Electronic Communications of the EASST

Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services
(CAMPUS 2008)

Enhancing Planning-Based Adaptation Middleware with Supior
Dependability: a Case Study

Romain Rouvoy, Roman Vitenberg and Frank Eliassen

12 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Enhancing Planning-Based Adaptation Middleware with Supyort
for Dependability: a Case Study

Romain Rouvoy, Roman Vitenberg and Frank Eliassen

Universitetet i Oslo, Department of Informatics,
Networks and Distributed Systems group
P.0.Box 1080 Blindern — 0316 Oslo, Norway
rouvoy @ifi.uio.no, romanvi@ifi.uio.no, frank@ifi.uio.no

Abstract: Recent evolutions of mobile devices have opened up for neerbni-
ties for building advanced mobile applications. In patcuthese applications are
capable of discovering and exploiting software and hardweasources that are made
available in their environment. A possible approach forpsrping these ubiquitous
interactions consists in adapting the mobile applicatoreflect the functionalities
that are provided by the environment. However, these appesaoften fail in of-
fering a sufficient degree of resilience to potential deyvioetwork, and software
failures, which are particularly frequent in ubiquitouseanments. Therefore, the
contribution of this paper is to integrate the dependabddncern in the process of
mobile applications adaptation. In particular, we proptuseeflect dependability
mechanisms as alternative configurations for a given aqipdic. This reflection al-
lows the planning-based adaptation middleware to autaadtidecide, based on
contextual information, to enable the support for depeitithabr not.

Keywords: Planning-based Adaptation, Component-Based Architectdepend-
ability Mechanisms, Self-Adaptation

1 Introduction

The growing interest for highly collaborative applicatmsuch as social networks, and the de-
mocratization of mobile devices open up opportunities fewrrends of mobile applications.
In particular, these applications are able to discover asmkfit from software and hardware
resources available in their environment. User devicessigport such ubiquitous computing
systems require continuous software adaptations to facetianges in the user environment
(e.g, physical location, network connectivity, energy constiorg. However, the state-of-the-
art adaptation methods and technologies do not considsitp@slevice, network, and software
failures; they may cease being functional in face of sudhrias [CCKI07].

Although dependability mechanisms provide relevant sahstfor building fault-tolerant mo-
bile applications (replication, group communication,.efelHS04, the configuration and the
deployment of such mechanisms remains a cumbersome taskisirequires to correlate the
characteristics of the environment to the attributes ofnleehanisms. In a ubiquitous environ-
ment, this task becomes critical since the particulariieshe environment are not foreseen by
definition. Therefore, we propose to enhance an existingtatan middleware with the capa-
bility of selecting, deploying and monitoring dependailinechanisms. In particular, we are

1/12 Volume 11 (2008)

mailto:rouvoy@ifi.uio.no, romanvi@ifi.uio.no, frank@ifi.uio.no

Dependability Support for an Adaptive Application: a Case Study @

interested in modeling legacy dependability mechanisntsrims ofQuality of Servicg QoS)
properties. Thanks to that, we aim at supporting the seamplasning of dependability mecha-
nisms and their respective strategies and thus makingrehsieintegration into mobile appli-
cations.

The rest of the paper is organized as follov@ection 2describes a typical scenario of a so-
cial application built atop a planning-based adaptatioddi@ware. It also derives a few salient
characteristics of the scenario and illustrates how degdatity enhances the application be-
havior. Section 3provides background on common adaptation and depengakitiiniques and
solutions.Section 4outlines our contribution for the seamlessness supporpéddable config-
urations.Section Sdescribes and discusses related work, whetion éconcludes the paper.

2 Motivating Scenario

To further motivate the need for adaptation in dependabhepeding environments, let us con-
sider the following scenario. Paul recently bought an metablet and installed a version of
the InstantSocial(lS) application on this mobile device. This applicatiomaiat creating vir-
tual communities by instant sharing of multimedia conténtparticular, the application offers
functionalities, such as picture sharing, instant mesgggnd video broadcasting.

Scene 1.The scenario starts with Paul going to a concert of Bjorkand? Unfortunately, he
arrives a bit late and is a bit far away from the stage to seartists. However, his IS application
detects that an ad hoc network is available and that Johnjswtioser to the stage, broadcasts
a video of the performance. The application connects to thadzasting service advertised by
John’s mobile device and allows Paul to watch the artistsenisitening to the music. The video
stream is relayed by other mobile devices located in the sdace.

Scene 2.The battery of John’s device gets depleted so that his dedegtively changes its
configuration to prohibit relaying unnecessary data. Fately, Paul's IS application detects
that Joanne provides a similar video stream, transpareetiynnects to Joanne’s device, and
proceeds with minimal frame loss.

Scene 3.Because Paul really enjoys the concert, he takes somegsabfithe event in order
to feed his blog when going back home. The photos he takesthatkdevice camera are auto-
matically tagged by the IS applications with his currentipas using the embedded GPS of the
device. The IS application starts looking for other photdeh around him and display them on
Paul’s device.

Scene 4Now the concert is over, it's time to go back home and Paulrertkee metro station.
The IS application detects the network infrastructure jated to the travelers and adapts itself to
connect to the available facilities. In particular, the@structure provides a servibaddy finder
that helps travelers finding buddies who share common stiereThe IS application requests
the service to find buddies who share multimedia contentaelto the concert of Bjork that
just finished. The service federates multimedia contentigeal by other devices all around the
station and displays it on Paul’s device.

Scene 5.The notification service of the metro station broadcasts ssage about train de-
lay in the line that Paul was about to take. This announcemaumses Paul to take a different
transportation path.

Proc. CAMPUS 2008 2/12

@ ECEASST

Characteristics of the Scenario The scenario we introduce exhibits properties that aresrepr
sentative of nowadays mobile applications:

Moderate to high dynamicity. The application operates in a dynamic environment in which
the rate of changes is high and there exists a turnover inatlegparticipating in the application.
The above scenario illustrates high node mobility and flatotuns in the resource availability.

Large scale The application may potentially include hundreds and ebhenisands partic-
ipating distributed nodes. Realistically, it is quite e&syenvision the extension of the above
scenario to such scales.

Distribution of nodes and services The application is based on a fully distributed architec-
ture where nodes can cooperate using a moderately invobrachcinication scheme (as opposed
to the star-based architecture wherein all nodes commignigith a single server). Furthermore,
we assume that the application knowledgey(the application configurations and available re-
sources) is also distributed among the participating nodes

Broad diversity of application-required QoS. The application combines many different ac-
tivities that involve communication between the nodes. ¥&ime that data exchanged between
the distributed nodes have different prioritiesq, logging information [not critical], control
information [very critical]), different bandwidth demasi@from a few byte long message to in-
tensive multimedia data), and different interaction freogy €.g, from every 5 seconds to every
few days).

Diversity in communication paradigms. The same application may combine different com-
munication types (messaging Vs. streaming) and paradighesi-server, overlay-based, pub-
sub).

Needs for Dependability Although the scenario we exposed proposes usual funciti@sabf

a social application, we foresee that the use of such apiglicaiin ubiquitous environments
requires the support of dependable mechanisms to ensuczaptable behavior under volatile
connectivity and changing environmental conditions. B@neple, the entire scenario motivates
the need for reliable communication mechanisms. In pdaticthe video content being delivered
by John to Paul should be made highly available to ensuréttbajuality of the stream will not be
critically affected by the number of users watching the vidaed by the quality of the network.
This also means that the content delivery should be madabteli However, the degree of
reliability may depend on a number of factors: type of cofjtdata intensity, update frequency,
number of interested consumers, etc. In addition, diffecemtents (photos and videos) may
also require varying degrees of freshness and in the caseilltifsource updates, policies for
conflict resolution (update order errors).

In addition, most of the scenes motivate the need for sedig@very. For example, when
Paul joins the network infrastructure available in the mediation in Scene 4, its application
should discover the services provided by third parties. Wudilling the requirements of the
application, these services should be seamlessly inezjlgtthe mobile device.

Scene 1 emphasizes the demand for dependable cooperati@al-droc routing between the
devices. It also illustrates the need for reliable synctzation between different streams, such
as the audio stream the device receives directly from thienteal equipment of the concert
settings and the video stream it receives from other cotipgrenobile devices. In the general

3/12 Volume 11 (2008)

Dependability Support for an Adaptive Application: a Case Study @

case, reliable synchronization should be performed betweeatent of different types: video
with video, audio with video, text with multimedia, etc.

Scene 2 motivates the need for failure detection, mongooperational capacity and connec-
tivity, and membership maintenance. These functionaliten obviously prove useful in other
scenes as well. Additionally, this scene illustrates tHaeesaf transparent takeover mechanisms
for the IS application.

In Scene 3, the pictures concert fans take should be repiidat the sake of high-availability
and fault-tolerance through redundancy. Since it is imibtes$o store all data on every device,
data-sharing should be attained through partial and codpendent replication.

3 Foundations

This section introduces the foundations of our contributiy presenting concepts related to
planning-based adaptation middleware @tibsection 3)1 and dependability mechanisms (cf.
Subsection 3

3.1 Planning-based Adaptation Middleware

Planning-based middleware refers to the capability of idg@an application to changing op-
erating conditions by exploiting knowledge about its cosipon andQuality of ServicdQoS)
metadata associated to the application compon&t§{06, AHPEQ7. We therefore consider
applications that are developed with a QoS-aware companedél. The QoS model associated
with a ubiquitous application defines all the reasoning disiens used by the planning-based
middleware to select and deploy the component implememisthat contribute to provide the
best utility. The utility of an application grows when itsngituting components better fulfill
user preferences while optimizing device resource consomp

For example, irFigure 1, we illustrate the modeling of a self-adaptive logger congr using
a QoS-aware component model. The configuration of this logge be optimized dynamically
in order to maximize the satisfaction of the user. In paléiguhe componerntogger Compo-
sition is made of three componerkeceiver, Handler, andStorage, which have one, three, and
two alternative configurations, respectively.

As we already mentioned, the evaluation of these altermainfiguration is driven by the
QoS properties associated to the application. For exariplele 1reflects possible property
dimensions for describing the logger QoS. These properdkess are then specified and associ-
ated to components using notes in the application modelase of composite components, the
value is a function combining the QoS properties of con@io@mponents. In case of atomic
components, the value usually refers to a primitive value.

Then,planningrefers to the process of selecting components that make apication vari-
ant that provides the best possible utility to the end uséis process can be triggered during
several steps of the application life cycle, such as duiltegdeployment of the application or
at runtime if the execution context suddenly changes. This p#the application that are con-
sidered during planning are calle@riation points These correspond to functionalities (type
of behavior) defined in the component frameworks modelirgapplication. Thus, each vari-

Proc. CAMPUS 2008 4712

@ ECEASST

Logger Receiver l

cap = Storage.cap T
lat = (Receiver.lat + Handler.lat + Storage.lat) x sys:/processor@clocK
bat = Receiver.bat + Handler.bat + Storage.bat

HandlerStorage Simple
Receiver

Logger Composition

Handler Storage

lat = 30 lat =10 lat = 50 lat =100 lat = 30
bat = 25 bat =15 bat = 20 cap = sys://hda@free| |cap = sys://hdb@free

bat = 30 bat = 100
Pp pp Pp
Pretty Plain XML File PP pB PP
Handler Handler andler Storage Storage

Figure 1: The Model of a Component-based Logger.

ILogger

Table 1: The Specification of the Logger QoS Property Dinamsi

| Property Name | Description | Value Range |
cap Capacity of the logger 0-?
lat Latency of the logging request 0-100
bat Battery consumption of the logger 0-100

ation point identifies a functionality of the applicatioratrcan be implemented differently. In
addition, each component implementation suitable for &tian point is reified as @lan by
the planning-based middleware. A plan mainly consists dfwectire that reflects the type of
the component implementation and the QoS properties @adedcio the services it provides.
In particular, the plan exhibits botlequested propertiege.g, memory consumption, network
bandwidth, network connectivity) araffered propertiege.g, request throughput, latency, result
accuracy) referring to the QoS model of the application. Sineate the offered properties of a
plan, the planning-based middleware reliespooperty predictors The property predictors are
used to predict the offered properties of a component imefgation as a function using the
required properties and the current execution context@speters. The predictors can also take
into account the state of the component implementationceestsal to the plan-e., described,
deployed, or running—to refine the prediction. The QoS madet by the planning framework
can be customized to handle new QoS dimensierts fnonetary cost), while the property pre-
dictors can be configured to support complex heuristog, (QoS negotiation protocols). The
predicted properties are input to a normalizaiity functionthat computes the expected utility
of a composition of plans making up an alternative applicatonfiguration BHREO7. For
example, the utility function used to evaluate the loggetficuration can be configured as the
following:

Uselyat Useliat

Utility (Loggen = o hag T norm(ial)

+Userap x norm(cap)

5/12 Volume 11 (2008)

Dependability Support for an Adaptive Application: a Case Study @

This utility function minimizes the battery consumptiornddatency of the configuration, while
maximizing its capacity. The user preferenddsérxy) are used to weight each QoS dimension
and ensure that the output will be a normalized value. Thetfonnorm(xxx) is used to normal-
ize the property prediction to a scalar value between 0 anthg. planning-based middleware
compares the expected utility of all alternate applicatonfigurations, and finally selects the
one that provides the highest value.

Figure 2illustrates the architecture of the MUSIC middleware, vihstipports the planning-
based adaptation. The compon@&iinner supports theplanning procedureby operating a
generic reasoning heuristics that exploits metadata declun the available plans. In particu-
lar, the plans are composed based on their type compatitulidescribe alternative application
configurations. Then, the heuristics ranks the applicatmifigurations by evaluating their util-
ity with regards to the application objectives. This evéluais achieved by computing the
offered properties using the property predictors assedittt each plan contained in the selected
application configuration and retrieved from the comporéant Repository.

IPredictorManagQ

pm

Adaptation Manager
Context Manager

IJontextListeper

Predictor Kernel

or
IPlanReposifory

Figure 2: The Architecture of the MUSIC planning-based &aliégn middleware.

The componerlan Repository provides an interfacklanResolver for thePlanner to retrieve
plans associated with a given component type during planriiihePlanner may request plans
that are compatible with a given variation point, at whiclnpdhe Plan Repository will search
for matching component types. Any additional metadata enréfquired component type will
help thePlan Repository to exclude plans and filter the search spac(*07, BHREO7. Plans
are typically published to (and discarded from) #lan Repository by applications and com-
ponent development tools using the interféelanRepository, and can thus trigger thielanner
for re-planning of the application if needeel, the discarded plan was associated to a running
component).

Proc. CAMPUS 2008 6/12

@ ECEASST

Thereconfiguration process handled by the compone@bnfigurator and consists of taking
the set of plans selected by the compor®ahner and reconfiguring the application. Before
deploying the application configuration selected by the@aag engine, the componedbn-
figurator brings the current application into a quiescence state ubpending the execution of
its contained components. Then, if the component desctilyed plan is in the running or
deployed state, the associated component instance is eadifpr the variation point and con-
nected to other components using the compoBénier. If the component is in the described
state, then the component should be preliminary instautiand deployed by the component
Factory using the component implementation description assatiat¢he plan. The result of
the reconfigurationg.g, reference of the deployed instance) is automatically ¢efteinto the
selected plans. Thus, the MUSIC planning-based middlewfiees a modular and extensible
approach for adapting applications built with various typ&component models. In particular,
the concept of plan can be derived to support heterogenetiiasts and their associated states.
Furthermore, the componeriactory andBinder provide sufficient abstractions for supporting
different dependability mechanisnmes.g, replication, load-balancing, group communication).

3.2 Dependability Mechanisms

Dependability covers a wide range of mechanisms, and edties¢ mechanisms exhibit strate-
gies and parameters that usually need to be set up based licatpp-specific and context-
dependent information. For example, we observed that efdtie dollowing dependable mech-
anisms can be configured in different ways.

Replication mechanisms are used to replicate parts of system state in order to erfiaulte
tolerance and high availability. However, there exist géarariety of replication strategies.g,
passive/active replication) and each of these strateg@sosts several configuration parameters
(e.g, replication factor, update propagation scheme and frecyieeplication degree);

Load-balancing mechanisms rely on different scheduling strategies to dispatch thetimiag
requests to services that are expected to be highly availdble goal of these mechanisms is to
ensure that the system latency is not severely affecteddipotid. However, scheduling-based
approaches can use different heuristics to dispatch theests) .9, round-robin, load-aware)
and these heuristics behaves differently depending olypieedf load introduced into the system;

Group communication mechanisms provide a paradigm for reliable many-to-many commu-
nication with advanced properties with regards to relialeliezery, ordering, and synchronization
of messages with membership changes. The possible sestiegplemented by these mecha-
nisms are relateas.g, to the underlying multicast mechanism employed, buffgdand conges-
tion handling, as well as the required synchronization guigres between delivery of application
messages and membership change notifications;

Reliable communication mechanisms support techniques for ensuring reliable message de-
livery. Such mechanisms are especially important for neobédtworks and have to support dy-

7112 Volume 11 (2008)

Dependability Support for an Adaptive Application: a Case Study @

namic reconfiguration to react to unstable situations. AsmgXe is Mobile IP, which supports
network handovers. Other examples in this category inalielesage redundancy and concurrent
paths. All these mechanisms provide different quality oiee with respect to reliability and
costs and their configuration can vary depending on the@mviental conditions.

Transaction mechanisms ensure the consistency of system states. Each transaatistrsoc-
ceed or fail as a complete unit; it cannot remain in an inteliate state. However, the perfor-
mance of the services supporting the transactions can kecitegbby the evolution of the execu-
tion environmentlRSMO0E. Thus, in a ubiquitous environment, the configuration ahiaction
properties €.g, commit protocol, locking strategy) can be planned by trepéation middleware
depending on the context information.

Discovery mechanisms provide a support for detecting new operational nodes irsylséem.
Once again, these services are influenced by differenegiest that are related to the type of
the underlying networke(.g, infrastructure, ad hoc) as well as the supported techygdgeb
Services, OSGi, etc.). Besides, some protocols define [pskategy (proactive or reactive)
as well as lookup frequency. Due to the dynamic nature of tivr@ment, these strategies
and their related parameters may require to be reconfigureldeofly. For example, the lookup
frequency can be increased when in an indoor environmemndipg on the available battery of
the mobile device.

4 Dynamic Planning of Dependability

This section exposes our first elements for supporting digdglity using a planning-based adap-
tation middleware. In particular, we propose to reflect th@racteristics dependable mechanisms
using plans (cfSubsection 4] and to use composite components to model dependable config
urations (cf.Subsection 4.2

4.1 Specification of Quality of Dependability

It is important to observe that for each of these mechanigmsuring high dependability of
service compositions implies that the planning heurigié® the corresponding dependability
parameters into account. This also ought to be reflecteci@tt model, which should include
new QoS dimensions (number of faults, cost, etc.) and irwatp them into the utility function.
While plans were initially designed to reflect componentkimg up an application, we
demonstrated inREF"08] that plans can also reflect other kind of artifacts, suclsesvice-
Oriented Architecture$SOA). In particular, we proposed a component-based a&atuite for
discovering, negotiating, and planning application canfigions supporting SOA. More gener-
ally, we observed that plans provide a suitable abstradtomeasoning on quality of service
independently of underlying artifacts. Based on this aggion, we believe that plans can also
be use to reflect dependability concerns. In particulangknd the enclosed QoS properties
can be reused to model a dependable mechanism and its enestacsd. To attain this goal, we
intend to characterize existing dependable mechanisys 4ctive/passive replication, group

Proc. CAMPUS 2008 8/12

@ ECEASST

communication, resilient routing protocols at the leveboth networking and application over-
lay networks) in terms of QoS properties. For exampédle 2identifies the QoS model that can
be used to reflect the QoS of a replication mechanism, narmefactor, degree frequencyand
reliability of replication. As this QoS model is an extension, defaulies are provided (using
the square brackets) if the property is not mentioned eXlglic

Table 2: The Specification of the Replication QoS Property@isions.

| Property Name | Description | Value Range |
fac Factor of replication 0-?[0]
deg Degree of replication (None) 0-1 (Full) [0]
fre Frequency of replication (Never) 0—1 (Always) [0]
rel Reliability of replication| (Weak) 0—? (Strong) [0]

4.2 Modeling of Dependable Configurations

Once such QoS properties are specified, the role associatiedhvlependability mechanism
can be combined with other application roles in the archirecusing composition plans (cf.
Figure 3. In particular, the QoS properties can be associated toahiguration eitheimplicitly
or explicitly by the modeling approach.

The implicit modeling approach consists in integrating the dependability QoS properties i
the property predictors associated to the application Qofapties. This approach reflects seam-
lessly the impact of the dependability mechanism on exjsfioS propertiese(g, if employed
under specific circumstances, the active replication mashaincreases the logger capacity by
10% and reduces its throughput by 15%). For example, thequmation depicted ifrigure 3
extends the one presentedHigure 1by introducing a new configuratidbependable Store that
supports the replication of the logger storage compondrg.tifpeStore is connected to the type
Replicate using stereotypeéependable to specify that the connector is not a component bind-
ing. The QoS properties associated to this dependable coafign use the properties of the
dependable mechanisms to reflect how the dependable mschiampact the QoS of the config-
uration. Then, available replication mechanism stragegie described as alternative component
implementations for the typReplicate, while their respective parameters are reflected as QoS
properties.

The explicit modeling approach consists in integrating the dependability QoS properties
in the function used to compute the utility of the applicat@onfiguration. For example, the
utility function below extends the one definedSnibsection 3.nd specifies that theliability
of replication should be enforced:

Uselpat Useliat
norm(bat) = norm(lat)

This approach enables the user to specify its preferendbsaegards to the reliability concern
(reflected by the user prefereridser,)).

Thanks to this abstraction, the planning-based adaptatiddleware is able to reason about
the most suitable configuration to deploy in the current exint In particular, the reasoning

Utility (Logger = Usercap x norm(cap) +

+Usere x norm(rel)

9/12 Volume 11 (2008)

Dependability Support for an Adaptive Application: a Case Study @

Storage Replication
rel = Replicate.fre x Replicate.fac ™ ™
cap = Store.cap / Replicate.deg fac = {2:5} fac = {4:10}
lat = Store.lat x Replicate.fac deg ={0.5:1} deg ={0:1}
fre =1 fre=0.5
1PP]
Or[sHs] S0 [rreepencate- CPassive
[JReplicate | [Replicate

|Storage

Dependable Store Composition

Figure 3: The Model of a Dependable Storage Configuration.

process will decide whether the replication mechanism siete enabled or not, thus avoiding
potential loop feedback problems. If the replication isdexk then it will determine which
strategy has to be selected and the best fitting value foiffieseht attributes. This means that, at
runtime, the planning-based adaptation middleware camfeure the dependable mechanism
to tune the replication attributes or change the strategy.

At the middleware level, supporting these dependable nmesims requires to extend the ar-
chitecture of the componeRAtaptation Manager (depicted inFigure 2 in order to interpret de-
pendable configurations. This implies that the alternathjg@ementation of componenfactory
andBinder have to be developed to support the configuration and themgnt of a depend-
able mechanisms, respectively. Thus, for each dependadikanism supported by the MUSIC
middleware, a pair ofFactory and Binder components is integrated into the architecture and
connected to the componebonfigurator in order to instantiate the dependable mechanism and
configure the selected strategy, respectively.

5 Related Work

A vast body of work has been devoted to dependability teclesgsuch as replication and group
communication Bir05] as well as transaction§&R93 BHG87]. However, most of the research
on dependability did not target adaptive and autonomouesys most existing technologies
require manual configuration and assume that the univensedss is static. Furthermore, scal-
ability is known to be a general issue for dependability naecéms.

Only a handful of works consider adapting dependability Ina@ésms by taking the context
into account. KIBW99] and [FSS03 consider adaptive fault-tolerance for component-based
models. According to their claims, componentization maylitate implementation of schemes
for fault-tolerance and load-balancing.

[HHSO04 presents &uality of ServicQoS) architecture that allows flexible combinations
of dependability attributes such as reliability, timeBsgand security to be enforced on a per-
service request basis. In addition to components that immgate the underlying dependability
techniques, the architecture includes policy compondrasdvaluate a request’'s requirements
and dynamically determine an appropriate execution gfyate

The AQUA project RBC"03] has developed an architecture that allows distributedicap

Proc. CAMPUS 2008 10/12

@ ECEASST

tions to request and obtain a desired level of availabilsing theQuality ObjectdQuO) frame-
work. The architecture includes a dependability managatr attempts to meet the requested
availability levels by configuring the system in responseutside requests and changes in sys-
tem resources due to faults.

While the research has been focusing on developing deplentaihniquesBir05, GR93
BHG87] and making them adaptabl&lBW99, FSS03RBC 03], the contribution introduced in
this paper proposes an flexible adaptation framework facsely, configuring, and monitoring
dependable mechanisms. The selection process is drivéeloptrelation of the QoS properties
reflected by a given dependable mechanism with the currertexbinformation monitored by
the associated context middleware. This approach allosvdelieloper to specify the dependable
mechanisms that can be integrated into the application mfsgcmation alternatives, while the
adaptation framework decides dynamically which configarashould be applied in a given
execution context.

6 Conclusion & Perspectives

This paper introduced the motivations for generalizingghpport of dependable mechanisms
in mobile applications. In particular, the expansion ofquious environments and the grow-
ing role of mobile devices open up new opportunities for ¢hembile applications. Although
these new applications are capable of reconfiguring themséb face changes in their environ-
ment, they are still missing missing dependable featuresasonably tolerate possible device,
network, and software failures.

Therefore, we proposed to extend an existing planningebadaptation middleware with the
capacity of reasoning about dependable configurations. eBgating dependability as a new
QoS dimension, the developer can model application cordtgur that are resilient to faults.
These configurations are selected and configured autoithabigahe planning-based adaptation
middleware depending on the current execution contextetiger.

As a matter of perspectives, we plan to experiment the stpdorarious state-of-the-art
dependable mechanisms in order to identify a comprehe@® model dedicated to depend-
ability issues. This support will be realized as part of theSIC project. The framework will
be validated using real world pilot applications of the istlial partners of the MUSIC project
(http://www.ist-music.el

Acknowledgements: The authors thank the partners of the MUSIC project and weaiig of
the CAMPUS workshop for their valuable comments. The astharuld also like to thank Luis
Fraga from MobiComp for suggesting the InstantSocial seend@his work is partly funded by
the European Commission through the project MUSIC (EU IST165).

Bibliography

[AHPEO7] M. Alia, S. O. Hallsteinsen, N. Paspallis, F. Eies. Managing Distributed Adaptation of
Mobile Applications. In7th IFIP WG 6.1 Int’l Conference on Distributed Applicateand In-

11/12 Volume 11 (2008)

http://www.ist-music.eu

Dependability Support for an Adaptive Application: a Case Study @

[BHGS7]

[BHREO7]

[Bir05]

[CCKI07]

[FHS*06]

[FSS03]

[GR93]

[HHS04]

teroperable Systems (DAl%ecture Notes in Computer Science 4531, pp. 104-118. §gxiin
Paphos, Cyprus, June 2007.

P. A. Bernstein, V. Hadzilacos, N. Goodm&uncurrency Control and Recovery in Database
SystemsAddison-Wesley, Reading, MA, 1987.

G. Brataas, S. O. Hallsteinsen, R. Rouvoy, F. Bkas Scalability of Decision Models for
Dynamic Product Lines. Imt'| SPLC Workshop on Dynamic Software Product Line (DSPL)
P. 10. Kyoto, Japan, Sept. 2007.

K. P. Birman.Reliable Distributed Systems: Technologies, Web SernécesApplications
Springer, Secaucus, NJ, USA, Mar. 2005.

M. Cinque, D. Cotroneo, Z. Kalbarczyk, R. K. lyerol# Do Mobile Phones Fail? A Failure
Data Analysis of Symbian OS Smart Phones3Tith Annual IEEE/IFIP Int'| Conference on
Dependable Systems and Networks (D$8) 585-594. IEEE Computer Society, Edinburgh,
UK, June 2007.

J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K.d.Uf Gjgrven. Using Architecture
Models for Runtime AdaptabilityEEE Software23(2):62—70, Mar./Apr. 2006.

F. Favarim, F. Siqueira, J. da Silva Fraga. Adaptaelt-Tolerant CORBA Components. In
Workshops of the Int'l Middleware Conferené®. 144-148. PUC-Rio, 2003.

J. Gray, A. ReutefTransaction Processing: Concepts and Techniqhésrgan Kaufman
Publishers, 1993.

J. He, M. A. Hiltunen, R. D. Schlichting. Customigiependability Attributes for Mobile
Service Platforms. Ir34th Int'l Conference on Dependable Systems and NetworBN{D
Pp. 617-626. IEEE Computer Society, Florence, Italy, Jdutg2004.

[KIBW99] Z. T. Kalbarczyk, R. K. lyer, S. Bagchi, K. Whisnan€hameleon: A Software Infrastruc-

[LSO*07]

[RBC+03]

[REF08]

[RSMOB6]

ture for Adaptive Fault TolerancéEEE Transactions on Parallel and Distributed Systems
10(6):560-579, 1999.

S. A. Lundesgaard, A. Solberg, J. Oldevik, R. B. Franc®, Aagedal, F. Eliassen. Construc-
tion and Execution of Adaptable Applications Using an Asgedented and Model Driven
Approach. In7th IFIP WG 6.1 Int'| Conference on Distributed Applicateand Interopera-
ble Systems (DAIS)Lecture Notes in Computer Science 4531, pp. 76-89. SpriRgehos,
Cyprus, June 2007.

J. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A. KarriRiebel, C. Sabnis, W. H. Sanders,
R. E. Schantz, M. Seri. AQUA: An Adaptive Architecture thabWdes Dependable Dis-
tributed ObjectslEEE Transactions on Computes2(1):31-50, 2003.

R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, Bv. &osing Components and Ser-
vices using a Planning-based Adaptation Middleware7tnInt'l Symposium on Software
Composition (SC)Lecture Notes in Computer Science 4954, pp. 52-67. SpriBgelapest,
Hungary, Mar. 2008.

R. Rouvoy, P. Serrano-Alvarado, P. Merle. Towardsi€xt-Aware Transaction Services. In
6th IFIP WG 6.1 Int'l Conference on Distributed Applicat®@and Interoperable Systems
(DAIS). Lecture Notes in Computer Science 4025, pp. 272-288. §mirBologna, Italy,
June 2006.

Proc. CAMPUS 2008 12712

	Introduction
	Motivating Scenario
	Foundations
	Planning-based Adaptation Middleware
	Dependability Mechanisms

	Dynamic Planning of Dependability
	Specification of Quality of Dependability
	Modeling of Dependable Configurations

	Related Work
	Conclusion & Perspectives

