
Electronic Communications of the EASST
Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2008)

Enhancing Planning-Based Adaptation Middleware with Support for
Dependability: a Case Study

Romain Rouvoy, Roman Vitenberg and Frank Eliassen

12 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Enhancing Planning-Based Adaptation Middleware with Support
for Dependability: a Case Study

Romain Rouvoy, Roman Vitenberg and Frank Eliassen

Universitetet i Oslo, Department of Informatics,
Networks and Distributed Systems group

P.O.Box 1080 Blindern — 0316 Oslo, Norway
rouvoy@ifi.uio.no, romanvi@ifi.uio.no, frank@ifi.uio.no

Abstract: Recent evolutions of mobile devices have opened up for new opportuni-
ties for building advanced mobile applications. In particular, these applications are
capable of discovering and exploiting software and hardware resources that are made
available in their environment. A possible approach for supporting these ubiquitous
interactions consists in adapting the mobile application to reflect the functionalities
that are provided by the environment. However, these approaches often fail in of-
fering a sufficient degree of resilience to potential device, network, and software
failures, which are particularly frequent in ubiquitous environments. Therefore, the
contribution of this paper is to integrate the dependability concern in the process of
mobile applications adaptation. In particular, we proposeto reflect dependability
mechanisms as alternative configurations for a given application. This reflection al-
lows the planning-based adaptation middleware to automatically decide, based on
contextual information, to enable the support for dependability or not.

Keywords: Planning-based Adaptation, Component-Based Architecture, Depend-
ability Mechanisms, Self-Adaptation

1 Introduction

The growing interest for highly collaborative applications, such as social networks, and the de-
mocratization of mobile devices open up opportunities for new trends of mobile applications.
In particular, these applications are able to discover and benefit from software and hardware
resources available in their environment. User devices that support such ubiquitous computing
systems require continuous software adaptations to face the changes in the user environment
(e.g., physical location, network connectivity, energy consumption). However, the state-of-the-
art adaptation methods and technologies do not consider possible device, network, and software
failures; they may cease being functional in face of such failures [CCKI07].

Although dependability mechanisms provide relevant solutions for building fault-tolerant mo-
bile applications (replication, group communication, etc.) [HHS04], the configuration and the
deployment of such mechanisms remains a cumbersome task since it requires to correlate the
characteristics of the environment to the attributes of themechanisms. In a ubiquitous environ-
ment, this task becomes critical since the particularitiesof the environment are not foreseen by
definition. Therefore, we propose to enhance an existing adaptation middleware with the capa-
bility of selecting, deploying and monitoring dependability mechanisms. In particular, we are

1 / 12 Volume 11 (2008)

mailto:rouvoy@ifi.uio.no, romanvi@ifi.uio.no, frank@ifi.uio.no


Dependability Support for an Adaptive Application: a Case Study

interested in modeling legacy dependability mechanisms interms ofQuality of Service(QoS)
properties. Thanks to that, we aim at supporting the seamless planning of dependability mecha-
nisms and their respective strategies and thus making easier their integration into mobile appli-
cations.

The rest of the paper is organized as follows.Section 2describes a typical scenario of a so-
cial application built atop a planning-based adaptation middleware. It also derives a few salient
characteristics of the scenario and illustrates how dependability enhances the application be-
havior.Section 3provides background on common adaptation and dependability techniques and
solutions.Section 4outlines our contribution for the seamlessness support of dependable config-
urations.Section 5describes and discusses related work, whileSection 6concludes the paper.

2 Motivating Scenario

To further motivate the need for adaptation in dependable computing environments, let us con-
sider the following scenario. Paul recently bought an Internet tablet and installed a version of
the InstantSocial(IS) application on this mobile device. This application aims at creating vir-
tual communities by instant sharing of multimedia content.In particular, the application offers
functionalities, such as picture sharing, instant messaging, and video broadcasting.

Scene 1.The scenario starts with Paul going to a concert of Björk in Paris. Unfortunately, he
arrives a bit late and is a bit far away from the stage to see theartists. However, his IS application
detects that an ad hoc network is available and that John, whois closer to the stage, broadcasts
a video of the performance. The application connects to the broadcasting service advertised by
John’s mobile device and allows Paul to watch the artists while listening to the music. The video
stream is relayed by other mobile devices located in the sameplace.

Scene 2.The battery of John’s device gets depleted so that his deviceadaptively changes its
configuration to prohibit relaying unnecessary data. Fortunately, Paul’s IS application detects
that Joanne provides a similar video stream, transparentlyreconnects to Joanne’s device, and
proceeds with minimal frame loss.

Scene 3.Because Paul really enjoys the concert, he takes some pictures of the event in order
to feed his blog when going back home. The photos he takes withthe device camera are auto-
matically tagged by the IS applications with his current position using the embedded GPS of the
device. The IS application starts looking for other photos taken around him and display them on
Paul’s device.

Scene 4.Now the concert is over, it’s time to go back home and Paul enters the metro station.
The IS application detects the network infrastructure provided to the travelers and adapts itself to
connect to the available facilities. In particular, the infrastructure provides a servicebuddy finder
that helps travelers finding buddies who share common interests. The IS application requests
the service to find buddies who share multimedia content related to the concert of Björk that
just finished. The service federates multimedia content provided by other devices all around the
station and displays it on Paul’s device.

Scene 5.The notification service of the metro station broadcasts a message about train de-
lay in the line that Paul was about to take. This announcementcauses Paul to take a different
transportation path.

Proc. CAMPUS 2008 2 / 12



ECEASST

Characteristics of the Scenario The scenario we introduce exhibits properties that are repre-
sentative of nowadays mobile applications:

Moderate to high dynamicity. The application operates in a dynamic environment in which
the rate of changes is high and there exists a turnover in the nodes participating in the application.
The above scenario illustrates high node mobility and fluctuations in the resource availability.

Large scale. The application may potentially include hundreds and eventhousands partic-
ipating distributed nodes. Realistically, it is quite easyto envision the extension of the above
scenario to such scales.

Distribution of nodes and services. The application is based on a fully distributed architec-
ture where nodes can cooperate using a moderately involved communication scheme (as opposed
to the star-based architecture wherein all nodes communicate with a single server). Furthermore,
we assume that the application knowledge (e.g., the application configurations and available re-
sources) is also distributed among the participating nodes.

Broad diversity of application-required QoS. The application combines many different ac-
tivities that involve communication between the nodes. We assume that data exchanged between
the distributed nodes have different priorities (e.g., logging information [not critical], control
information [very critical]), different bandwidth demands (from a few byte long message to in-
tensive multimedia data), and different interaction frequency (e.g., from every 5 seconds to every
few days).

Diversity in communication paradigms. The same application may combine different com-
munication types (messaging Vs. streaming) and paradigms (client-server, overlay-based, pub-
sub).

Needs for Dependability Although the scenario we exposed proposes usual functionalities of
a social application, we foresee that the use of such applications in ubiquitous environments
requires the support of dependable mechanisms to ensure an acceptable behavior under volatile
connectivity and changing environmental conditions. For example, the entire scenario motivates
the need for reliable communication mechanisms. In particular, the video content being delivered
by John to Paul should be made highly available to ensure thatthe quality of the stream will not be
critically affected by the number of users watching the video and by the quality of the network.
This also means that the content delivery should be made reliable. However, the degree of
reliability may depend on a number of factors: type of content, data intensity, update frequency,
number of interested consumers, etc. In addition, different contents (photos and videos) may
also require varying degrees of freshness and in the case of multi-source updates, policies for
conflict resolution (update order errors).

In addition, most of the scenes motivate the need for servicediscovery. For example, when
Paul joins the network infrastructure available in the metro station in Scene 4, its application
should discover the services provided by third parties. When fulfilling the requirements of the
application, these services should be seamlessly integrated by the mobile device.

Scene 1 emphasizes the demand for dependable cooperation and ad-hoc routing between the
devices. It also illustrates the need for reliable synchronization between different streams, such
as the audio stream the device receives directly from the technical equipment of the concert
settings and the video stream it receives from other cooperating mobile devices. In the general

3 / 12 Volume 11 (2008)



Dependability Support for an Adaptive Application: a Case Study

case, reliable synchronization should be performed between content of different types: video
with video, audio with video, text with multimedia, etc.

Scene 2 motivates the need for failure detection, monitoring operational capacity and connec-
tivity, and membership maintenance. These functionalities can obviously prove useful in other
scenes as well. Additionally, this scene illustrates the value of transparent takeover mechanisms
for the IS application.

In Scene 3, the pictures concert fans take should be replicated for the sake of high-availability
and fault-tolerance through redundancy. Since it is impossible to store all data on every device,
data-sharing should be attained through partial and content-dependent replication.

3 Foundations

This section introduces the foundations of our contribution by presenting concepts related to
planning-based adaptation middleware (cf.Subsection 3.1), and dependability mechanisms (cf.
Subsection 3.2).

3.1 Planning-based Adaptation Middleware

Planning-based middleware refers to the capability of adapting an application to changing op-
erating conditions by exploiting knowledge about its composition andQuality of Service(QoS)
metadata associated to the application components [FHS+06, AHPE07]. We therefore consider
applications that are developed with a QoS-aware componentmodel. The QoS model associated
with a ubiquitous application defines all the reasoning dimensions used by the planning-based
middleware to select and deploy the component implementations that contribute to provide the
best utility. The utility of an application grows when its constituting components better fulfill
user preferences while optimizing device resource consumption.

For example, inFigure 1, we illustrate the modeling of a self-adaptive logger component using
a QoS-aware component model. The configuration of this logger can be optimized dynamically
in order to maximize the satisfaction of the user. In particular, the componentLogger Compo-
sition is made of three componentsReceiver, Handler, andStorage, which have one, three, and
two alternative configurations, respectively.

As we already mentioned, the evaluation of these alternative configuration is driven by the
QoS properties associated to the application. For example,Table 1reflects possible property
dimensions for describing the logger QoS. These propertiesvalues are then specified and associ-
ated to components using notes in the application model. In case of composite components, the
value is a function combining the QoS properties of contained components. In case of atomic
components, the value usually refers to a primitive value.

Then,planningrefers to the process of selecting components that make up anapplication vari-
ant that provides the best possible utility to the end user. This process can be triggered during
several steps of the application life cycle, such as during the deployment of the application or
at runtime if the execution context suddenly changes. The parts of the application that are con-
sidered during planning are calledvariation points. These correspond to functionalities (type
of behavior) defined in the component frameworks modeling the application. Thus, each vari-

Proc. CAMPUS 2008 4 / 12



ECEASST

Receiver

Simple
Receiver

pp

lat = 0
bat = 10

Storage

File
Storage

pp

lat = 100
cap = sys://hda@free
bat = 30

DB
Storage

pp

lat = 30
cap = sys://hdb@free
bat = 100

Handler

Pretty
Handler

pp

lat = 30
bat = 25

Plain
Handler

pp

lat = 10
bat = 15

XML
Handler

pp

lat = 50
bat = 20

Logger

Logger Composition

StorageReceiver
hrl

pp

cap = Storage.cap
lat = (Receiver.lat + Handler.lat + Storage.lat) x sys://processor@clock
bat = Receiver.bat + Handler.bat + Storage.bat

Handler
h s s

ILogger

Figure 1: The Model of a Component-based Logger.

Table 1: The Specification of the Logger QoS Property Dimensions.

Property Name Description Value Range

cap Capacity of the logger 0–?
lat Latency of the logging request 0–100
bat Battery consumption of the logger 0–100

ation point identifies a functionality of the application that can be implemented differently. In
addition, each component implementation suitable for a variation point is reified as aplan by
the planning-based middleware. A plan mainly consists of a structure that reflects the type of
the component implementation and the QoS properties associated to the services it provides.
In particular, the plan exhibits bothrequested properties(e.g., memory consumption, network
bandwidth, network connectivity) andoffered properties(e.g., request throughput, latency, result
accuracy) referring to the QoS model of the application. To estimate the offered properties of a
plan, the planning-based middleware relies onproperty predictors. The property predictors are
used to predict the offered properties of a component implementation as a function using the
required properties and the current execution context as parameters. The predictors can also take
into account the state of the component implementation associated to the plan—i.e., described,
deployed, or running—to refine the prediction. The QoS modelused by the planning framework
can be customized to handle new QoS dimensions (e.g., monetary cost), while the property pre-
dictors can be configured to support complex heuristics (e.g., QoS negotiation protocols). The
predicted properties are input to a normalizedutility function that computes the expected utility
of a composition of plans making up an alternative application configuration [BHRE07]. For
example, the utility function used to evaluate the logger configuration can be configured as the
following:

Utility (Logger) =
Userbat

norm(bat)
+

Userlat

norm(lat)
+Usercap×norm(cap)

5 / 12 Volume 11 (2008)



Dependability Support for an Adaptive Application: a Case Study

This utility function minimizes the battery consumption and latency of the configuration, while
maximizing its capacity. The user preferences (Userxxx) are used to weight each QoS dimension
and ensure that the output will be a normalized value. The functionnorm(xxx) is used to normal-
ize the property prediction to a scalar value between 0 and 1.The planning-based middleware
compares the expected utility of all alternate applicationconfigurations, and finally selects the
one that provides the highest value.

Figure 2illustrates the architecture of the MUSIC middleware, which supports the planning-
based adaptation. The componentPlanner supports theplanning procedureby operating a
generic reasoning heuristics that exploits metadata included in the available plans. In particu-
lar, the plans are composed based on their type compatibility to describe alternative application
configurations. Then, the heuristics ranks the applicationconfigurations by evaluating their util-
ity with regards to the application objectives. This evaluation is achieved by computing the
offered properties using the property predictors associated to each plan contained in the selected
application configuration and retrieved from the componentPlan Repository.

Adaptation Manager

Planner

am

pp

Property
Predictor

pp

c

Configurator
c p

b

Kernel

Factoryp

Binderb

Plan
Repository

br

b

p

brbr

cm

cl

Context Manager

cmcl

pm

pm

am

plplpl

prprpr

IPredictorManager

IAdaptationManager

IPlanRepository

IPlanResolver

IPlanListener

IContextListener
IContextManager

IPredictor

IConfigurator

IFactory

IBinder

Figure 2: The Architecture of the MUSIC planning-based adaptation middleware.

The componentPlan Repository provides an interfaceIPlanResolver for thePlanner to retrieve
plans associated with a given component type during planning. ThePlanner may request plans
that are compatible with a given variation point, at which point thePlan Repository will search
for matching component types. Any additional metadata on the required component type will
help thePlan Repository to exclude plans and filter the search space [LSO+07, BHRE07]. Plans
are typically published to (and discarded from) thePlan Repository by applications and com-
ponent development tools using the interfaceIPlanRepository, and can thus trigger thePlanner
for re-planning of the application if needed (e.g., the discarded plan was associated to a running
component).

Proc. CAMPUS 2008 6 / 12



ECEASST

The reconfiguration processis handled by the componentConfigurator and consists of taking
the set of plans selected by the componentPlanner and reconfiguring the application. Before
deploying the application configuration selected by the reasoning engine, the componentCon-
figurator brings the current application into a quiescence state, by suspending the execution of
its contained components. Then, if the component describedby a plan is in the running or
deployed state, the associated component instance is configured for the variation point and con-
nected to other components using the componentBinder. If the component is in the described
state, then the component should be preliminary instantiated and deployed by the component
Factory using the component implementation description associated to the plan. The result of
the reconfiguration (e.g., reference of the deployed instance) is automatically reflected into the
selected plans. Thus, the MUSIC planning-based middlewareoffers a modular and extensible
approach for adapting applications built with various types of component models. In particular,
the concept of plan can be derived to support heterogeneous artifacts and their associated states.
Furthermore, the componentsFactory andBinder provide sufficient abstractions for supporting
different dependability mechanisms (e.g., replication, load-balancing, group communication).

3.2 Dependability Mechanisms

Dependability covers a wide range of mechanisms, and each ofthese mechanisms exhibit strate-
gies and parameters that usually need to be set up based on application-specific and context-
dependent information. For example, we observed that each of the following dependable mech-
anisms can be configured in different ways.

Replication mechanisms are used to replicate parts of system state in order to ensurefault
tolerance and high availability. However, there exist a large variety of replication strategies (e.g.,
passive/active replication) and each of these strategies supports several configuration parameters
(e.g., replication factor, update propagation scheme and frequency, replication degree);

Load-balancing mechanisms rely on different scheduling strategies to dispatch the incoming
requests to services that are expected to be highly available. The goal of these mechanisms is to
ensure that the system latency is not severely affected by the load. However, scheduling-based
approaches can use different heuristics to dispatch the requests (e.g., round-robin, load-aware)
and these heuristics behaves differently depending on the type of load introduced into the system;

Group communication mechanisms provide a paradigm for reliable many-to-many commu-
nication with advanced properties with regards to reliabledelivery, ordering, and synchronization
of messages with membership changes. The possible strategies implemented by these mecha-
nisms are related,e.g., to the underlying multicast mechanism employed, buffering and conges-
tion handling, as well as the required synchronization guarantees between delivery of application
messages and membership change notifications;

Reliable communication mechanisms support techniques for ensuring reliable message de-
livery. Such mechanisms are especially important for mobile networks and have to support dy-

7 / 12 Volume 11 (2008)



Dependability Support for an Adaptive Application: a Case Study

namic reconfiguration to react to unstable situations. An example is Mobile IP, which supports
network handovers. Other examples in this category includemessage redundancy and concurrent
paths. All these mechanisms provide different quality of service with respect to reliability and
costs and their configuration can vary depending on the environmental conditions.

Transaction mechanisms ensure the consistency of system states. Each transaction must suc-
ceed or fail as a complete unit; it cannot remain in an intermediate state. However, the perfor-
mance of the services supporting the transactions can be impacted by the evolution of the execu-
tion environment [RSM06]. Thus, in a ubiquitous environment, the configuration of transaction
properties (e.g., commit protocol, locking strategy) can be planned by the adaptation middleware
depending on the context information.

Discovery mechanisms provide a support for detecting new operational nodes in thesystem.
Once again, these services are influenced by different strategies that are related to the type of
the underlying network (e.g., infrastructure, ad hoc) as well as the supported technology (Web
Services, OSGi, etc.). Besides, some protocols define lookup strategy (proactive or reactive)
as well as lookup frequency. Due to the dynamic nature of the environment, these strategies
and their related parameters may require to be reconfigured on the fly. For example, the lookup
frequency can be increased when in an indoor environment depending on the available battery of
the mobile device.

4 Dynamic Planning of Dependability

This section exposes our first elements for supporting dependability using a planning-based adap-
tation middleware. In particular, we propose to reflect the characteristics dependable mechanisms
using plans (cf.Subsection 4.1), and to use composite components to model dependable config-
urations (cf.Subsection 4.2).

4.1 Specification of Quality of Dependability

It is important to observe that for each of these mechanisms,ensuring high dependability of
service compositions implies that the planning heuristicstake the corresponding dependability
parameters into account. This also ought to be reflected in the QoS model, which should include
new QoS dimensions (number of faults, cost, etc.) and incorporate them into the utility function.

While plans were initially designed to reflect components making up an application, we
demonstrated in [REF+08] that plans can also reflect other kind of artifacts, such asService-
Oriented Architectures(SOA). In particular, we proposed a component-based architecture for
discovering, negotiating, and planning application configurations supporting SOA. More gener-
ally, we observed that plans provide a suitable abstractionfor reasoning on quality of service
independently of underlying artifacts. Based on this assumption, we believe that plans can also
be use to reflect dependability concerns. In particular, plans and the enclosed QoS properties
can be reused to model a dependable mechanism and its characteristics. To attain this goal, we
intend to characterize existing dependable mechanisms (e.g., active/passive replication, group

Proc. CAMPUS 2008 8 / 12



ECEASST

communication, resilient routing protocols at the level ofboth networking and application over-
lay networks) in terms of QoS properties. For example,Table 2identifies the QoS model that can
be used to reflect the QoS of a replication mechanism, namely thefactor, degree, frequency, and
reliability of replication. As this QoS model is an extension, default values are provided (using
the square brackets) if the property is not mentioned explicitly.

Table 2: The Specification of the Replication QoS Property Dimensions.

Property Name Description Value Range

fac Factor of replication 0–? [0]
deg Degree of replication (None) 0–1 (Full) [0]
fre Frequency of replication (Never) 0–1 (Always) [0]
rel Reliability of replication (Weak) 0–? (Strong) [0]

4.2 Modeling of Dependable Configurations

Once such QoS properties are specified, the role associated with a dependability mechanism
can be combined with other application roles in the architecture using composition plans (cf.
Figure 3). In particular, the QoS properties can be associated to theconfiguration eitherimplicitly
or explicitlyby the modeling approach.

The implicit modeling approach consists in integrating the dependability QoS properties in
the property predictors associated to the application QoS properties. This approach reflects seam-
lessly the impact of the dependability mechanism on existing QoS properties (e.g., if employed
under specific circumstances, the active replication mechanism increases the logger capacity by
10% and reduces its throughput by 15%). For example, the configuration depicted inFigure 3
extends the one presented inFigure 1by introducing a new configurationDependable Store that
supports the replication of the logger storage component. The typeStore is connected to the type
Replicate using stereotypedependable to specify that the connector is not a component bind-
ing. The QoS properties associated to this dependable configuration use the properties of the
dependable mechanisms to reflect how the dependable mechanism impact the QoS of the config-
uration. Then, available replication mechanism strategies are described as alternative component
implementations for the typeReplicate, while their respective parameters are reflected as QoS
properties.

The explicit modeling approach consists in integrating the dependability QoS properties
in the function used to compute the utility of the application configuration. For example, the
utility function below extends the one defined inSubsection 3.1and specifies that thereliability
of replication should be enforced:

Utility (Logger) = Usercap×norm(cap)+
Userbat

norm(bat)
+

Userlat

norm(lat)
+Userrel×norm(rel)

This approach enables the user to specify its preferences with regards to the reliability concern
(reflected by the user preferenceUserrel).

Thanks to this abstraction, the planning-based adaptationmiddleware is able to reason about
the most suitable configuration to deploy in the current context. In particular, the reasoning

9 / 12 Volume 11 (2008)



Dependability Support for an Adaptive Application: a Case Study

Replication

Active
Replicate

pp

fac = {2:5}

deg = {0.5:1}

fre = 1

Passive
Replicate

pp

fac = {4:10}

deg = {0:1}

fre = 0.5

Storage

Dependable Store Composition

s

pp

rel = Replicate.fre x Replicate.fac

cap = Store.cap / Replicate.deg

lat = Store.lat x Replicate.fac

Replicate
r

Store
rs

«dependable»

IStorage

Figure 3: The Model of a Dependable Storage Configuration.

process will decide whether the replication mechanism needs to be enabled or not, thus avoiding
potential loop feedback problems. If the replication is needed, then it will determine which
strategy has to be selected and the best fitting value for its different attributes. This means that, at
runtime, the planning-based adaptation middleware can reconfigure the dependable mechanism
to tune the replication attributes or change the strategy.

At the middleware level, supporting these dependable mechanisms requires to extend the ar-
chitecture of the componentAdaptation Manager (depicted inFigure 2) in order to interpret de-
pendable configurations. This implies that the alternativeimplementation of componentsFactory
andBinder have to be developed to support the configuration and the deployment of a depend-
able mechanisms, respectively. Thus, for each dependable mechanism supported by the MUSIC
middleware, a pair ofFactory and Binder components is integrated into the architecture and
connected to the componentConfigurator in order to instantiate the dependable mechanism and
configure the selected strategy, respectively.

5 Related Work

A vast body of work has been devoted to dependability techniques, such as replication and group
communication [Bir05] as well as transactions [GR93, BHG87]. However, most of the research
on dependability did not target adaptive and autonomous systems: most existing technologies
require manual configuration and assume that the universe ofnodes is static. Furthermore, scal-
ability is known to be a general issue for dependability mechanisms.

Only a handful of works consider adapting dependability mechanisms by taking the context
into account. [KIBW99] and [FSS03] consider adaptive fault-tolerance for component-based
models. According to their claims, componentization may facilitate implementation of schemes
for fault-tolerance and load-balancing.

[HHS04] presents aQuality of Service(QoS) architecture that allows flexible combinations
of dependability attributes such as reliability, timeliness, and security to be enforced on a per-
service request basis. In addition to components that implement the underlying dependability
techniques, the architecture includes policy components that evaluate a request’s requirements
and dynamically determine an appropriate execution strategy.

The AQuA project [RBC+03] has developed an architecture that allows distributed applica-

Proc. CAMPUS 2008 10 / 12



ECEASST

tions to request and obtain a desired level of availability using theQuality Objects(QuO) frame-
work. The architecture includes a dependability manager that attempts to meet the requested
availability levels by configuring the system in response tooutside requests and changes in sys-
tem resources due to faults.

While the research has been focusing on developing dependable techniques [Bir05, GR93,
BHG87] and making them adaptable [KIBW99, FSS03, RBC+03], the contribution introduced in
this paper proposes an flexible adaptation framework for selecting, configuring, and monitoring
dependable mechanisms. The selection process is driven by the correlation of the QoS properties
reflected by a given dependable mechanism with the current context information monitored by
the associated context middleware. This approach allows the developer to specify the dependable
mechanisms that can be integrated into the application as configuration alternatives, while the
adaptation framework decides dynamically which configuration should be applied in a given
execution context.

6 Conclusion & Perspectives

This paper introduced the motivations for generalizing thesupport of dependable mechanisms
in mobile applications. In particular, the expansion of ubiquitous environments and the grow-
ing role of mobile devices open up new opportunities for these mobile applications. Although
these new applications are capable of reconfiguring themselves to face changes in their environ-
ment, they are still missing missing dependable features toreasonably tolerate possible device,
network, and software failures.

Therefore, we proposed to extend an existing planning-based adaptation middleware with the
capacity of reasoning about dependable configurations. By reflecting dependability as a new
QoS dimension, the developer can model application configuration that are resilient to faults.
These configurations are selected and configured automatically by the planning-based adaptation
middleware depending on the current execution context of the user.

As a matter of perspectives, we plan to experiment the support of various state-of-the-art
dependable mechanisms in order to identify a comprehensiveQoS model dedicated to depend-
ability issues. This support will be realized as part of the MUSIC project. The framework will
be validated using real world pilot applications of the industrial partners of the MUSIC project
(http://www.ist-music.eu).

Acknowledgements: The authors thank the partners of the MUSIC project and reviewers of
the CAMPUS workshop for their valuable comments. The authors would also like to thank Luı́s
Fraga from MobiComp for suggesting the InstantSocial scenario. This work is partly funded by
the European Commission through the project MUSIC (EU IST 035166).

Bibliography

[AHPE07] M. Alia, S. O. Hallsteinsen, N. Paspallis, F. Eliassen. Managing Distributed Adaptation of
Mobile Applications. In7th IFIP WG 6.1 Int’l Conference on Distributed Applications and In-

11 / 12 Volume 11 (2008)

http://www.ist-music.eu


Dependability Support for an Adaptive Application: a Case Study

teroperable Systems (DAIS). Lecture Notes in Computer Science 4531, pp. 104–118. Springer,
Paphos, Cyprus, June 2007.

[BHG87] P. A. Bernstein, V. Hadzilacos, N. Goodman.Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[BHRE07] G. Brataas, S. O. Hallsteinsen, R. Rouvoy, F. Eliassen. Scalability of Decision Models for
Dynamic Product Lines. InInt’l SPLC Workshop on Dynamic Software Product Line (DSPL).
P. 10. Kyoto, Japan, Sept. 2007.

[Bir05] K. P. Birman.Reliable Distributed Systems: Technologies, Web Services, and Applications.
Springer, Secaucus, NJ, USA, Mar. 2005.

[CCKI07] M. Cinque, D. Cotroneo, Z. Kalbarczyk, R. K. Iyer. How Do Mobile Phones Fail? A Failure
Data Analysis of Symbian OS Smart Phones. In37th Annual IEEE/IFIP Int’l Conference on
Dependable Systems and Networks (DSN). Pp. 585–594. IEEE Computer Society, Edinburgh,
UK, June 2007.

[FHS+06] J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjørven. Using Architecture
Models for Runtime Adaptability.IEEE Software23(2):62–70, Mar./Apr. 2006.

[FSS03] F. Favarim, F. Siqueira, J. da Silva Fraga. AdaptiveFault-Tolerant CORBA Components. In
Workshops of the Int’l Middleware Conference. Pp. 144–148. PUC-Rio, 2003.

[GR93] J. Gray, A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufman
Publishers, 1993.

[HHS04] J. He, M. A. Hiltunen, R. D. Schlichting. Customizing Dependability Attributes for Mobile
Service Platforms. In34th Int’l Conference on Dependable Systems and Networks (DSN).
Pp. 617–626. IEEE Computer Society, Florence, Italy, June/July 2004.

[KIBW99] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, K. Whisnant. Chameleon: A Software Infrastruc-
ture for Adaptive Fault Tolerance.IEEE Transactions on Parallel and Distributed Systems
10(6):560–579, 1999.

[LSO+07] S. A. Lundesgaard, A. Solberg, J. Oldevik, R. B. France, J. Ø. Aagedal, F. Eliassen. Construc-
tion and Execution of Adaptable Applications Using an Aspect-Oriented and Model Driven
Approach. In7th IFIP WG 6.1 Int’l Conference on Distributed Applications and Interopera-
ble Systems (DAIS). Lecture Notes in Computer Science 4531, pp. 76–89. Springer, Paphos,
Cyprus, June 2007.

[RBC+03] J. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A. Karr, P.Rubel, C. Sabnis, W. H. Sanders,
R. E. Schantz, M. Seri. AQuA: An Adaptive Architecture that Provides Dependable Dis-
tributed Objects.IEEE Transactions on Computers52(1):31–50, 2003.

[REF+08] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, E. Stav. Composing Components and Ser-
vices using a Planning-based Adaptation Middleware. In7th Int’l Symposium on Software
Composition (SC). Lecture Notes in Computer Science 4954, pp. 52–67. Springer, Budapest,
Hungary, Mar. 2008.

[RSM06] R. Rouvoy, P. Serrano-Alvarado, P. Merle. Towards Context-Aware Transaction Services. In
6th IFIP WG 6.1 Int’l Conference on Distributed Applications and Interoperable Systems
(DAIS). Lecture Notes in Computer Science 4025, pp. 272–288. Springer, Bologna, Italy,
June 2006.

Proc. CAMPUS 2008 12 / 12


	Introduction
	Motivating Scenario
	Foundations
	Planning-based Adaptation Middleware
	Dependability Mechanisms

	Dynamic Planning of Dependability
	Specification of Quality of Dependability
	Modeling of Dependable Configurations

	Related Work
	Conclusion & Perspectives

