proc. Software Evolution 2007 3 / 13

The assets in the product line infrastructure may amount to over 80% of all assets in the final
product [11]. As the assets are reused over and over, a strong relationship among the various
products is established, because the products share these assets.
This interconnection of the various product developments through the product line
infrastructure leads to a strong need for adequate support for SPL evolution. The evolution
problem is further increased as a SPL needs to integrate all the changes relevant to any product
it supports and the SPL as a whole is usually much longer-lived than an individual product
[18]. The combination of these issues leads to a situation where the evolution problem is much
more severe than in single system development.

Requirements-Driven Evolution
In this paper, we focus on requirements-driven SPL evolution, i.e., those evolution tasks, that
can arise in a SPL context based on new or changed requirements. Typical examples are the
introduction of new products that must be supported or the modification of requirements of
existing products. The reason for this focus is that we are particularly interested in supporting
requirements engineering for software product lines. Classical treatment of software evolution
prefers the categorization of perfective, corrective, and adaptive maintenance [8] (sometimes
also preventive). Usually, requirements changes belong to the categories of perfective or
adaptive maintenance.
Due to our requirements focus, we will in particular refrain from addressing issues relating to
later stages of the development process, like refactoring the product line infrastructure. This
results in a taxonomy which is necessarily narrower than general classifications of software
change [4]. We regard this taxonomy as a means for categorizing requirements changes in a
product line context. In a second step, we aim at identifying the support that is required by
requirements engineering tools in order to provide adequate requirements engineering for
software product lines.

domain
engineering

application
engineering

domain
engineering

application
engineering

pr
od

uc
tl

in
e

in
fo

rm
at

io
n

Sc
op

in
g

pr
od

uc
tl

in
e

in
fo

rm
at

io
n

pr
od

uc
tl

in
e

in
fo

rm
at

io
n

Sc
op

in
g

Sc
op

in
g

architecturedomain
model implementation test cases

and dataarchitecturedomain
model implementation test cases

and dataarchitecturedomain
model implementation test cases

and data

implementation
of reusable

artifacts

Scoping
domain
analysis

Scoping
create reference

architecture

test
reusable
artifacts

implementation
of reusable

artifacts

Scoping
domain
analysis

Scoping
create reference

architecture

test
reusable
artifacts

implementation
of reusable

artifacts

Scoping
domain
analysis

Scoping
create reference

architecture

test
reusable
artifacts

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

product
requirements

product
architecture

product
implementation

product
test

Figure 1 Structure of Product Line Engineering

 ECEASST

4 / 13 Volume 8 (2008)

In section 2, we will introduce a basic terminology for SPL and provide a high level discussion
of different possible situations for product line evolution as a basis for our terminology. This
will provide the basis for our refined discussion in section 3, where we will summarize our
requirements for evolution support for SPL. In section Error! Reference source not found.,
we will discuss related work from the area of evolution in general and from the area of SPL
evolution in particular. Finally, in section 5 we will conclude.

2 Evolution Categories and the Evolution Taxonomy
In this section, we introduce the basic categories of our taxonomy. In the following subsections
we will describe the taxonomy itself by discussing each of these basic categories in detail.
Roughly, requirements-driven evolution can result in changes on three levels:
• Requirements level change – change to an individual requirement (or small group of

requirements).
• Product level change – change in terms of products that must be supported.
• Product line level change – change to whole groups of products that must be supported.
As a basis for our discussion we will categorize requirements of a product in a SPL in three
categories:
• Commonalities – requirements that are common to all products in the SPL.
• Variabilities – requirements that are not common for all products, but there are systematic

variations among the products, i.e., a variability is usually relevant to multiple products.
• Product-Specific – these are requirements that are relevant only to an individual product.
In general, the various products will include requirements from all three categories, i.e., the
resulting set of requirements will usually be composed of commonalities, selected variabilities
and product-specific requirements. The product line infrastructure (i.e., the reusable artifacts)
will contain only commonalities (including the implementation) and some variabilities. The
product-specific parts (requirements and implementation) are only regarded as part of the
products.
We would like to illustrate this with examples from a hypothetical online shop product line.
We will assume that all instances of the product line, i.e., all products, are based on the
shopping cart metaphor. Thus, the shopping cart is a commonality of the product line. The
product line will support a number of different database systems. More precisely, each product
in the product line will support exactly one out of a number of database systems. The database
system is thus a variability (more precisely an alternative). Further, there might be a specific
product X that will support a proprietary ERP-system. The requirements for this ERP-system
would then be product-specific to product X.
In the context of a hierarchical product line, the variabilities of one product line can be the
commonalities of another one. We do not make this case explicit here, as we will always use
the perspective of a single product line. In this case, we assume the categorization is complete.
As the basis for our analysis, we must make certain assumptions, regarding the way variability
in software product lines is modeled. Here, we base our terminology on a decision-based
framework similar to the one described in [17], however, our results can be easily transferred
to feature-based modeling approaches like [6]. In particular, we will distinguish between a
variability (e.g., an alternative) and a variability resolution (e.g., a specific case in an

Software Product Line Evolution

Proc. Software Evolution 2007 5 / 13

alternative). Further, we will denote the usage of a specific alternative in a context as a
variability usage. Individual variabilities may be related by means of constraints. Going back
to the web shop example, the possible databases Oracle, MySQL, etc. would be variability
resolutions. If a specific product uses a MySQL database, this would constitute a variability
usage. A constraint could be that a certain database system might not be compatible with
choosing a low-cost solution.
As described above, we should differentiate among changes on the levels of individual
requirements, changes on the level of products and on the level of product lines as a whole.
Roughly, the different changes can be subdivided into addition, modification, and deletion. In
the remainder of this section, we will describe our taxonomy according to the three change
levels and within each level along the subdivisions introduced above in this section. For
example, if we change the way shopping carts are defined, we would have a product line
modification, if we add a new product for customer Y, we have a product addition. Finally, if
we delete requirements of the proprietary interface mentioned above, this is a requirements
deletion.

3.1 Requirements Level Changes
These changes can be categorized as adding, deleting or modifying individual requirements (or
groups of requirements). Below, we further discuss their implications
• Adding requirements – adding requirements can happen for all three types of

requirements: product-specific, variability addition, or commonality.
Product specific additions have no ramifications on other products or the product line
infrastructure (except for the fact that the addition must be conformant to restrictions of
the product line infrastructure). The addition of a variability or of a variability resolution
(to an existing variability) may have an impact on other products as well, but only if they
are selected. Adding a commonality, however, will always impact the product line
infrastructure and thus have ramifications on other products as well.

• Deleting requirements – again this can happen on any of the levels: product-specific,
variability, or commonality. For product-specific requirements there are no ramifications
for other products. Variability and commonality deletions have effects on the product line
infrastructure. Deletions of commonalities or variabilities that are relevant to other
products also have an impact on these other products. These effects of changes need to be
identified and analyzed as well.

• Modifying requirements – modifying requirements can happen on any of the levels:
product-specific, variability, or commonality. In particular, a modification may change the
category of the requirement as shown in [1]. Figure 2 depicts this fact.

o Product-specific modifications can lead to a mere modification of content or can
also change a requirement into a variability.

o Variability modifications can change a variability into a commonality or a
product-specific requirement. In particular, it needs to be determined what
happens to other products that share the variability: the change may affect either
all products in the same manner or it may affect only some products, for example,
leading to the introduction of an additional variability resolution.
Particular forms of variability modifications include the modification of the

 ECEASST

6 / 13 Volume 8 (2008)

relevant constraints or if attributes of the variability like its binding time are
modified. Based on the web shop example, a typical case might be customer Y
requires the use of database system A which is so far not supported by the product
line. We may either add this as a variability resolution, modifying the variability
on a product line wide level or we may even treat the variability database support
henceforth as product-specific.

o Commonality modifications. Again this may either impact the commonality per se,
changing it for all products. Or it may affect only some, and thus may turn the
commonality into a variability. An example would be to support one-click
shopping besides the cart metaphor. This would turn the corresponding
commonality into a variability.

An overview of these types of changes is shown in Figure 2. Some changes may also modify
the type of requirement in terms of commonality, variability, and product-specific. In Figure 2
the boxes represent the SPL requirement categories as introduced in section 2. The arrows
visualize the intent of the change to a requirement, e.g. to make a product-specific requirement
more generic and thereby to turn it into a variability. Furthermore, the arrows denote the
impact in terms of the number of products affected by changing a requirement.

3.2 Product-Level Change
Product-level changes describe additions and deletions of whole products. Modifications of
individual products can be described as requirements-level change. As defined in [9], there is a
need to distinguish between the marketed and the engineered product line in product line
engineering. A marketed product line denotes a set of products that are marketed together as
sharing a common set of features, whereby different products often substitute each other (e.g.
different versions of the Windows operating system). An engineered product line is designed
and developed for and with reuse in order to share major parts of the implementation.
Conversely, different products in an engineered product line may belong to different marketed
product lines (e.g. navigation systems of a single producer may be sold under multiple brands).
Here, we focus on the engineered product line only.

• Adding a product – this will require the definition of the selected variabilities and of
product-specific concerns. Thus, this only establishes uses relations for the various
variabilities (and commonalities).

• Deleting a product – this will lead to the deletion of the corresponding product-
specific requirements. Usually the variabilities remain in existence in the product line
infrastructure, even if they are no longer used by any product.

Modifying a product directly maps to modifying requirements as discussed above.

Software Product Line Evolution

Proc. Software Evolution 2007 7 / 13

3.3 Product-Line-Level Change
A complex product portfolio is sometimes represented in terms of a number of product lines.
These product lines can be either independent in the sense that they do not explicitly share any
product line level assets or they can be structured in the sense that they share some assets. The
later is sometimes also called a product population or a hierarchical product line [21].
As a consequence, we can distinguish the following cases as a refinement of the product /
product line operations that were defined in the context of [1]:

• Adding a product line – a new product line is established. This may either be a
completely new and independent product line or it is a sub product line in the sense of
a product population as defined above. In the later case, there is a relation between the
sub product line and the upper level product line, which is similar to the relation
between an individual product and its product line.

• Removing a product line – the product line is removed. Again this can be subdivided
into the cases that either an independent product line or a product line as a sub product
line of a product population is removed.

• Merging two product lines – sometimes it is important to merge different product lines
(e.g., in the case of an acquisition, or if they become increasingly similar over time).

• Splitting a product line – the opposite operation is the split of a product line. This may
either lead to two independent product lines or it leads to two product lines, which are
part of a product population. In fact, this case can be handled by moving the
appropriate product-specific elements into the target SPL while variabilities and
commonalities are simply duplicated. A variation of this is to split a single product line
into a hierarchical product line. In this case, a product line infrastructure is treated as a
sub-product line of another product line.

m
ake

com
m

on
m

ake
generic

m
ake

specific

Variability

Product-specific

Commonality

product-local change

au
gm

en
t

va
ria

bil
ity

ch
an

ge
bin

din
g

tim
e

modifyconstraints

modify commonality

m
ake

variable

impact on individual products

impact on multiple products

impact on all products

Figure 3: Summary of Requirements-Level Changes.

 ECEASST

8 / 13 Volume 8 (2008)

It is very difficult to formalize completeness of a taxonomy like the one given above. Thus, we
can argue here only that we capture a complete set of levels (requirement, product, product
line) and a complete set of actions (add, modify, delete). From this perspective, we can assume
that our taxonomy is complete in the sense that any real requirements-based product line
evolution can be described as a combination of instances of our taxonomy.
A different issue is, however, whether the sub-cases that we identified above are complete.
This is much harder. So, at this point, we can only argue that this is a reasonably balanced
categorization for the real-world situations, we have experienced so far.

3 Requirements for Evolution Support of Software Product Lines
In the preceding sections we discussed thoroughly our requirements-based SPL evolution
taxonomy and categorized the different possible situations that may occur in product line
evolution. Now, we will discuss requirements on evolution support for product line
requirements engineering that can be derived from this taxonomy. The underlying assumption
of our approach is that using a systematic characterization of changes provides a higher
potential of achieving a complete and consistent set of evolution support requirements than an
ad-hoc approach does.
In the following table, we summarize major operators that must be supported for product line
evolution. These operators correspond to the various cases identified in the previous section. In
addition, the table describes traceability relations that are relevant to supporting the described
operations and go beyond the usual relationships in single system development.

Situation Evolution Operator Traceability Information
Requirements Level
Add
Requirement

Add product-specific
requirement

 Add new variability relation between product requirements and the
infrastructure
relation between this variability and other ones

 Add new resolution in existing
variability

constraints among variability resolutions;
relation between product requirements and the
infrastructure

 Add new commonality relation between product requirements and the
infrastructure
relation between new commonality and other
requirements in the product line infrastructure

Modify
Requirement

Modify content of product-
specific requirement

relation among product-specific requirements
relation between modified requirement and
product line infrastructure.

 Modify content of variability
for some products (either

relation among variability resolutions;
relation between product-specific requirements

Software Product Line Evolution

Proc. Software Evolution 2007 9 / 13

introduces additional
resolutions or introduces
product-specifics)

and infrastructure requirements

 Modify content of variability
for all products

relation between product and infrastructure;
relation to usage of this variability resolution

 Modify variability constraints relation to usage of variability
 Modify variability properties

(e.g., binding time)
relation to usage of variability

Delete
Requirement

Delete product-specific
requirement

relation to other product specific and product
line infrastructure requirements

 Delete variability relation to usage of variability
 Delete variability resolution relation to usage of variability resolution
Product Level
Add Product Add a product relation to commonalities and selected

variability resolutions
relation between product and product-specific
requirements

Delete
Product

Delete a product relation to commonalities and selected
variability resolutions
relation between product and product-specific
requirements

Product line Level
Adding a
product line

Add an independent product
line

 Add a sub product line relation to commonalities and selected
variability resolutions (of higher level SPL)
relation of product line to specific
commonalities and variabilities

Removing a
product line

Remove a product line relation to used requirements from the product
line infrastructure

 Remove a sub product line relation to commonalities and selected
variability resolutions (of higher level SPL)
relation of product line to specific
commonalities and variabilities

Merging two
product lines

Merge two independent
product lines

---1

1 While traceability information among the different product lines would be very useful for merging, we cannot assume that it
exists, as by definition these are independent product lines.

 ECEASST

10 / 13 Volume 8 (2008)

 Merging two sub product lines relation to commonalities and selected
variability resolutions (of higher level SPL)

Splitting a
product line

Split product line relation to commonalities and selected
variability resolutions (of higher level SPL)

While we cannot show in a formal manner that our taxonomy and requirements derivation is
complete, we believe that the systematic analysis we performed provides a sound basis for
supporting requirements-based product line evolution. We can also expect the results to be
more complete then the results of other, less systematic, approaches. The table provides an
overview of the operations that should be supported, as well as the traceability information that
is required by the engineer in order to perform the operations.

While the systematic analysis given above provides a complete basis, it is, due to the
formalistic approach, not well tuned to practical support. For example, in practice certain
combinations of operations might be common, thus specific support of these operations might
be useful. Some of these practical considerations are:
• It would be useful to be able to work with multiple versions of a variability model in order

to enable products to rely on different versions and defer update of products untill an
appropriate time.

• The difference between requirement and realization (e.g., required binding time vs.
established binding time) shall be represented.

Despite these practical shortcomings, we assume that our list of requirements provide a solid
and comprehensive basis for evolution support. In particular, this analysis goes for the specific
issue of product line evolution beyond other existing analyses.

4 Related Work
In this section, we will first discuss software evolution in general, and then we will focus on
SPL evolution in particular. In single system development evolution scenarios are typically
categorized as perfective, corrective, and adaptive maintenance [8]. A general taxonomy of
software change is given in [4]. There is also considerable amount of work on the
classification of evolution of individual artifacts, e.g. for:
• requirements (clarification, retraction, splitting and merging) [15].
• scenarios in the sense of use cases [2]. Several static relationships like contained in, or

precondition of between scenarios as well as dynamic operations on scenarios were
identified. Some inter-scenario operations are split into others, specialization, extension,
consolidation and some intra-scenario operations are inclusion, modification and deletion.

• goals in requirements engineering [16]
• design diagrams like the taxonomy of changes for UML diagrams in [3].
• source code, like [7] or [12] from the viewpoint of traceability links.

Software Product Line Evolution

Proc. Software Evolution 2007 11 / 13

For us the work on requirements, scenarios and goals is most important as it shares the
requirements-centric viewpoint we use here.

Besides this general work on software evolution, significant work has also been done in the
area of software product line evolution. In the next paragraph, we briefly describe general
classifications of product line evolution; in the remainder of this section we discuss work on
taxonomies for SPL evolution that is closely related to our work.
In [13], the evolution of domain concepts relevant to a product line was categorized as either
vertical, domain-specific evolution (i.e. extension by new features) or horizontal evolution of
domain assets (e.g. for improving application functionality). In [14] the evolution of features,
variation points and dependent artifacts are described using basic change operations like
addition, deletion and modification, thus using the same base operations that we apply.
In [19] Svahnberg and Bosch a taxonomy for the evolution of SPL was provided that centers
on the different kinds of artifacts. This taxonomy is based on two case studies:

o requirements evolution, i.e. decision for a new SPL, introduction of a new product,
improvement of functionality, extension to the support of standards, changes in the
version of the infrastructure or improvements to quality attributes.

o architectural evolution (e.g. split of a SPL, derivation of sub-SPLs by branching or
changes to entire architecture components).

o component evolution in terms of the assumed underlying architectural framework, e.g.
by adding or changing implementations of the framework interfaces.

Several differences exist between the taxonomy provided in [19] and our work. Their view is
broader as it goes beyond requirements. On the other hand they provide only some relevant
aspects while we introduce a taxonomy based on change levels and therefore on the impacts of
the changes.
Probably the approach closest to ours was presented in the context of the ConIPF methodology
[10]. Their change operations were classified as follows:

o basic change operations that cannot be further partitioned and therefore represent a
single modification like addition, deletion, and modification of artifacts. Each category
was then further separated according to individual artifacts.

o complex change operations which are composted of several basic operations or
include additional knowledge about the modification.

Obviously, the ConIPF approach shares the basic operations with our approach (and the one in
[14]), but in the focus was on artifacts while we consider requirement change levels for the
categorization.
While the various descriptions of product line evolution provided significant contributions,
none so far provided a consistent categorization of product line change on all three levels:
ranging from individual requirements over products to product lines.

5 Discussion
We provided a systematic discussion of different product line evolution operations from the
viewpoint of requirements engineering. A taxonomy of evolution operations was given, which
is structured into requirements-level, product-level and product-line level changes. Based on
the discussion in this paper, we outlined the traceability information influenced by the

 ECEASST

12 / 13 Volume 8 (2008)

individual evolution operations and derived a set of requirements to be fulfilled by a product
line environment in order to support the systematic evolution of SPL.
To our knowledge, so far no support has been provided which is in accordance with all these
requirements. We thus stipulate that the presented taxonomy can be used as a reference for
product line evolution support that goes beyond existing levels of support.
Some interesting issues for further research are: to realize a prototypical product line
environment for the systematic support of evolution that supports the operations and
requirements outlined above, to use the prototypical environment to practically validate the
taxonomy and its completeness and to evaluate SPL case studies e.g. to derive the frequency of
occurrence of the individual evolution operations of our taxonomy.

References
[1] G. Böckle, P. Clements, J. McGregor, D. Muthig, and K. Schmid. A cost model for software product

lines. In Proceedings of the 5th International Workshop on Product Family Engineering (PFE’5), number
3014 in LNCS, pages 310–316. Springer, 2003.

[2] K. K. Breitman, J. Cesar Sampaio do Prado Leite, and D. M. Berry. Supporting scenario evolution.
Requirements Engineering, 10(2):112–131, 2005.

[3] L. C. Briand, Y. Labiche, and L. O'Sullivan. Impact analysis and change management of UML models. In
Proceedings of Software Maintenance 2003, IEEE Conference on Software Maintenance, pages 256–265.
IEEE, IEEE Computer Society, September 2003.

[4] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. Towards a taxonomy of
software change. Journal of Software Maintenance and Evolution: Research and Practice, 17(5):309–
332, 2005.

[5] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley, Boston,
MA, 2002.

[6] K. Czarnecki, H. Chang, P. Kim, and K. Kalleberg. Feature models are views on ontologies. In Software
Product Line Conference, 2006 10th International, pages 41–51, 21-24 Aug. 2006.

[7] J. Gustavsson. A Classification of Unanticipated Runtime Software Changes in Java. In Proceedings of
Software Maintenance 2003, IEEE Conference on Software Maintenance, pages 4–12. IEEE, IEEE
Computer Society, 2003.

[8] L. Hatton. How accurately do engineers predict software maintenance tasks? IEEE Computer, 40(2):64–
69, February 2007.

[9] A. Helferich, K. Schmid, and G. Herzwurm. Reconciling marketed and engineered software product lines.
In Proceedings of the 10th International Software Product Line Conference, pages 23–27, 2006.

[10] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis, and J. MacGregor. Configuration in
Industrial Product Families - The ConIPF Methodology. Akademische Verlagsgesellschaft Aka, Berlin,
2006.

[11] F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in Action - The Best Industrial
Practice in Product Line Engineering. Springer, 2007. http://www.spl-book.net/.

[12] J. I. Maletic, M. L. Collard, and B. Simoes. An XMLBased Approach to Support the Evolution of Model-
to-Model Traceability Links. In Proceedings of TEFSE 2005, November 8, 2005, Long Beach, California,
USA, 2005.

[13] J. Meinecke, M. Gaedke, and M. Nussbaumer. A web engineering approach to model the architecture of
inter-organizational applications. In Turowski and Zaha [20], pages 125–137.

[14] T. Myllymäki. Variability management in software product lines. Technical report, Tampere University of
Technology, Software Systems Laboratory, 2001.

[15] C. Potts and K. Takahashi. An active hypertext model for system requirements. In J. C. Wileden, editor,
Proceedings of the 7th International Workshop on Software Specification and Design, pages 62––68.
IEEE Computer Society, December 1993.

[16] C. Rolland, C. Salinesi, and A. Etien. Eliciting gaps in requirements change. Requirements Engineering
Journal, 9:1–15, 2004.

[17] K. Schmid and I. John. A Customizable Approach To Full-Life Cycle Variability Management. Science of
Computer Programming, 53(3):259–284, 2004.

Software Product Line Evolution

Proc. Software Evolution 2007 13 / 13

[18] K. Schmid and M. Verlage. The economic impact of product line adoption and evolution. IEEE Software,
19(6):50–57, 2002.

[19] M. Svahnberg and J. Bosch. Evolution in software product lines. Journal of Software Maintenance,
11(6):391–422, 1999.

[20] K. Turowski and J. M. Zaha, editors. Component-Oriented Enterprise Applications, Lecture Notes in
Informatics, 2005.

[21] R. van Ommering. Software reuse in product populations. Software Engineering, IEEE Transactions on,
31(7):537–550, July 2005.

