Electronic Communications of the EASST

Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services
(CAMPUS 2008)

Divide and Conquer — Organizing
Component-based Adaptation in Distributed Environments

Ulrich Scholz and Romain Rouvoy

12 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Divide and Conquer — Organizing
Component-based Adaptation in Distributed Environments

Ulrich Scholz! and Romain Rouvoy’

1 European Media Laboratory GmbH 2 University of Oslo, dept. of Informatics

Schlo3-Wolfsbrunnenweg 33 P.O.Box 1080 Blindern
69118 Heidelberg, Germany 0316 Oslo, Norway
ulrich.scholz@eml-d.villa-bosch.de rouvoy@ifi.uio.no

Abstract: This paper introduces a divide and conquer approach for orgarttzéng
adaptation of distributed applications in a potentially large number of interacting
middleware instances. In such an environment, a centralistic and static tiatapta
reasoning) is inadequate anil) gives the same priority to all applications. The
divide and conquer method aims at minimizing the interference between rumming
plications, allowing users to weight the priority of applications, and orgagittia
adaptation and the reasoning about the adaptation in a decentralizecéid flay.

Keywords: Adaptive middleware, distributed adaptation reasoning

1 Introduction

This work is concerned with the task of adapting a number of large, distdkaplications
in mobile environments subject to frequent context changes. We cortidgaroblem within
MUSIC [MUS], an initiative to develop a comprehensive open-source platform toditdses
the development of self-adaptive software in ubiquitous environment® a@n of MUSIC is
a large-scale deployment of multiple middleware instances. Some of thesecesstawst two
or more applications, some applications are distributed on two or more instdnagisermore,
the topology of middleware instances and applications is transieat-they can appear and
disappear at any time. For such a collection of middleware instances, aigplisations, devices,
connections, and other artefacts related to adaptation, we assign thbdeaitne

Current solutions to the adaptation problem use a centralized and agpaised approach,
which is not suited for large theatres: If one part of an application naddptation, the whole
application—or even a set of applications—is adapted in combination by sadledi®olver. The
solver considers all alternative configurations of all these applicatibosc and chooses the
configuration that yields the best utility. This approach is not feasible fgeltheatres due to
the combinatorial explosion of alternative configurations and becaudertares with parts of
the theatre even if such interference is not required.

As a solution, we propose tiiEvide and Conque(D&C) approach to organize the adaptation
tasks of a theatre in a decentralized and distributed way. D&C considerghatitare smaller
than single applications and provides techniques that allow the adaptatiartiaf ppplications.

1/12 Volume 11 (2008)

ulrich.scholz@eml-d.villa-bosch.de
rouvoy@ifi.uio.no

Divide and Conquer — Organizing Component-based Adaptation Eﬁ

In the following, we describe the adaptation problem and introduce the b&sicideas (cf.
Section 2. Then we detail these ideas, namely the application packSécfion 3, resource dis-
tribution (cf. Section 3, the decomposition tree (cBection J, and the strategies (chection 6.
Before listing related work (cfSection § and giving concluding remarks (cEection 9, we
explain D&C with an example scenario (&ection 7.

2 The Adaptation Problem and the D&C Approach

TheMUSIC project’s focus is the adaptation of component-based applications. Ajptisare
assembled of components:e;, pieces of code—and several different collections of components,
each called aariant, can realize the same application. Many variants provide the same function
to the user €.g, participation in a picture sharing community), but often with different non-
functional propertiesd.g, quality of service and CPU usage). The degree to which the non-
functional properties of a variant satisfy the user is calledutiiity of that variant FHS"06].

Adaptingan application means choosing and commissioning one of its variants, while the
adaptation problenmeans adapting an application such that it has the highest—or a sufficiently
high—utility in a given situation. An adaptation middleware, suciv&sIC, aims at a solution
to the adaptation problem such that every application maintains its functionadigy faigh utility
despite of changes in the theatre.

Not all variants of an application are valid: They have to sat@fshitectural constraints
[KRGO7]. Two examples for such constraints are the existential dependencgdretwo com-
ponents that holds if choosing one only makes sense if the other is choseamdoa dependency
where two components are mutually exclusive or require each other.t&uays can introduce
new dependencies to an application and remove existing ones.

Existing adaptive systems usually consider entire applications: If somefgantapplication
requires an adaptation then the whole application has to be adaptsthDiiav [MADOG] the
unit of adaptation is even wider, as it comprises all applications on a lociledand all parts of
these application deployed on other devices. Adapting large units guassaarteoptimal utility
but has several drawbacks. One of them is the combinatorial explosilbe irumber of variants
that have to be considered. If an application always consists of 5 comisoaied there are 5
variants for each then the application h&s=53125 variants. For an application comprising 10
components, or for the combination of 2 applications with 5 components each,ate already
about 10 million of them. Although increasing processing power, restrictionglid choices of
variants, and heuristics allow solving large adaptation problems, even mesdiachcollections
of applications are often infeasible for a global method.

Another reason for the inadequateness of current approached thefaaffect parts of the
theatre that are better left untouched. Adapting an application involvesistpipand re-starting
it after some time. Nevertheless, some application parts, such as video st@svers, may not
support to be suspended and resumed dynamically. In addition, usesdlarg to accept such
interruption of service only if the disruption is very short or they obseretear advantage. As
the adaptation time is often pronounced, adapting large parts of theatresadaio many such
undesired outages for a user.

In contrast, D&C forgoes globally optimal solutions by adopting a more fiaégd approach

Proc. CAMPUS 2008 2/12

Eﬁ ECEASST

towards adaptation. Applications are divided into smaller units, calpgaication parts and
D&C organizes the adaptation and distribution of collections of such paitsdgeacks in a
decentralized and flexible manner. Then, the adaptation of each pa#dtedtiadependently as
black box by D&C.

Furthermore, current approaches do not distinguish between theatmsliadaptation and its
organization. As a result, the realization of adaptation control requirdspitih knowledge about
the logic of its application and the environment to foresee possible adaptatianians. D&C
provides a clear separation between both aspects of adaptation rgasonin

In detail, D&C comprises five concepts to adaptation organization: (1) theepbof applica-
tion parts and packs, (2) the splitting and merging of packs, (3) the riegsalbout pack layout,
(4) the resource negotiation between packs, and (5) the decentrdlezéble coordination of
the adaptation. The first two points are covered by the following sectisouree negotiation
by Section 4 and the decomposition tree Bection 5 Reasoning about pack layout is not an
essential part of D&C and we omit it here for space reasons.

3 Packs — Adapting Collections of Application Parts

The D&C units of adaptation aggartsandpacks Applications are divided into parts that can be
adapted independently or in combination; a pack is a collections of such phaasandling of
packs—e., their adaptation, division, aggregation, and relocation, as well as gla@iaation of
these operations—forms the essence of the D&C approach.

With respect to complexity and autonomy, application parts are positioned dretveenpo-
nents and full applications. Like applications, they are built of componemtfiave their own
utility function. Their overall utility is the product of the ones of their parts.fdiscomponents,
architectural constraints between parts can restrict their variant apaagertain time.

Note that the division of an application into parts and packs does not seieaadaptation
complexity compared to the same application built of components: Adapting &lipazombi-
nation takes the same time as adapting all components in combination and choosihgdapt
some parts can only reduce the required effort.

Packs are a purely logical assembly of application parts. Parts in a paokuwally handled as
awhole. In particular, all parts of the same application that are in one pachveays adapted in
combination, eliminating the need for D&C to handle the architectural constratsebn these
parts explicitly. Each pack can be adapted independently of other padksdy the applications
of the part in a pack have to be stopped during its adaptation.

The division into packs reflects the results of D&C'’s reasoning abouthwdiplication parts
are likely to be adapted together and which independently. If two applicatidegandb of
different applications in the same pack adapt in combination then the adaptaticimanism
considers each element of the cross proguct p,. The time to adapt them tg-t,, wherep,
andpy, are the sets of variants afandb, respectively, and the time to establish these sé{sisd
tp. In casea andb are in different packs, the elementsmfandpy, are considered independently
and the adaptation timetig—+ty, in the worst case. In other words, by placegndb in different
packs, we go from an exponential alternative space to a linear one.

The aggregation of application parts to packs allows to organize the adapaticto adjust

3/12 Volume 11 (2008)

Divide and Conquer — Organizing Component-based Adaptation Eﬁ

the reasoning effort against the quality of adaptation. On the one hanldrtjier the packs on a
machine arei) the higher the expected utility after their individual adaptation ignthe easier
to find a good resource distribution among them Gefction 4. On the other hand, the smaller
the packs—i-e., the higher the number of packs on the machine—the faster the adaptation of
individual packs. Thus, changing the composition of packs allows the middéeto balance
reasoning time and adaptation quality.

In more details, the motivations for merging two packs are as follows. (1) Opatiioiz of
utility: In case an application was distributed over two or more of the initial pablkesmerged
pack might offer a better utility function for this application. (2) Lower raseuusage: The
improved utility function can lead to an adaptation that uses less resounte®ds not decrease
utility. (3) Decrease the need for and increase the quality of resougmiagon: The fewer
packs there are, the easier it is to distribute resources between them.

Packs are split for two reasons. (1) To minimize adaptation time: Smaller pagksahpo-
tential smaller adaptation time. Prerequisites are that resources are su#itiethe new packs
have few architectural dependencies. (2) To change the layoutk$épkn a D&C setting, packs
are the unit of relocation.

We assume that the realization of splitting and merging of packs is transpatemespect to
time and memory. In particular, they do not change the resource consuroptioa involved
packs and packs resulting from a split have the same combined res@age like the initial
pack. Although splitting and merging packs takes time, we assume that this timdighbieg
such that packs can be split and merged without interfering with the appfisatio

The question of where to split a pack, which packs to merge, and whengo ida question
of strategies, which we discuss$ection 6

4 Negotiation: Balancing the Resource Consumption among Packs

Applications on a machine do not run in isolation: They share the devicenmso Withre-
source negotiationD&C tries to prevent the combined adaptation of all applications in case a
single one of them has to adapt. The main idea is that each pack is assigreaifia amount of
every resource under negotiation. When changes in the theatre triggdaptation, the affected
packs adapt locally within the allocated resource budgets. The hope sutttat local adapta-
tion of packs result in new variants that are “good enough”, while ther gtheks can remain
untouched. Currently, we assume that an estimate within +20% of reported vaility suffices.

4.1 Weighting the Priority of Applications

D&C gives the user additional control about the resource distributioalldivs her/him to rate
applications according to her/his interests by assigning a humber betweepl@vént) and
1 (highly important). The priority is independent of the utility and the curremtant of the
application, thus an adaptation does not change it. Priority and utility allow thelewnidce to
find the applications that mostly contribute to the user satisfaction: Thesecsee lthving the
highest product of application priority current application utility.

Note that the priority of one application is independent of other applicatdman effect, the

Proc. CAMPUS 2008 4112

@ ECEASST

memory 0.0 ifx<20
<20 | <40 | >40 happines§em(X) = ¢ 0.3 if20<x < 40
CPU<100| 00 0.0 0.0 04 if40<x
CPU<200| 00 | v3,03 | v5,04 T
CPU>200| 00 | v3, 03 | Vg 0.7 happiness. (x) — 4 00 ifx<100
Ppinesgs (X 0.3 if100<x

Figure 1: Example of happiness functions. The table on the left give the stiléiel associated
variants) of an application part for different assignments of ressurtiee two functions on the
right are the happiness functions for variagiwith CPU less than 200 units.

sum ofpriority values for a user’s applications can result in a number higher than 1.e@kenr
is that we expect the user to manually set the priority and we do not exgehirh to normalize
the values.

4.2 Happiness — Estimating Utility

Resource negotiation is based on estimating the utility of packs given an atlaesteurce
budget. Optimal utility values and assignment of resources require gldaptation reasoning.
Because the aim of resource negotiation is to decide whether adaptasonirgnis necessary,
it can only be based on estimates. D&C estimates utilith&gpiness functions

Let us first detail happiness functions for application parts. Assumetpattp depends on
resource typeR that D&C negotiates and other context informati®that is not negotiated by
D&C. If the context inC remains unchanged, then the utility pfdepends on the amount of
resources ifR that it can consume. Each variandf p has a fixed utilityu, if its resource needs
are met by the assignment®) if not, the partp is not able to run properly. To find the optimal
utility of p for a specific resource assignment, we have to explore all variamtsrejecting the
invalid ones, and pick the one with the highest utility among the remaining.

ConsiderFigure las an example. Assume thatonsists of the resources memory and CPU,
and an application paghas six variants that all require different amounts of these resoundes a
yield different utilities. With the current conte&t, three of these six variants are realizable and
are not dominated by another variain,, there is no other variant that can be realized with the
same resources and that has a higher utility. If, for example,assigned 50 units of memory
and 150 units of CPU thewy is the optimal variant op yielding an utility of Q3. Now, if the
availability of resources changes, then finding the new optimal variantresxyecalculating the
table or its stored copy. But, if we assume that only one resource cagehidnen it suffices
to store all the different values for memaory, given CRU.00, and all different values for CPU,
given memory= 40. These values are combined to piecewise definbdppiness functions

Happiness functions of parts can be calculated as by-product ofadidepreasoning. In
particular, if the adaptation reasoning enumerates all variants, then thmésg functions can
be constructed during the search.

Happiness functions for packs are the combination of those of parts. Wéplginess func-
tions for parts always give the correct results, those for packs gmyoaimate the real utility.
The reason is that two or more parts can adapt individually without antatttzpof the whole

5/12 Volume 11 (2008)

Divide and Conquer — Organizing Component-based Adaptation Eﬁ

individual < 80% of last glol?al adaptation, inititaion
adaptation of pack | —————» T ackutiy assignment of ~——— =
pack utility resources failure

< 80% of Iast > 80% of
pack utility last pack utility > 80% of last
part utility

pack estlmates ne = 80% of last part utility (local adaptation of
combined utility — | part within its pack)
> 80% of last pack utility

Figure 2. Life cycle of a resource negotiation node. Note that only thelaegtate transitions
are shown. The figure does not show transitions taken in exceptionaligits,e.g, when new

packs are established and when large amounts of free resourcesebacailable. Transitions
labeled with “80%” refer to estimates compared to the last calculated utility.

l success

pack. Although each new happiness function is correct for the gigsaurce assignment, a
change of this assignment itself is not considered. Therefore, thenaaginess functions after
a global adaptation can differ from the locally adjusted ones.

4.3 Distributing Resources

The life cycle of a resource negotiation node is showfigure 2 It is an interplay of global
and local adaptation. The automaton starts with a global adaptation of allpetitig packs. If

it fails then local adaptation cannot find a solution either and the resoseceruthe considered
device has to be reduced,g, by pack relocation. On success, the resulting initial resource
assignments are handed to the packs. The automaton changes to the |btvetatigy where
parts that are affected by a context change adapted individually. ésttimate by the happiness
function indicates that the result is insufficient, then the automaton visits the stat&wise and

the scope of adaptation widens: First the pack utility is estimated, then the wdkeadapts,
and finally a global adaptation is performed. If in any of the states therdurtiity estimate is
“good enough”, then the automaton goes into the lower right state again.

For reasons of readabilitfsigure 2does not show three transitions of the automaton that
connect the upper right state from the remaining three. These stateeshargytaken if an
increase in the amount of free resources results in a combined expétitgdithe packs that
exceeds 120% of the current value, if a pack is relocated onto the maahuhafter starting up
an application. For reasons of brevity, we also left out the handlingarfifies in the explanation
of resource distribution.

5 Decomposition Tree: Controlling the Organization of Packs

D&C organizes the adaptation of applications in a theatre in a distributed arargatiized way
without using a central controller. This organization is performed by eafled decomposition
tree—i.e., a weakly-connectedlirected acyclic grapiDAG) with a single root. We use the term
“tree” instead of DAG because, usually, we do not regard pack raslpart of the graph.

Proc. CAMPUS 2008 6/12

@ ECEASST

Figure 3: A decomposition tree. Square nodes denote packs while negonaties have a
diamond shape. The remaining tree nodes are depicted circular. The gatkhe nodes are
hosted by two deviced; andd,, separated by the dotted border.

Physically, the nodes of the tree are data structures manipulated by the nsickllagtances;
some part of the data constitutes the internal state of the node. The treeiimitigtand there
is no central middleware instance that has complete knowledge about al.nddodes are
controlled by rules and a node being active means that its rules are magziesdtats internal
state. The physical decomposition of the nodes allows several nodesttiviesimultaneously.

Logically, the decomposition tree represents the result of the organizatioreatain point in
time. The nodes of the tree are annotated with local information about theizagan process,
which is the internal state of the node, such as the node’s parent anceohiltdformation about
the node’s device, and past decisions. The collection of all such ihstates is the current state
of the D&C method.

Operationally, the nodes dynamically change the tree according to rules céntain context
change,e.g, the appearance of a new middleware instance, nodes become activpdatid
the tree until a new final form is reached and activity ceases. Thusatiiégning reflects the
evolution of the application configuration. Usually, only a few nodes atigeaand activity is
deliberately handed from node to node.

5.1 Nodes of the Decomposition Tree

The nodes of the DAG are of one of the three typge=e nodenegotiation nodeandpack node
The root is always a tree node and tree nodes can have children aofegllkinds. Negotiation
nodes are restricted to have pack nodes as children and pack nedésays leaves of the DAG.

Each device has one negotiation node that distributes its system resa@upeek on a device
is automatically child of this node. D&C uses a predefined list of resources tjyad a device
can offer, such as memory and CPU usage. Each application has andigettation node that
holds information about the dependencies between the application’s |affistent resource
and application negotiation node have no direct relation to each other.

Figure 3illustrates a decomposition tree that controls five application parts belongingto tw
applications: Applicatiora is divided into partsy to az and applicatiorb is divided into parts
b; andb,. Partsa;, ap, andb; form packp; that is under control of the node, while the pack
p2, consisting of partag andh,, is handled by nod&nz. Negotiation nodesn, andnng handle
the direct dependencies between the respective packs.tNpidehe root of the decomposition

7112 Volume 11 (2008)

Divide and Conquer — Organizing Component-based Adaptation Eﬁ

tree, tn, andtns are leaf nodes (negotiation nodes and pack nodes are not considgtdar
nodes of the distribution tree). The packs and the nodes are distribigetivavdevicesl; and
d», denoted by the dotted border. The resourcedj @fre negotiated by noden, while nny does
the same for devicd,.

5.2 Working of the Decomposition Tree

The operations of the decomposition tree can be divided into three clas®esic operations,
complex operations, and strategies. Atomic operations are realized dirgdtig Iniddleware.
Each node has available a set of atomic operations used to examine andeattecdmposition
tree. Examples are the migration of its children to another node or the particijpatgprocess
for electing a common root node. Strategies decide which complex operagierféom in which
situation (cf.Section §.

Complex operations correspond to reactive actions to apply on the desiimpdree. They
are composed of basic operations of one or more nodes. Example®&réxd decomposition
trees” and “React to a failing negotiation node”. Different compositionmsresult in similar
complex operationse(g, for the first example) and for the same purpose there can be complex
operations with different outcomes.§, for the second).

We have realized four classes of complex operations. (1) Operatidnartjamize the adapta-
tion of applications: These are the splitting and merging of packs and thdistrésution. (2)
Operations resulting from changes in the status of an application: A stappligation gets its
own pack on the machine it is started on. On termination, application partsracyed from
their packs. If a new application part is created as a result of an adaptate, not by the
replacement of one part by another—then it is placed in a new pack. d€lalpecomes empty
because of the termination of an application or because of an adaptatioit, iheemoved. (3)
Operations that handle the sudden disappearance of a connectioa dedte. (4) Decomposi-
tion tree maintenance operations: These balance the tree, split nodes/tntddimany children,
and merge those with too few.

6 Strategies: Selecting the Adaptation Heuristics

The previous sections explained techniques that allow to reason alibt aontrol the orga-
nization of the adaptation of theatres, the principles of this reasoning &g by strategies

They are implemented by rules and each node has its own rule-based twmproStrategies
are currently under investigation and we develop a simulator to identify amga@ different
strategies.

In detail, each node has an internal state that holds all the knowledge ¢haadle has about
the theatre. For example, a tree node knows about its parent, its childieostitsg middleware
instance, and its past decisions. The internal state is updated either byitriles or by the
middleware. The rules are condition-action pairs that match the internal stst@téochanges
and to atomic operations as explainedubsection 5.2

Strategies control the organization of the adaptatiae-—which packs to split and where,
which packs to merge, and when to relocate a pack. Regarding the desitonpee, strategies

Proc. CAMPUS 2008 8/12

Eﬁ ECEASST

have to determine the overall structure of the tree and the location of thediles.nThey also
handle effects that result from the localness of the reasoning within twrgmsition tree: For
example, independent decisions can yield to a deadlock. Here, stratagesither to prevent
these situations or have to provide a mechanism that overcomes the probileen.p@blems
are desired states of the tree that are not reachable by other statex#latiry tree behavior.

An example for a strategy is the following: When splitting a pack, we have twaeh: (1)
Do not separate parts of the same applicat®mg, {a;,ap,b1,b2} — {a1,a2},{b1,bz}. This
option can result in a linear reduction of the adaptation time. It does notisere structural
negotiation effort and does not decrease the utility of the applicationSej2arate parts of the
same applicatione.g, {aj,a,b1,b} — {a1,b1},{az,b2}. This option can result in an expo-
nential reduction of the adaptation time but might decrease the utility of the ajpmtisa One
strategy is to always try the first option if possible and try the second dgendthh packs where
all contained parts are from the same application.

7 Use Case: The InstantSocial Scenario

The following InstantSocial(IS) scenario FHS0§ demonstrates the capabilities of the D&C
approach in organizing the adaptation in larger theatres. One generaf aidaptive middle-
ware systems, and thus an aim of D&C, is to be transparent to the applicatidis the user.
Therefore, we report two views: the user view typed in normal fontgrsem view typed in
cursive
Paul is visiting a large rock festival. During a Bjork concert, he is not &bkake a good shot,
others could have done better.
An adaptation is triggered and restructure the IS decomposition tree with dibeovered 1S
nodes using a strategy which maximizes the quality of the pictures.

Paul is willing to share his pictures with others. He instructs his PDA to lookasutther visitors
with the same interest. Unfortunately, the Internet connection is down aredigheo immediate

success.
The decomposition tree is configured with a strategy that maximizes Bjtated multimedia

content. For the time being, the decomposition tree is restricted to a single(Radks PDA)
due to the lack of connectivity.
Back at his tent, Paul listens to some music when his PDA notifies him aboutdkenme of
a media sharing group. He happily joins, gives high priority to this applicatinod,a moment
later his display shows a selection of pictures, each representing a colletsioots. He browses
through the content, selects the ones he likes, and begins to download.
The PDA runs a MP3 player with high priority and IS with low. After a picturersigacom-
munity becomes available, the priorities get reversed. Thus, the negot@gibaip sharing
resources between the MP3 player and IS is updated and the adaptatioasgrallocates
more resources to IS in order to list and download the content provigethd community.
Among the adaptations performed, the media replicator and ontology auengoof IS are
replaced by similar services provided by two other PDAs.
Suddenly, the current download aborts prematurely: One of the groapbars has left without
prior notification. But only some of the pictures of this user disappearrotre still available.

9/12 Volume 11 (2008)

Divide and Conquer — Organizing Component-based Adaptation Eﬁ

The connection to the weak PDA is lost and the IS decomposition tree adiépthevhelp
of theMUSIC middleware. The current download aborts, but some of the Bjork gisthave
been seamlessly replicated, so their availability does not change.
Some time later, Paul notices that the selection he sees becomes more pretisdpfcs he
does not care about are no longer shown and some others, unusugkbesting ones, appeatr.
He checks the Internet connection and yes, the festival’'s Wifi netwarg a&gain.
The Internet connection is re-established. The decomposition tredsatiapy replacing the
ontology component on Paul’'s PDA by a much accurate one at a rerantersThe selections
are re-evaluated. Unnoticed by him, Paul's PDA now hosts a media répticamponent.
He decides to see the next concert and indicates his wish to leave the gfapDA asks him
to wait a few seconds. After getting the acknowledge, Paul returns tdabe #r some more
good music.
Some of the pictures kept on Paul's PDA are moved to the remaining megieator. After
success, Paul is notified and his community service terminates.

The potential gains of using D&C in this example are numerous. lIts distributedenallows
applications to handle the frequent changes in the theatre gracefully;: Fard’s InstantSocial
application cannot provide useful service because it is alone. Butatfier InstantSocial nodes
become available, the social group is set up automatically. Arbitrary, uiEatéd changes alter
the offered functionality but keep the group operational. A centralizatrabmechanism would
fail in such situations.

The use of packs allows InstantSocial to make full use of the availablen@soby control-
ling which application parts are to be adapted in combination and which are note Part
of the weak PDA's InstantSocial application is hosted by Paul's PDA but thie with little
interference.

The fine-grained control over the priority of applications allows Paul sscefor a picture
sharing group while listening to high quality music. When the group becomélslatea the
music is played with less quality. But Paul is distracted anyway, so he dboesaliae it.

8 Related Work

The Greedy approaclBBHREOQ7 is another way of improving the adaptation organization. It
adapts applications one by one, beginning with the one that offers higkestted utility. Each
application is given the remaining available resources until they are usethg Greedy ap-
proach reduces the overall adaptation time by adapting individual applisatial has the poten-
tial of yielding a high overall utility.

DACAR [DMO07] uses rule-based policies to monitor an environment, to deploy applications,
and to react to changes in the environment. The use of generic rules #flevdgeveloper to
formulate fine-grained policies that allow to reason about and verify tleebase. Neverthe-
less, the control mechanism DACAR requires an entity with complete knowledge about the
environment and the applications, which poses an error-prone boklenggnamic theatres. In
contrast, D&C builds on distributed, incomplete knowledge that is more suitablesioase.

SAFRAN [DLO6] is a framework for building self-adaptive, component-based applicattoat
separates the application logic from the adaptation. It is very high leveimpdnciple, allows

Proc. CAMPUS 2008 10/12

Eﬁ ECEASST

for the implementation of techniques similar to the distribution tree. AlthdsigARAN sup-
ports distributed adaptation by allowing each component to decide upon vgtohfiguration
to operate, it does not support the coordination of adaptations thatmiedcout and can lead to
unstable behavior, in certain cases.

In [BTO8], authors introduce a distributed architecture for coordinating autonsragents.
The proposed approach defirggervisorsas coordinating entities farlustersof autonomous
agents. Supervisors can interact to aggregate and analyze corgerdtd@ved by agents. Each
supervisor is responsible for implementing system-wide adaptations on agsotsiated to its
cluster. According to authors, the clusters can be dynamically createdpaiaded using dedi-
cated technique€DNO7]. If, similarly to D&C, this approach tackles the coordination of large
theatres, the proposed decomposition is rather static and does nottsajpplacation driven
organization of the topology.

According to MK], D&C is a combination of meta-level control-based planning and social
law-based design: Applications adhere to the distribution of resourcesdpd by the nego-
tiation nodes because of social laws. It is also control-based plannoapée each node in
the decomposition tree “is guided by high level strategic information for aadipa”. Minsky
et. al.[MUOQ] develop principles of law-governed interactions, of which many holdHeD&C
approach, too. The main difference to D&C is that they assume indepeadents with their
own priorities—t.e., whose decisions have to be controlled whether they are within the law—
while in D&C the agents-e., the nodes—follow the law by design.

9 Conclusions and Future Work

This work proposes the Divide and Conquer (D&C) approach forrorjag the adaptation of

a theatre—+e., of a number of large, distributed applications in mobile environments with fre-
guent context changes. This organization is independent of the ajplit@gic and relieves the
application developer from providing the organization himself.

D&C considers packs+e., collections of parts of applications—and thus gives the middle-
ware a more fine-grained control over the adaptation than what is abladwa operating with
full applications. By dividing the overall task of adapting the theatre into thlkestaf adapting
individual packs, D&C allows the adaptation middleware to parallelize the redjwork.

By allowing the user to assign priority to applications, D&C enables to balangeetiteived
quality of service according to her/his needs. The realization of this baiarindependent of
the application logic and does not require provisions by the developer.

D&C uses distributed reasoning activities to decide upon and to changevibiemli as well
as to react to expected and unexpected changes in the theatre. Thiadchppields a more
decentralized and flexible organization of the adaptation as achievabénbglized reasoning.

Although the work on D&C is ongoing and the algorithms and heuristics of D&Gateig-
orously validated, we believe that they will overcome the shortcomings oftmbémaptation
approach. We currently develop strategies that tell how and when tleeediffoptions of orga-
nizing the adaptation should be applied. We plan to investigate if and how thiésretother
rule-based approaches to distributed adaptation could be applied in a &Q.seg, the rules
of DACAR andSAFRAN. Currently, we are developing a simulator that allows to investigate and
compare different strategies.

11/12 Volume 11 (2008)

Divide and Conquer — Organizing Component-based Adaptation Eﬁ

Acknowledgements: The work is funded by the Klaus Tschira Foundation and by the Euro-
pean Commission for thUSIC project (# 035166). The authors would like to thank Yun Ding,
Frank Eliassen, Gunnar Brataas, Eli Gjgrven, and Bernd Rapp fiohilpful comments.

References

[BHREO7] G. Brataas, S. Hallsteinsen, R. Rouvoy, F. Eliassen. Skglaid Decision Models
for Dynamic Product Lines. IfProceedings of the International Workshop on Dy-
namic Software Produc Lin&ept. 2007.

[BTO8] L. Baresi, G. Tamburrelli. Loose Compositions for Autonomic Systemsth In-
ternational Symposium on Software Composition (SG)CS 4954, pp. 165-172.
Springer, Budapest, Hungary, Mar. 2008.

[DLO6] P.-C. David, T. Ledoux. An Aspect-Oriented Approach fovBleping Self-Adaptive
Fractal Components. IiBth International Symposium on Software Composition
LNCS 4089, pp. 82—97. Springer, 2006.

[DMO7] J. Dubus, P. Merle. Applying OMG D&C Specification and ECA Rufes Au-
tonomous Distributed Component-Based Systems. In Kihne (Bdernational
MoDELS Workshop on Models @ Runtime (MRT.Q8\CS 4364, pp. 242-251.
Springer, 2007.

[EDNO7] R. M. Elisabetta Di Nitto, Daniel Dubois. Self-Aggregation Algonits for Auto-
nomic Systems. I2nd International Conference on Bio-Inspired Models of Network,
Information, and Computing Systems (BIONETIE&)dapest, Hungary, Dec. 2007.

[FHST06] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjgtysimg Architec-
ture Models for Runtime AdaptabilityEEE Software23(2):62—70, Mar./Apr. 2006.

[FHSO08] L. Fraga, S. Hallsteinsen, U. Scholz. “Instant Social” — Implaing a Distributed
Mobile Multi-user Application with Adaptation Middleware. In 1BisCoTec Work-
shop on Context-Aware Adaptation Mechanisms for Pervasive and UhiguBer-
vices (CAMPUS)EASST, this volume. 2008.

[KRGO7] M. U. Khan, R. Reichle, K. Geihs. Applying Architectural Ctnaints in the Model-
ing of Self-adaptive Component-based Applications@OOP Workshop on Model
Driven Software Adaptation (M-ADAPIBerlin, Germany, July/Aug. 2007.

[MADO6] MADAM IST. Theory of Adaptation. Deliverable D2.2 of the gext MADAM: Mo-
bility and adaptation enabling middleware, Dec. 2006.

[MK] A. Mali, S. Kambhampati. Distributed Planning. unpublished.

[MUOO] N. Minsky, V. Ungureanu. Law-governed Interaction: A Cdimation and Control
Mechanism for Heterogeneous Distributed SysteR@SEM9(3):273-305, 2000.

[MUS] IST MUSIC project.www.ist-music.eu

Proc. CAMPUS 2008 12/12

www.ist-music.eu

	Introduction
	The Adaptation Problem and the D&C Approach
	Packs -- Adapting Collections of Application Parts
	Negotiation: Balancing the Resource Consumption among Packs
	Weighting the Priority of Applications
	Happiness -- Estimating Utility
	Distributing Resources

	Decomposition Tree: Controlling the Organization of Packs
	Nodes of the Decomposition Tree
	Working of the Decomposition Tree

	Strategies: Selecting the Adaptation Heuristics
	Use Case: The InstantSocial Scenario
	Related Work
	Conclusions and Future Work

