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Abstract: Euler diagrams have a wide variety of uses, from informationvisualiza-
tion to logical reasoning. In the case of software engineering, they form the basis of
a number of notations, such as state charts and constraint diagrams. In all of their
application areas, the ability to automatically layout Euler diagrams brings consid-
erable benefits. There have been several recent contributions towards the automatic
generation and layout of Euler diagrams, all of which start from an abstract de-
scription of the diagram and produce a collection of closed curves embedded in the
plane. In this paper, we are concerned with producing layouts by modifying exist-
ing ones. This type of layout approach is particularly useful in domains where we
require an updated, or modified, diagram such as in a logical reasoning context. We
provide two methods to add a curve to an Euler diagram in orderto create a new
diagram. The first method is guaranteed to produce layouts that meet specified well-
formedness conditions that are typically chosen by others who produced generation
algorithms; these conditions are thought to correlate wellaccurate user interpreta-
tion. We also overview a second method that can be used to produce a layout of any
abstract description.

Keywords: Information visualization, diagram layout, Venn diagrams

1 Introduction

Automated diagram layout has the potential to bring huge benefits and it is unsurprising that,
with the computing power now available, considerable research effort is focused on this topic.
In software engineering, the prevalent use of diagrammaticnotations makes this area an ideal
candidate to benefit from state-of-the-art generation and layout techniques. Many diagrams are
based on collections of closed (usually simple) curves, such as state charts and class diagrams
both of which are part of the array of languages that form the UML. Various other languages are
based on closed curves, such as constraint diagrams, that are designed for software specification;
see [HS05, KC99] for examples of such specifications. To illustrate, the constraint diagram in
figure1 expresses that every store stocks at least two copies of somefilm in its collection. A well
studied fragment of the constraint diagram language, called spider diagrams, that is also based on
closed curves has been used in a variety of application areas; see, for example, [Cla05, Nie2006].

A finite collection of closed curves constitutes an Euler diagram and, therefore, the languages
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Figure 1: A constraint diagram.

mentioned above can all be viewed as extending Euler diagrams in some manner. Thus, the
automated layout of Euler diagrams provides an essential basis for the automated layout of a large
range of other diagrams. In addition to those mentioned above, Euler diagrams have numerous
other application areas; for example [DES03, HES+05, KMG+05, Lov02, TVV05].

Various methods for generating Euler diagrams have been developed, each concentrating on
a particular class of Euler diagrams; see, for example [CR05b, CR03, FH02, KMG+05, RZF08,
VV04]. Ideally, such generation algorithms will produce diagrams with desirable properties in
an efficient way; such properties are sometimes called wellformedness conditions and will be
more fully explained below. The generation algorithms developed so far produce Euler diagrams
that have certain sets of properties. Each of these generation methods starts with an abstract
description of the required diagram and proceeds to seek a layout.

In this paper, we take a different approach to generation, inthat we take an existing diagram
layout and transform it in to another layout. In particular,we describe how to add a curve to an
existing layout to create a new Euler diagram using two methods. The first method is presented
in two stages, with the first stage describing how to add a new curve to a so-called wellformed
layout in such a way that each ‘minimal region’ is split in to two minimal regions (one inside
and one outside the new curve) and wellformedness is maintained. The technique is extended to
allow selected minimal regions to be split, others to be completely contained by the new curve
and the rest to be completely outside the new curve. In fact, our technique guarantees to be able
to find an embedding of the new curve in the required manner whenever this is possible given
the existing layout. The second method (informally outlined in the paper) can be used to find a
layout of any Euler diagram description; we can decompose the layout problem in to a sequence
of layout problems, where we add a new curve at each stage. Thus, in this paper we provide two
approaches to Euler diagram generation that, in addition tocontributing to the general generation
problem, are particularly advantageous in any situation where we wish to modify a diagram by
adding a curve and maintain the existing layout.

In section2, we provide motivation specific to our generation approach of adding a curve
and section3 overviews the syntax of Euler diagrams and other necessary background material.
Section4 defines the operation of adding a curve to Euler diagrams and their descriptions. In
section5 we show how to add a curve to a so-called atomic wellformed Euler diagram and prove
that the resulting diagram is also atomic and wellformed. Section6 generalizes to the non-atomic
(nested) case. Section7 shows how to add a curve to an arbitrary Euler diagrams; the technique
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ensures that any abstract Euler diagram can be generated by adding curves one at a time. The
application of our layout technique to the general generation problem is discussed in section
8. Finally, section9 discusses a prototype implementation of the approach and presents some
output from the software.

2 Motivation

Euler diagram generation is hard and, as the number of curvesincreases, the layout problem
becomes increasingly more difficult. Moreover, we may have added requirements of our layouts
in certain contexts.

For example, Euler diagrams often form the basis of visual logics and, in such settings, the
automated layout of diagrams is essential when building theorem provers. A common operation
in reasoning systems based on Euler diagrams is to add a curveto a diagram in such a manner that
each so-called zone (defined later) splits in to two new regions, one inside and the other outside
the new curve [SK00, Shi94, SA04]. To illustrate, in figure2, we can add a curve tod1 to gived2.
The diagramd2 has the same abstract description asd3 but looks rather different. At the abstract
level, adding a curve toab(d1), the abstract description ofd1, would giveab(d2) = ab(d3). If
we want to preserve the layout ofd1 when adding the curve, we need some method to generate
d2, rather than go via the abstract syntax,d1 7→ ab(d1) 7→ ab(d2), and then generate a concrete
diagram with abstractionab(d2), which could result ind3. Moreover, sometimes we want to

A B

d1

A B

d2

C C
D

B C

d3

D

A

Figure 2: Adding a curve.

add a curve to an Euler diagram in such a manner that not every zone is split in two, such as
in [SMF+07]. In this, and other areas, it can be helpful to layout one diagram so that it looks
similar to another, preserving as much of the user’s mental map as possible [MEL+95]. Our
approach to layout gives this preservation for free, in thatwe take an existing layout and add to
it a curve.

Another area where our approach to generation will be particularly helpful is when we utilize
a library of nicely drawn examples (such as with circles) as abasis for producing further layouts;
see [SFR07] for preliminary work towards building such a library. For example, such a library
might include a layout for each abstract description where at most three curves are used. If we
then wanted a layout of a diagram containing four curves, we can extract from the library a good
layout of an appropriate three curve diagram and add the forth curve to produce the required
diagram.
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3 Euler Diagrams

We now overview a formalization of Euler diagrams and their descriptions. Moreover, we also
describe various concepts that will be required throughoutthe paper, in particularwellformed
andatomicdiagrams.

3.1 Concrete Diagrams

As stated above, an Euler diagram is a collection of closed curves drawn in the plane. We assume
that each curve has a label chosen from some fixed set of labels, L .

Definition 1 A concrete Euler diagram is a pair,d = (Curve, l), where

1. Curveis a finite collection of closed curves each with codomainR
2,

2. l : Curve→ L is a function that returns the label of each curve.

A B

d4

C
A

B

d5

C

D

A B

d6

C

D

Figure 3: Concrete Euler diagram syntax.

For example,d4 in figure3 contains three curves labelledA, B andC. To be more precise,d4

depicts the images of three simple closed curves. Given a curve, c: [0,1] → R
2 say, we denote

the image ofc by im(c) (following the standard notation for the image of a function). The
curves partitionR2−

⋃

c∈Curve
im(c) into connected regions of the plane, calledminimal regions.

A contour in an Euler diagram is the set of curves in that diagram with the same label. A
point is interior to a contour if it is inside an odd number of its curves, otherwise it is exterior.
For formal definitions of the interior of curves in the non-simple case see [SRH+07]. A zone
in a diagram is a maximal set of minimal regions that can be described as being inside certain
contours (possibly no contours) and exterior to the remaining contours. In figure3, d4 has six
zones, of which two are insideA. The diagramd5 has ten minimal regions but only eight zones,
such as the disconnected zone insideB but outside the remaining curves.

Concrete Euler diagrams may possess certain properties, sometimes called wellformedness
conditions, such as containing no triple points (where three or more curves intersect at a sin-
gle point) or no concurrency between curves (where curves intersect at a non-discrete set of
points). Typically, generation algorithms produce concrete diagrams that possess certain prop-
erties, in part for reasons of interpretability. We say thata concrete Euler diagram,(Curve, l) is
wellformed if

1. the functionl is injective (no pair of distinct curves have the same label),

2. all of the curves are simple (no curve self-intersects),
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3. there are no triple points of intersection between curves,

4. the zones are connected (each zone consists of exactly oneminimal region), and

5. every time two curves intersect they do so transversely (note that this implies that no curves
run concurrently);

see [SRH+07] for formalizations of these properties. The generation algorithm in [FH02], for
example, draws diagrams that are wellformed.

In figure3, bothd4 andd6 are wellformed butd5 is not. Whilst all ofd5’s curves are simple
(that is, they do not self-intersect), it has a triple point whereA, B andC intersect, the zones are
not all connected, and the curvesC andD do not meet transversely at the point they intersect.

The concept ofnesting in diagrams is of particular importance in automated layout. The
(images of the) curves in a concrete Euler diagram form connected components ofR2. If the
curves give rise to exactly one connected component then thediagram is calledatomic, otherwise
the diagram isnested [FHT04]. In figure 3, d4 and d5 are atomic whereasd6 is nested and
comprises three atomic components. When laying out nested diagrams, we can automatically
generate each of the atomic components separately and then merge the results together. In the
case of wellformed diagrams, it has been shown that nestedness can be detected from diagram
descriptions and the atomic components identified prior to layout [FHT04].

Concrete Euler diagrams are associated with various graphs. These dual graphs play an in-
strumental role in their automated layout; see [Cho07, FH02] for more details. First, we can
take a concrete diagram,d1 = (Curve, l) and construct itsEuler graphwhich has a vertex at each
point two curves meet, these vertices are shown ind7, figure4, and the edges are then the curve
segments that connect the vertices. As a special case, the Euler graph of a diagram containing a
single curve has exactly one vertex placed on that curve. From the Euler graph, we can construct
anEuler graph dualwhich is simply a dual graph of the Euler graph, as shown ind8. Finally, we
have what is called aconcrete dual. A concrete dual graph is a maximal subgraph of an Euler
graph dual that contains all of the vertices but no multiple edges. The diagramd9 shows one
concrete dual that can be derived from the depicted Euler dual. We note that all of the graphs
described include layout information and are plane. For thepurposes of this paper, we require

A B

d7 d8

C

d9

A B
C

A B
C

Figure 4: Various graphs.

the following results.

Lemma 1 Let d be a concrete Euler diagram. Any two concrete dual graphs (duals of Euler
graphs) of d, are isomorphic.

Corollary 1 Let d be a concrete Euler diagram. Given any two concrete dualgraphs (duals
of Euler graphs) of d they are either both Hamiltonian or neither are Hamiltonian.
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In the context of layout, typical algorithms take a diagram description, convert it into an ab-
stract dual graph (sometimes called the superdual) and subsequently seek subgraphs of this ab-
stract dual as candidate concrete dual graphs. Once an appropriate candidate concrete dual graph
is found, the curves are embedded around the vertices.

3.2 Diagram Descriptions

In order to generate an Euler diagram, we start with a description of that diagram. To illustrate,
d4 in figure 3 can be described as having three curves,A, B andC, which are also contours.
These contours divide the plane in such a manner that there are six zones present. Each zone can
be described as being inside certain contours and outside the remaining contours. For instance,
there is one zone insideA only and another zone inside preciselyA andC. Thus, each present
zone can be described by the labels of the contours that the zone is inside. Note that there is
always a zone outside all of the contours (the infinite minimal region).

Definition 2 An abstract Euler diagram description (or, simply, abstract description),d, is
a pair,(l ,Z) wherel = l(d) is a subset ofL andZ = Z(d) ⊆ Pl such that /0∈ Z(d). Elements of
Z are called (abstract)zones.

Definition 3 Given a concrete Euler diagramd = (Curve, l), we mapd to abstract description
ab(d) = (im(l),Z), called theabstraction of d, whereZ contains exactly one abstract zone for
each concrete zone ind; in particular, given a concrete zone,z, in d, the abstract zone

ab(z) = {l(c) : c∈C(z)}

is in Z whereC(z) is the set of curves ind that containz.

The diagramd4 in figure3 has abstraction(L,Z) whereL = {A,B,C} and

Z = { /0,{A},{A,C},{C},{B,C},{B}}.

The generation problem can be summarized asgiven an abstract description, d1, find a con-
crete Euler diagram, d2, such that ab(d2) = d1. Sometimes, the generation problem is restricted
by imposing certain conditions ond2, for instance requiring that the concrete diagram is well-
formed.

4 Adding a Curve

There are situations when we want to add a curve to a given layout in a specified manner, such as
when generating diagrams. In order to do this, we need to knowwhat is meant by adding a curve
and how to specify its addition. In this section, we formalize the notion of adding a curve at both
the abstract and concrete levels. At the concrete level thisis easy: we simply take a diagram and
add to it a curve and a label. In figure5, we addC to d10, giving d11.

Definition 4 Let d = (Curve, l) be a concrete Euler diagram. LetL be a label inL and letc be
a curve that is not inCurve. Then we definedd+(c,L) = (Curve∪{c}, l ∪ (c,L)). If L 6∈ im(l)
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and the number of zones doubles when addingc thend+(c,L) is said to be derived fromd by
splitting each zone.

A B

d10 d11

C
A B

Figure 5: A more complex example.

At the abstract level, things are not quite so straightforward. We note that each zone can be
either completely contained by the new curve, completely outside the new curve, or split by the
new curve. In figure5, the diagramd11 has a curveC that completely contains the zone insideB,
is completely outside the zone insideA and splits the zone outside bothA andB. We can think
of the split zone as being both inside and outsideC. To describe howC is added at the abstract
level, we state which zones are to be insideC and which are to be outsideC; those which are split
are stated as being both inside and outside. Thus, the insidezones and outside zones between
them include all of the zones.

Definition 5 Let d = (l ,Z) be an abstract description. LetL be a label inL and letin andout
be two subsets ofZ such thatin∪out = Z and /0∈ out. Thend+(L, in,out) is defined to be

d+(L, in,out) = (l ∪{L},Zin ∪Zout)

whereZin = {z∪{L} : z∈ in} andZout = out. If in = Z andout = Z andL 6∈ l thend+(L, in,out)
is said to be derived fromd by splitting each zone.

In figure5, in = {{B}, /0} andout = {{A}, /0}; when addingC to d10 to gived11, C contains
the zone{B} (in the setin−out), splits the zone /0 (in the setin∩out) and does not contain the
zone{A} (in the setout− in). The following lemma shows that the notions of splitting each zone
at the abstract and concrete level coincide.

Lemma 2 Let d= (Curve, l) be a concrete Euler diagram. Let L be a label inL and let c be
a curve that is not in Curve. Then d+(c,L) is derived from d by splitting each zone if and only
if ab(d+(c,L)) is derived from ab(d) by splitting each zone.

5 Adding Curves to Wellformed Atomic Layouts

Intuitively, when adding the curve to an atomic diagram, we are seeking a path that cuts zones to
be split in two, contains certain zones, excludes the remaining zones, and returns to its starting
point. First, we consider the special case of splitting eachzone. To illustrate, if we wish to add
a curve tod4 in figure3 that splits each zone then we can do so by finding a Hamiltoniancycle
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C

A B

d13

C
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Figure 6: Splitting zones and Hamiltonian cycles.

in the concrete dual (figure4, d9), as shown in figure6, d12. This Hamiltonian cycle then, rather
nicely, gives us the new curve and wellformedness is maintained, as shown ind13.

Of course, there are concrete dual graphs that have different layouts, but corollary1 establishes
that this is not an issue when splitting each zone. The following theorem, importantly, provides
a constructive method for embedding the new curve, namely find a Hamiltonian cycle in an
arbitrary concrete dual graph and use that cycle as the imageof the new curve.

Theorem 1 Let d= (Curve, l) be an atomic wellformed concrete Euler diagram containing at
least two curves. Let L be a label inL − im(l). There exists a curve, c, that is not in Curve such
that d+(c,L) is wellformed and derived from d by splitting each zone if andonly if a concrete
dual graph of d is Hamiltonian.

d14

A B
C

Figure 7: An extended Euler dual.

There are topologically different ways of adding a curve that splits each zone1. In fact, given
all concrete dual graphs (reduced by equivalence up to an isotopy of a subset ofR2; we omit
the details) we can exactly classify the number of topologically different ways of adding such a
curve. To do this, we define a new type of dual graph for atomic diagrams that generalizes both
the concrete dual graph and the Euler graph dual: theextended Euler dual. Its construction
is the same as the Euler graph dual, except that it has additional edges as follows. Given an
edge in the Euler graph dual that connects a vertex,v1, to the vertex,v2, in the infinite face, we
had a choice about the direction that edge wraps around the curves. For each such edge, we
add a new edge incident withv1 andv2 that wraps the opposite way around the curves. Note
that the extended Euler dual is not necessarily planar; in fact, it is only planar when exactly
one zone is topologically adjacent to the infinite face. We add the new edges in such a manner

1 Givend and curvesc1 andc2 added tod, d +(c1,L) is topologically different tod+(c2,L) if c1 andc2 are not
isotopic inR

2−V(G) whereV(G) is the set of (images of the) vertices in the Euler graph.
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that a minimal number of edge crossings are introduced. The minimal number of crossings is
1+2+ ...+(deg(v2)

2 −1). The construction is illustrated in figure7, whered14 shows the extended
Euler dual ofd4 in figure4.

These extra edges are required in order to make the graph reflect all possible ways (up to some
notion of equivalence) of adding a new curve and maintainingwellformedness. We note that we
only add extra edges incident withv2 since the infinite face is the only zone that is not simply
connected in an atomic wellformed diagram. In simply connected faces, there is essentially no
choice about the ‘direction’ of the edges.

Theorem 2 The set of all plane Hamiltonian cycles in the extended Eulerdual of an atomic
wellformed concrete Euler diagram, d, gives all the topologically different ways of introducing
a curve that splits each zone in d and maintains wellformedness.

The method of adding a curve that splits each zone generalizes. When we want to add a
curve that splits a specified set of zones, we instead seek a plane, simple cycle2 in the extended
Euler dual that passes through exactly the vertices corresponding to the zones that are to be split.
Suppose that we wish to add a curve tod4 in figure3 such that the zone inside exactlyC is split
as is the zone outside all curves. Then there are several waysof doing this, resulting in diagrams
with different abstract descriptions. The method is to find asimple cycle in the extended Euler
dual that contains precisely the vertices inside these two zones. One such cycle is shown ind15,
figure 8, which results in the curveD being added as shown ind16. Another cycle givesd17,
which has an abstraction different from that ofd16. Typically, we want to specify which zones
are to be contained by the new curve as well as those which are to be split. A method for adding
an appropriate curve is captured by the following theorem.

d17

D

A B
C

d16

D

A B
C

d15

A B
C

Figure 8: Splitting specified zones.

Theorem 3 Let d= (Curve, l) be an atomic wellformed concrete Euler diagram. Let L be a
label in L − im(l). Given ab(d) = (l ,Z), let in ⊆ Z and out⊆ Z be such that in∪ out = Z
and /0 ∈ out. Then there exists a curve, c, that is not in Curve such that d + (c,L) is atomic,
wellformed and has abstraction ab(d)+ (L, in,out) if and only if either

1. there exists a plane, simple cycle, C, in the extended Euler dual, G, such that

2 A simple cycle is a cycle, containing at least one vertex, that does not pass through any vertex more than once. A
plane cycle is a cycle in which no pair of edges cross.
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(a) the vertices in G that correspond to zones that are elements of the set in∩ out are
exactly those in C,

(b) the vertices in G that correspond to zones that are elements of the set in− out are
located inside C, and

(c) the vertices in G that correspond to zones that are elements of the set out− in are
located outside C,

or

2. |in| = |in∩out| = 2 and the two concrete zones corresponding to the abstract zones that
are elements of the set in∩out are topologically adjacent.

Again, it is the plane, simple cycle that provides the image of the curve to be added except
in case 2, where we do not seek a such a cycle. Instead, we are effectively seeking a path of
length 1 (indicating the adjacency of the two zones) and can simply add a curve that is a circle,
for example, in the appropriate manner.

6 Adding a Curve to Wellformed Nested Layouts

The previous section characterizes exactly when a curve canbe added to an atomic wellformed
diagram and maintain wellformedness. Moreover, the characterization provides a constructive
method to add a curve to give a new diagram with some specified abstract syntax. Here we
demonstrate how to extend the approach to the nested case by example only, due to space limita-
tions. In figure9, we may want to add a new curve tod18 that splits the zone outside all curves,
that inside justB and that inside justD, and all remaining zones are outside the curve. To do
this, we decompose the diagram into its atomic components, add the new curve,E, to each part
in the required manner and then recompose the diagram, joining up the curves labelledE in each
of the atomic parts to create a single curve labelledE, shown ind19. The curveE is called a
disconnecting curvefor d19, the theory of which is developed in [FF08].

A B

d18

C

D

A B

D

C

E

E

A B

C

D A B

d19

C

D

E

E E

Figure 9: Adding curves to wellformed nested diagrams.

In summary, the approach is to add the required curve to each atomic component and then join
the pieces of the new curve together, to create one curve. Theresults of the previous section tell
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us when the curve can be added to the atomic pieces. The only further requirement is that these
new curves can be joined together to create an appropriate curve in the original nested diagram.
We note that being able to add a curve to each atomic part does not imply that it is possible to
add that curve to the entire diagram. For example, suppose wehad wanted to add a curve to
d18 so that instead of splitting the zone inside justD we split the zone inside bothC andD. It
would not then be possible to join the curves labelledE in the atomic components together to
form an appropriate curve ind18 whilst maintaining wellformedness. The following theorem
characterizes the case when we wish to split each zone.

Theorem 4 Let d be a wellformed concrete Euler diagram containing exactly n atomic com-
ponents, say d1, ... , dn. Let L be a label inL − im(l). Then there exists a curve, c, such that
d+(c,L) is wellformed and derived from d by splitting each zone if andonly if each di has a a
Hamiltonian concrete dual or contains exactly one curve.

In the more general wellformed case (where we do not necessarily wish to split every zone),
we must be able to add a curve,c, to each atomic component in the required manner (as illustrated
above). We need to know when the curves added to the atomic components can be joined up to
form c. Suppose thatc is to be added to a diagram,d, consisting of two atomic components
d1 and d2, with d2 nested in a zonez1 of d1. Then the curvesc1 and c2 added tod1 and d2

respectively can be joined whenever they both pass through the zonez1: in other words, ind1

the curvec1 splitsz1 and ind2 the zone outside all of the curves is split byc2. This observation
generalizes to the case when there are more atomic components.

7 Adding Curves In General

We aim to be able to generate an embedding of any abstract description, which is not possible
when imposing the wellformedness conditions. Thus, we no longer insist that the wellformed-
ness conditions are met and allow ourselves to add a curve to arbitrary Euler diagrams. There
are many ways of adding curves in the general case and it can beshown that methods exist that
allow the inductive construction of a concrete diagram (i.e. by successively adding contours) for
any abstract description. Here we informally outline one such method, but better layouts can be
achieved by using more sophisticated techniques; for spacereasons we do not provide details.
Since we are allowed multiple label use, the method may add many curves (which constitute a
single contour) in order to achieve the correct zone set after addition.

One point to note is how the interior of a contour is defined when multiple curves have the
same label; such a definition is given in [SRH+07] and extends work in [VV04]. To illustrate,
in figure 10, d20 contains three curves labelledA, which we will refer to as the contourA. A
point is interior to the contourA if the number of curves labelledA to which it is interior is odd,
otherwise it is exterior to the contourA. Thus, the zones in the diagram are

Z(d20) = { /0,{A},{A,B},{B},{C},{A,C}}

and the zone /0 is disconnected.
Suppose, to the abstract descriptionab(d20), we wish to add a contour labelledD, given

in = { /0,{A},{C}} and out = { /0,{A},{A,B},{B},{A,C}. The diagramd21 has the required
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d20
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Figure 10: Inside contours and adding curves in general.

abstract description and is obtained fromd20 by following the following method. Given a
concrete diagramd = (Curve, l), a labelL ∈ L − im(l), and setsin,out ⊆ Z(ab(d)) such that
in∪out = Z(d), we can add a curve tod such that:

1. for each abstract zone in the setin∩ out, add a curve labelledL properly inside some
minimal region of which the corresponding concrete zone consists,

2. for each abstract zone in the setin− out, add a curve labelledL for each boundary of
any minimal region of which the corresponding concrete zoneconsists (note that minimal
regions may have many boundaries) such that the image of the curve is that boundary, and

3. if in = /0 then add a curve labelledL whose image is a straight line segment.

The resulting diagram has abstractionab(d)+ (L, in,out).

8 Application to the Generation Problem

As stated earlier, the generation problem is to find an embedding of any given abstract description
(or, at least, each atomic component). Several approaches have been devised to date and they all
proceed to find a layout of the entire diagram and do not alwayssucceed. Our results provide a
new approach to generation, in that we can inductively produce the required diagram. Suppose
we have an abstract description,d1 = (l ,Z), that we wish to draw. In both the wellformed and
non-wellformed cases, we can decomposed1 into a sequence of layout problems, starting with
the diagram( /0,{ /0}) and successively adding curves in the required manner to build d1 = (l ,Z).
Of course, there are choices about how to inductively add thecurves to achieve a good final
layout, but there are some obvious methods one can use to helphere.

If we want to produce a wellformed layout then we can detect whether the diagram is atomic at
the abstract level and consider the abstract components separately, as discussed above. Moreover,
there may be some label,l , and abstract description,d2, such thatd2 +(l , in,out) = d1, for some
setsin andout, andd2 contains more atomic components thand1; in such cases, it may be more
efficient to add the curve labelledl last. To illustrate, we provide an example in figure11, which
produces a wellformed embedding ofd = (l ,Z) wherel = {A,B,C,D} and

Z = { /0,{A},{B},{A,B},{A,C},{A,D},{A,B,C},{A,B,D},{A,C,D},{A,B,C,D}}.

Proc. LED 2008 12 / 16



ECEASST

C

d4

BA

D

C

d5

BA

d1

A

d2

B

d3

A

Figure 11: Application to the general generation problem.

There are limits to the inductive construction method. First, we know of wellformed concrete
diagrams that cannot be produced using the inductive approach. One such diagram can be seen
in figure12; the removal of any curve results in a diagram that is not wellformed. In this case,
a wellformed diagram with the same abstract description canbe generated using the inductive
method even though this particular layout cannot be achieved. It remains the subject of future
work to establish whether any abstract description that hasa wellformed embedding can be drawn
using our inductive approach that utilizes the extended Euler dual. However, the general method
for adding a contour, outlined in section7, can be shown to yield an embedding of any abstract
description using such an inductive construction.

A
B

CD

E

Figure 12: A wellformed Venn-5 embedding.

9 Implementation

To prototype the generation mechanism, we have started implementing the method as a Java pro-
gram. This draws closed curves with polygons, detects the extended Euler dual using geometric
algorithms and routes the edges around this dual as shown in figure13, where the polygons are
regular and form Venn-3. Note that the routing mechanism used for constructing the extended
Euler dual means that some edges are very close together and can be mistaken as tangential.

In figure 13, we show the result of finding a Hamiltonian cycle in the extended Euler dual,
and using that cycle to add a new polygon, labelled ‘d’ to the diagram, resulting in Venn-4.
In this case we chose the new curve so that it intersects with every zone, but we could have
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Figure 13: Using the extended Euler dual graph to add a curve.

used any simple cycle in the extended Euler dual to add a curveand maintained wellformedness
(of course, the chosen cycle impacts the abstract description). We can enumerate every simple
cycle by finding sets of faces in the extended Euler dual that are connected; the cycle formed by
traveling around such a set of faces then gives rise to a new curve. Layout improvements, such
as those applied in [FRM03], are required in order to improve the appearance of the diagram;
this is currently being implemented.

Our intention is to use this generation mechanism to enumerate through possible diagrams,
looking for those that can be drawn ‘nicely’, for instance where a regular polygon can be added
to a diagram already consisting of regular polygons. The process of generating the extended
Euler dual and discovering a single simple cycle within it isreasonable efficient and works in
real time. However, the time complexity of enumerating every cycle is exponential relative to
the number of edges and so will be infeasible as the size of thediagrams increases beyond the
small diagrams shown in this paper; heuristics will need to be developed for this task.

10 Conclusion

In this paper we have presented several methods for generating Euler diagrams by modifying
existing layouts. The technique we have presented to add a curve in the wellformed case guar-
antees to preserve wellformedness. Moreover this novel technique of using inductive generation
methods can be used to produce embeddings of a class of abstract description. Indeed, our gen-
eral method of adding a curve in the non-wellformed case can be used to generate an embedding
of any abstract description.

We plan to use these inductive embedding methods (concentrating initially on wellformed
diagrams) to populate a library of drawn examples from whichwe can subsequently create further
embeddings by adding further curves. We anticipate that such a library will contain a concrete
diagram for each abstract description with up to three labels, and many with four labels (there
are 216 abstract descriptions with four labels). We will then be able to take abstract descriptions
and select sub-diagrams from the library and add curves to them to produce the required concrete
diagram.
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Further work also includes extending the generation algorithms to allow subsets of the well-
formedness conditions to be imposed. We anticipate using a hybrid of the Euler graph and the
extended Euler dual to allow, for example, concurrency or triple points to be present in the cre-
ated layouts. This will enable a wider variety of layouts to be produced and will allow us to take
user preference more fully into account, for example.
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EP/E010393/1 for the Visualization with Euler Diagrams project. Thanks also to John Taylor for
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