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Abstract: Co-operative driver assistance systems share information about their sur-
rounding with each other, thus enhancing their knowledge and their performance.
For successful information exchange and interpretation, a common domain under-
standing is needed. This paper first presents an ontology-based context-model for
driving scene description, including next to spatio-temporal components also addi-
tional context information like traffic signs, state of the driver and the own-vehicle.
For traffic rules, we integrate the ontological scene description with a logic pro-
gramming environment, to enable complex and powerful reasoning on the given
information. The proposed ontology is discussed with respect to a set of validation
criteria. For integration with logic programming a prototypical development of an
overtaking assistant is shown to demonstrate the feasibility of the approach.

Keywords: ontology, context, logic programming, reasoning, driver assistance

1 Introduction

Context-aware collaborative driver assistance systems (DAS) need a common domain descrip-
tion for information exchange. Context for a DAS refers to the driving situation, consisting of the
environment and all objects and traffic participants within it, which are currently relevant to the
own vehicle. The driver’s state and experience as well as the technical state of the vehicle with
the mounted DAS are also influencing a driving situation. One additional, often neglected factor
is the traffic law. The main task of an intelligent DAS is driver support, in contrast to autonomous
vehicles. To make correct decisions, the system must be aware of the driving surrounding. Thus,
a context-model is needed for representing knowledge about driving scenes. Collaboration with
other vehicles and infrastructure enhances a single DAS’ knowledge with additional information.
Here a context-model is the basis for knowledge exchange between participants. Present-day
DAS (e.g. the adaptive cruise control - ACC) are mostly stand-alone solutions, focusing on a
highly specialized subtask of driving, with limited context-awareness. Current trends in DAS
indicate that for future systems integration of stand-alone solutions is going to take place, thus
resulting in smarter DASs. Those will be able to free the driver from difficult and tedious tasks.
The overall driving context will become important for correctly recognizing and interpreting
complex driving situations. DAS will become increasingly knowledge-based and methods will
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be needed for modeling, handling and exchanging the vast amount of context information.
This paper presents an ontology-based context-model intended for scene-representation and in-
formation exchange in intelligent DAS. The model is presented and discussed with respect to a
variety of pre-defined ontology-engineering criteria. Integration of the context-model with traffic
rules in a logic programming environment is outlined, using the prototypical implementation of
an overtaking assistant.

2 Related Work

The authors of [TFK08] present SCORE - the Spatial Context Ontology Reasoning Environ-
ment. The system is made of modular components that distribute the ontological knowledge and
reason about the context’s low-level spatial properties. SCORE understands queries like ”Is car
X overtaking car Y?”. SCORE uses a description-logic based reasoner to derive information
about a driving situation. However, it remains unclear which context objects are contained in
the ontology and how the spatial information and relationships are actually represented. Also,
the reasoning mechanism or the content of the rule base are not explained in detail. The authors
seems to consider neither temporal concepts nor uncertain information.
[LGTH05] demonstrates a spatio-temporal solution that exploits qualitative motion descriptions.
Movement parameters (e.g. speed) are mapped from raw sensory data to qualitative abstract
classes. Production rules are used for reasoning on the qualitative scene descriptions. The
approach is feasible for the spatio-temporal representation of moving objects. The question
remains, if for some driving decisions numerical movement parameters are the better choice.
Speed and distance values can be obtained easily and seem to be the better choice for time/speed
calculations, especially if the vehicle is supposed to yield better estimations than a human driver.
The presented rule base solely focuses on the spatio-temporal reasoning, further influence factors
on the driving task are not taken into account.
Ontologies with context information for DAS have been developed in the RENA project [WBSS].
However, the focus of this project is on context-aware navigation systems, with a seamless han-
dover between different in- and outdoor positioning systems, not on driver assistance.
Traffic rules, static traffic objects (e.g. signs) and environmental conditions are, to the best of
our knowledge, not dealt with in current approaches, although they have major influence on rec-
ommended driving behavior. With the ongoing technical progress of sensing systems and GIS,
information about those conditions will be soon available and should be included in both context-
representation and reasoning. Our context-model extends spatio-temporal data with additional
context information, necessary for deducing context-aware driving recommendations.

3 Ontology-based Driving Scene Representation

The context model has been developed in OWL, which has been chosen as suitable language for
context representation and sharing, based on the results of the survey in [SL04]. An overview of
the ontology’s content is shown in Figure 1. There are three main superclasses in the hierarchy:
ContextObject, ObjectRelationship and MetaInformation. ContextObjects includes both static
and dynamic context objects of a driving situation. Examples are the driver, the own-vehicle, the
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Figure 1: A context model for abstract driving scene description

driving context, participants, traffic signs etc. The spatial context is the current road type (high-
way, urban, ...) and is valid for a longer time-span. Local contexts are located within a spatial
context and represent a sub-environment with special rules (e.g. intersection). Traffic objects are
included from four major context categories: driver, own-vehicle, traffic regulations and driving
environment with respect to the own-vehicle. Every object is annotated with datatype proper-
ties for further description. Traffic objects have relationships to each other, which are either of
type 1:1 (represented with object properties) or n:m. In the latter case, the relationship is rep-
resented as a subclass of ObjectRelationship. For example, every other participant has a certain
relationship to the own vehicle, the own vehicle itself has a relationship to an oncoming local
context, traffic signs are valid for certain lanes and so on. Recognition of traffic objects using
sensing devices has made substantial progress over the past decade. A number of projects have
been conducted in the fields of pedestrian recognition [SGH04], traffic sign detection [MKS00],
driver state detection [QY02] and lane recognition [MWKS04]. We therefore think it safe to
assume that the traffic objects needed in our model can technically be provided.

3.1 Representing Uncertain Information

The input of a DAS is highly unlikely to be precise and reliable, especially if derived from sensing
systems or provided by GIS systems. Therefore, uncertainty information has to be included in
the context-model. The special class MetaInformation contains information about an object’s
source and it’s reliability, the object’s estimated quality (provided by the source) and the expected
time-span of an object’s validity, derived from distance or time-to-contact measurements, which
provides information about when a certain object is becoming valid within the knowledge base
and must be included in the reasoning process. One or more instances of the meta-information
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class are assigned to every object and relationship, because object information is gathered from
different sources. At the moment the list includes on-board sensing systems, foreign sensing
systems (e.g. from other vehicles) and static sources like geographic information systems (GIS),
which can augment traffic object information (e.g. number of lanes, position of traffic signs, road
type). The meta-information can be exploited during the decision process, using methodologies
from the field of reasoning under uncertainty.

3.2 Representing Spatio-Temporal Information

Representing moving objects with a single time-span is sufficient for high-level motion descrip-
tion (cf. [LGTH05]). Spatial information between the own-vehicle and other participants is
represented from an ego-centric perspective with the own vehicle at the center. Qualitative at-
tribute values are used for the direction (front, rear, left, right and combinations) and the relative
direction movement (towards, away, parallel). For the movement parameters speed, distance and
line of sight our model uses numerical values, for reliable calculations associated with driving
maneuvers (e.g. overtaking). Those rely on time-frames and speed-difference value calcula-
tions, which can be obtained from the given parameters with reasonable computational effort.
Qualitative mapping is rather important when presenting results to driver. For spatio-temporal
calculations, we expect better results from numerical calculations here in comparison to purely
qualitative values. Also, numerical speed and distance values can be easily obtained from sens-
ing systems.
The ontology is published on http://vi.uni-klu.ac.at/ontology/DrivingContext.owl. The ontology
is intended for high-level scene representation of driving scenes, as it is used on a tactical level
in DAS for driver decision support.

3.3 Representing Traffic Rules

For rule-representation, OWL currently supports the semantic web rule language (SWRL), a pro-
posal for extending OWL with Horn-clause-like rules. Representation of complex rules is not
efficient [Hor05] and until today, SWRL has not been improved and made part of the standard
yet1. In [MBKL05], where OWL and SWRL are used to represent domain knowledge in logis-
tics, some of the encountered problems, like lack of negation-as-failure, are discussed. For some
years it has been rather quiet around SWRL now and not much progress has been made. A logic-
based approach is more suitable and provides sophisticated reasoning mechanisms on the avail-
able knowledge. We used the constraint satisfaction paradigm. A constraint satisfaction problem
(CSP) is defined as a triple 〈X ,D,C〉 where X is a finite set of variables X = 〈x1,x2, ...,xn〉,D is
a corresponding n-tuple of domains D = 〈D1,D2, ...,Dn〉 such that xi ∈ Di, meaning a variable
xi can be assigned values from its corresponding domain Di = 〈v1,v2, ...,vn〉. C is a finite set of
constraints C = 〈C1,C2, ...,Ct〉. A constraint c ∈C involving variables xi, ...,x j is a subset of the
Cartesian Product Di× ...×D j of compatible variable assignments. A constraint c is satisfied by
a tuple of values v = (vi, ...,v j) assigned to variables xi, ...,x j if v ∈ c. An assignment is complete
if a every variable is assigned a value. A complete assignment is a solution to a CSP if it satisfies
all constraints in C. In a typical CSP the programmer defines the decision variables xi, ...,x j and

1 http://www.w3.org/Submission/SWRL/, accessed on 6th May 2008
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states the constraints as well as an (optional) optimization function. A standard solver tries to
find assignments for the decision variables that satisfy all constraints, while at the same time
minimizing (or maximizing) the objective function (constraint optimization problem).
Within a driving situation, the traffic rules represent the constraints that must be fulfilled. We
have a mixed CSP: variables containing pre-determined values that cannot be changed, but must
be included in the reasoning process. Examples are speed and distance values of other partici-
pants, provided by the context-model. The decision variables we want to find a value for are our
own speed (integer value) and driving maneuver (set of finite values). We try to find a variable
assignment that does not violate any traffic rules. If no solution can be found, one or more traffic
rules are violated. There are hard and soft constraints. A hard constraint must not be violated
in any case, e.g. a double white line or a given speed limit. A soft constraint can be gradually
fulfilled, until it becomes a hard constraint. An example within a DAS would be an oncoming
vehicle during an overtaking maneuver. The meeting point with the oncoming vehicle depends
on the speed and distance of the oncoming vehicle and related to the overtaking duration. The
hard constraint must hold that the overtaking duration is smaller then the time to contact, other-
wise a collision will occur. If the constraint is fulfilled, it is so with a certain risk. The time to
contact can be long after completion of overtaking (low risk) or very short (high risk).

3.4 Integrating Context-Information with the Reasoning Component

Contextual information of the present driving scene is represented with class instances of the
provided context ontology, using OWL syntax. In this form, information is machine-readable
and thus easily exchangeable between collaborating vehicles and infrastructure. Since a logic-
based programming environment is typically not able to read OWL, the context information must
be transformed, to be of use to the reasoning component. We developed a set of transformation
rules (cf. [FRLK08]) that translates a scene description (given as OWL class instances) to the
dynamic knowledge base of the reasoning component. First, the static framework (structures,
enumerations etc.) is created out of the context-ontology. Every class, together with its datatype
and object properties, is automatically transformed to a struct, representing the class description
in logic programming syntax. This only has to be done once for the initial ontology and every
time the ontology changes (making migration of the reasoning component necessary). Once the
structures are available, every class instance of the form

<ownVehicle rdf:ID="ownVehicle 7">
<speed rdf:datatype="&xsd;int">120</speed>
<ownMaximumSpeed rdf:datatype="&xsd;int">180</ownMaximumSpeed>
<lineOfSight rdf:datatype="&xsd;float">305</lineOfSight>
<brakeIntensity rdf:datatype="&xsd;string">light</brakeIntensity>
<steeringWheelAngle rdf:datatype="&xsd;int">2</steeringWheelAngle>
<throttleIntensity rdf:datatype="&xsd;string">low</throttleIntensity>
<length rdf:datatype="&xsd;float">3.09</length>
<gear rdf:datatype="&xsd;int">5</gear>
<width rdf:datatype="&xsd;float">1.65</width>
<hasAdditionalInformation rdf:resource="#MetaInf ownVehicle 7"/>
<drivesIn rdf:resource="#spatialContext 1"/>

</ownVehicle>
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Figure 2: Relevant objects within a driving scene

<MetaInformation rdf:ID="MetaInf ownVehicle 7">
<source rdf:datatype="&xsd;string">staticallyProvided</source>
<source rdf:datatype="&xsd;string">onBoardSensing</source>

</MetaInformation>

is translated to a dynamic fact

ownVehicle{
objId:ownVehicle 7,
speed:120, ownMaximumSpeed:180, lineOfSight:305, brakeIntensity:light,
steeringWheelAngle:2, throttleIntensity:low, length:3.09, gear:5, width:1.65,
source:[staticallyProvided, onBoardSensing],
drivesIn: spatialContext 1}.

and asserted to the reasoning component’s dynamic knowledgebase. Now the information is
available and can be used as input for the decision process. When an object is changing or no
longer valid, the dynamic fact is updated resp. retracted from the knowledgebase.

4 Discussion and Implementation of the Proposed Approach

4.1 The Context-Model

In addition to the standard tests provided by the ontology development tool, a representative vari-
ety of driving scenario snapshots was taken from real-world video-streams and from an Austrian
driving school’s teaching book. Approximately 120 scenarios were chosen, representing inter-
section crossing, overtaking and various situations from urban, highway and rural road driving.
Within every scenario, the driving relevant objects have been manually tagged first (see Figure 2)
and modeled with the ontology afterwards. Information, which would be present in a real world
system but was not derivable from a scenario image, was given a plausible imaginary value (e.g.
state of the driver). When looking at the driving scenarios, we found that most are similar, with
only minor differences, e.g. different participants, number of lanes and speed/distance combi-
nations, presence/abscence of traffic signs, local contexts etc. Therefore, the seemingly small
number of scenarios is sufficient to show the feasibility of the approach for a first demonstration.
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Based on the scenario mapping, we compared our ontology against a set of modeling and en-
gineering criteria [KS07], with respect to suitability for the task of representing tactical driving
decisions.

• Applicability: The model is useful to applications in need of abstract traffic scene repre-
sentations, but not to completely foreign domains, like e.g. intelligent meeting rooms.

• Comparability: For our intended task, we consider this criterion less important. The
ordering of qualitative classes for representation of spatio-temporal representation within
driving scenes is the same world-wide. Mapping from quantitative sensory data to qual-
itative classes should not be done within the context model. Rather, the model should
abstract from this details. For numerical speed/distance values different interpretations are
possible: the SI or the English system. Since only three states worldwide are using the
latter one (U.S., Liberia and Myanmar), the SI units can be assumed per default. Changing
between system can solved using a system configuration entry outside the model.

• Traceability: The source, it’s reliability and a quality assertion are recorded for every
object in the meta-information class. Mapping of sensory data to a qualitative value (e.g.
direction is front left) should be done by a mapping component, because the input data and
consequently the processing algorithm differs for various sensor systems. Since the source
of the abstract object (containing qualitative values) is recorded, the mapping can be made
available, either outside or inside the context-model with reasonable effort. A DAS operat-
ing on a tactical level will usually only be interested in the abstract object representations,
not in the quantitative sensor data. Wherever the numerical values are important, they are
represented explicitly within the context-model (e.g. speed of a vehicle).

• History, logging: In the current version, historization and logging is not yet included.

• Quality: For object quality information, the meta-information class should be used.

• Satisfiability: For qualitative values, the allowed range is listed in the model, using OWL-
enumerations. For standard data types, we used the xsp:minInclusive and xsp:maxInclusive
properties for providing range interval values. Multiplicity is modeled using the ”Func-
tional” attribute of a property.

• Inference: Inference for DAS, even if done on an abstract level is too complex to be
modeled with current OWL capabilities. Traffic rules are therefore not included into the
ontology, but out-sourced to a logic based reasoning component. Tools for further abstrac-
tion of the model are also not included, since it is already a high-level model. Refinement
to higher levels of detail is possible with reasonable effort, without affecting current model
semantics, exploiting OWL’s class hierarchy.

Beside the context modeling criteria, [KS07] defined a criteria set for evaluation of ontology
engineering.

• Reusability, standardization: Within the domain of machine-readable driving scene de-
scription on a tactical level, the model can be used for all tasks in need of such descriptions,
without restriction.
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• Flexibility, extensibility: New definitions can be added with reasonable effort without
affecting existing dependencies. Particularly stepwise refinement with OWL class hier-
archies can be done easily. This enables different applications to enhance the existing
class-definitions to their necessary level of detail.

• Genericity: Our model does not provide a domain-independent upper-ontology.

• Granularity: Our model consists of abstract objects representing a high-level description
for the tactical level of the driving domain. Refinement to finer levels of detail is possible
(compare with flexibility, extensibility).

• Scalability: Cognitive and engineering scalability of our model is unproblematic, since it
contains a comparatively small number of classes and properties. Reasoning scalability is
not applicable, because it is entirely done outside the model.

• Language, formalism: Our model uses the Web Ontology Language (OWL), for scene
representation resp. context-modeling. The reasoning process is outsourced to a logic-
based approach and uses the OWL-descriptions as input.

For the scenario modeling, we found that the relevant information for representation of traffic
driving scenes, including both traffic objects and their relationships, can be represented with our
model. The model is not optimal for all criteria, which is mainly due to the fact, that it has been
developed for a very specific domain. This is especially true for the context-modeling criteria;
the ontology engineering criteria, the model fulfills to a great extent and is thus a suitable basis
for context-representation within intelligence components for DAS on a tactical level. Traffic and
reasoning rules are not directly represented in the context-model, due to the lack of complex rule-
support within the web ontology language. Rules are implemented with a logic-based approach
and the context-information is integrated as described above.

4.2 Implementation of the Rule Base

To test the feasibility of integrating OWL with constraint programming, we developed a pro-
totype for overtaking assistance. The prototype translates and analyzes a given traffic scene
(in OWL format) and uses the rule base to decide whether overtaking is currently wise or not.
If not, the violated traffic rule(s) is (are) shown. Manually tagged driving scenes descriptions
(cf. Section 4.1) were used as input. The automated collection of context information with
computer-vision is an ongoing research topic in our group, but will not be discussed here. In the
final system, the gathered context information will be dynamically retracted and inserted into the
knowledge base, as new information about objects is obtained from the sensing systems. In the
present version, transformation is always done for a complete traffic scene.
ECLiPSe was chosen as constraint programming environment for the reasoning component
[Krz07]. A translation module has been developed, that automatically analyzes and transfers the
OWL scene descriptions to ECLiPSe dynamic facts. Based on the resulting dynamic knowledge
base, a set of constraints was specified to represent the hard and soft constraints for overtaking.
A small graphical front-end was also created for presenting results of the deduction process. As
programming language, the interpreted script language TCL/TK was chosen because it has an
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Figure 3: Speed/Distance curve of involved vehicles during overtaking

interface to the ECLiPSe environment. C++ would have been the alternative, also providing a
tightly coupled interface to the knowledge base.
Depending on the spatial context, the system checks a different set of constraints. There are
three hard constraints: 1) there must be a lane on the left for overtaking, 2) the legal speed limit
must be reachable with a speed difference of at least 20 km/h and 3) there must not be a double
white line. Soft constraints for overtaking are those that depend on the overtaking speed and the
current speed and distance values in some way. Examples are the check for oncoming vehicles,
for vehicles approaching from behind, sufficiency of line of sight, possibility of reaching a ban
on passing while overtaking, sufficient side distance etc. Depending on the duration of the over-
taking time of the front vehicle, these constraints are either fulfilled, but with a certain risk, or
completely violated (see section 3.3). Figure 3 shows the speed/distance curve of a scenario with
an oncoming vehicle, where the thick black line indicates the overtaking vehicle, the thick grey
line is the front vehicle and the thin grey line represents the oncoming vehicle. The intersection of
the lower two lines shows when the overtaking vehicle has reached the front vehicle. Realigning
to the original lane (completion of the overtaking maneuver) takes place with one second safety
distance. The meeting point with the oncoming vehicle is given by the intersection of the upper
line and must take place after realignment of the overtaking vehicle, else the two vehicles would
collide. Depending on the time difference between realignment and meeting point, a numerical
risk value is determined. A small time difference indicates a high risk - the oncoming vehicle
reaches the overtaking vehicle soon after realignment. The risk value decreases with increase of
the time difference. The numerical risk value is mapped to a qualitative value using fuzzy classi-
fication, before presenting the result to the driver. The decision component searches for a speed
value for overtaking fulfilling all constraints, using the minimal necessary speed difference (dic-
tated by law) and the maximal possible speed difference, depending on the current speed limit
as starting interval. The result of the search is either a single speed value or a narrowed down
speed interval. In the latter case, the highest possible value is always communicated as a result,
to minimize the overtaking time.
Next to spatial context information, traffic objects and participants, the decision component also
includes the environmental conditions into the reasoning process. The values for maximum speed
limit, acceleration/deceleration, safety distance and line of sight are adjusted to current visibility
and road surface conditions. Furthermore, information about the state and risk-willingness of
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Figure 4: Prototype of Overtake Assistant

the driver is taken into account. If the driver is e.g. tired and the overtaking maneuver involves
a high risk, overtaking is not recommended. A screen-shot of the prototype’s graphical frontend
is shown in Figure 4. Of course the presentation of results is not suitable for use in a real car
while driving on a street. A discussion of how to best present information to a driver without
overloading him/her, is beyond the scope of this paper.
Analyzing and translating the scene description to the dynamic knowledge base takes an average
of approximately 100 milliseconds on an IBM Laptop with a 2 GHz Intel Pentium Processor and
2 GB memory, although TCL/TK is an interpreted language and thus slower. The file size of an
average scene description is between 5 and 15 KB (unoptimized), depending on the complexity
of the scene. Deducing a decision based on the contents of the dynamic knowledge base and pre-
senting the result, is done with an average of approximately 1 to 2 milliseconds. This execution
times show that it is possible without performance loss to integrate an OWL-scene description
with a logic based reasoning system and exploit the power of deductive reasoning together with
the ease and machine-readability of using OWL for context-representation.

5 Future Work

At the moment, the decision component does not take into account meta-information about traf-
fic objects for the reasoning process. How to include uncertainty information and deal with it
during deduction will be one of the major future steps.
We are currently also working on the design of a learning component for self-improvement of the
DAS. Typically, drivers do not act one-hundred percent conform to driving regulations and with
increasing experience develop a more efficient but also more risky style of driving. Decision
parameters of the system should be automatically fine-tuned over time, using the decisions and
behavior of experienced drivers as input. For this, historization and logging have to be added
to the model. Instances of driving scene descriptions in which the driver acted oppositional to
the proposed behavior are analyzed and archived together with the driver’s state and behavior.
If found necessary, rules are adapted accordingly: boundaries of risk mapping are shifted, tol-

Proc. CAMPUS 2008 10 / 12



ECEASST

erance values for speed differences are adjusted or additional maneuvers are allowed, always
with respect to safe and legal driving. For hitherto unknown situations, where the system is not
able to reach any decision, the driver’s decision is validated and added to the knowledge base
permanently as a new rule. The textual scene descriptions are a suitable mechanism for use
in a pattern-matching process that compares driving situations with respect to their object and
relationship instance value. If results pass a certain similarity threshold value, archived recom-
mendations and driver behavior are retrieved and reused in the reasoning process.

6 Conclusions

Co-operative driver assistance systems (DAS) need a common domain understanding and a need
for information exchange, with regard to driving scene description. In this paper, we presented an
ontology-based context-model for traffic scene representation, which can serve as a foundation
for domain-understanding, information-exchange and context-aware reasoning. We discussed
the proposed ontology with respect to a set of both domain-specific and domain-independent
modeling and engineering criteria. The model was found sufficiently expressive for the intended
use and it has a variety of different applications. For traffic rule-representation we showed that
it’s feasible to integrate OWL and constraint logic programming, to exploit the advantages of
both powerful information representation and reasoning, with feasible effort. The system is able
to analyze the scene description and to deduce and present a recommendation near to real-time.
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