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Abstract: Euler diagrams have a wide variety of uses, from informatisnaliza-
tion to logical reasoning. In the case of software engimggihey form the basis of
a number of notations, such as state charts and constramtadns. In all of their
application areas, the ability to automatically layoutétudiagrams brings consid-
erable benefits. There have been several recent contnsutievards the automatic
generation and layout of Euler diagrams, all of which stestrf an abstract de-
scription of the diagram and produce a collection of closswes embedded in the
plane. In this paper, we are concerned with producing laybytmodifying exist-
ing ones. This type of layout approach is particularly usefulomains where we
require an updated, or modified, diagram such as in a loggealaning context. We
provide two methods to add a curve to an Euler diagram in diwlereate a new
diagram. The first method is guaranteed to produce layoatsriket specified well-
formedness conditions that are typically chosen by othéxs pvoduced generation
algorithms; these conditions are thought to correlate ae&turate user interpreta-
tion. We also overview a second method that can be used togealayout of any
abstract description.

Keywords: Information visualization, diagram layout, Venn diagrams

1 Introduction

Automated diagram layout has the potential to bring hugeefitsnand it is unsurprising that,
with the computing power now available, considerable neteeaffort is focused on this topic.
In software engineering, the prevalent use of diagramnraitations makes this area an ideal
candidate to benefit from state-of-the-art generation apdut techniques. Many diagrams are
based on collections of closed (usually simple) curvesh siscstate charts and class diagrams
both of which are part of the array of languages that form tMLUVarious other languages are
based on closed curves, such as constraint diagrams, ¢h@esigned for software specification;
see HS05 KC99) for examples of such specifications. To illustrate, thest@int diagram in
figurel expresses that every store stocks at least two copies offdomie its collection. A well
studied fragment of the constraint diagram language,atapéder diagrams, that is also based on
closed curves has been used in a variety of application;asseasfor example Jla05 Nie2004.

A finite collection of closed curves constitutes an Eulegdian and, therefore, the languages
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Figure 1: A constraint diagram.

mentioned above can all be viewed as extending Euler diagiaraome manner. Thus, the
automated layout of Euler diagrams provides an essens# fia the automated layout of a large
range of other diagrams. In addition to those mentioned ebiBuler diagrams have numerous
other application areas; for examp@gS03 HES" 05, KMG 05, Lov02, TVV05].

Various methods for generating Euler diagrams have beegla®d, each concentrating on
a particular class of Euler diagrams; see, for example(s5h CR03 FH02, KMG "05, RZF08
VV04]. Ideally, such generation algorithms will produce diagsawith desirable properties in
an efficient way; such properties are sometimes called ovelédness conditions and will be
more fully explained below. The generation algorithms dtgyed so far produce Euler diagrams
that have certain sets of properties. Each of these gemeratethods starts with an abstract
description of the required diagram and proceeds to segfoatla

In this paper, we take a different approach to generatiothdahwe take an existing diagram
layout and transform it in to another layout. In particulag describe how to add a curve to an
existing layout to create a new Euler diagram using two nathd he first method is presented
in two stages, with the first stage describing how to add a newecto a so-called wellformed
layout in such a way that each ‘minimal region’ is split in ot minimal regions (one inside
and one outside the new curve) and wellformedness is maattail he technique is extended to
allow selected minimal regions to be split, others to be deisfy contained by the new curve
and the rest to be completely outside the new curve. In facttexhnique guarantees to be able
to find an embedding of the new curve in the required mannenexesr this is possible given
the existing layout. The second method (informally outlirie the paper) can be used to find a
layout of any Euler diagram description; we can decomposédatyout problem in to a sequence
of layout problems, where we add a new curve at each stage, rhilnis paper we provide two
approaches to Euler diagram generation that, in additicomtributing to the general generation
problem, are particularly advantageous in any situatioer&tive wish to modify a diagram by
adding a curve and maintain the existing layout.

In section2, we provide motivation specific to our generation approachdualing a curve
and sectiorB overviews the syntax of Euler diagrams and other necessakgbound material.
Section4 defines the operation of adding a curve to Euler diagrams fagid descriptions. In
section5 we show how to add a curve to a so-called atomic wellformeeéediagram and prove
that the resulting diagram is also atomic and wellformedttiSe 6 generalizes to the non-atomic
(nested) case. Sectighshows how to add a curve to an arbitrary Euler diagrams; tttentque
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ensures that any abstract Euler diagram can be generatattingacurves one at a time. The
application of our layout technique to the general genanagiroblem is discussed in section
8. Finally, sectior9 discusses a prototype implementation of the approach asepts some
output from the software.

2 Motivation

Euler diagram generation is hard and, as the number of cumeesases, the layout problem
becomes increasingly more difficult. Moreover, we may haleed requirements of our layouts
in certain contexts.

For example, Euler diagrams often form the basis of visugickhand, in such settings, the
automated layout of diagrams is essential when buildingréra provers. A common operation
in reasoning systems based on Euler diagrams is to add atouavBagram in such a manner that
each so-called zone (defined later) splits in to two new regione inside and the other outside
the new curve$KO0O0 Shi94 SA04. To illustrate, in figure2, we can add a curve @ to gived,.
The diagrantd, has the same abstract descriptiordabut looks rather different. At the abstract
level, adding a curve tab(d; ), the abstract description df, would giveab(d,) = ab(ds). If
we want to preserve the layout df when adding the curve, we need some method to generate
dp, rather than go via the abstract syntdx,— ab(d;) — ab(dz), and then generate a concrete
diagram with abstractiomab(d,), which could result inds. Moreover, sometimes we want to

C C D
d, d, ds

Figure 2: Adding a curve.

add a curve to an Euler diagram in such a manner that not ewewy iz split in two, such as
in [SMF"07]. In this, and other areas, it can be helpful to layout ongmim so that it looks
similar to another, preserving as much of the user's mentg) as possibleMIEL"95]. Our
approach to layout gives this preservation for free, in thatake an existing layout and add to
it a curve.

Another area where our approach to generation will be paatity helpful is when we utilize
a library of nicely drawn examples (such as with circles) basis for producing further layouts;
see BFROT for preliminary work towards building such a library. Fotaample, such a library
might include a layout for each abstract description whéraast three curves are used. If we
then wanted a layout of a diagram containing four curves,ameaxtract from the library a good
layout of an appropriate three curve diagram and add thé farive to produce the required
diagram.
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3 Euler Diagrams

We now overview a formalization of Euler diagrams and thesatiptions. Moreover, we also
describe various concepts that will be required througliloatpaper, in particulawellformed
andatomicdiagrams.

3.1 Concrete Diagrams

As stated above, an Euler diagram is a collection of closegesudrawn in the plane. We assume
that each curve has a label chosen from some fixed set of |aBels

Definition 1 A concrete Euler diagram is a pait= (Curvel), where
1. Curveis a finite collection of closed curves each with codoniafn

2. |: Curve— Zis a function that returns the label of each curve.

C B A D
m é@) @B
D
dy ds ds

Figure 3: Concrete Euler diagram syntax.

For exampled, in figure 3 contains three curves labellédd B andC. To be more preciseal,
depicts the images of three simple closed curves. Givenvger [0,1] — R? say, we denote
the image ofc by im(c) (following the standard notation for the image of a funcliorThe

curves partitiorR? — |J im(c) into connected regions of the plane, caltathimal regions.
ceCurve
A contour in an Euler diagram is the set of curves in that diagram with ghme label. A

point is interior to a contour if it is inside an odd number ©f ¢urves, otherwise it is exterior.
For formal definitions of the interior of curves in the nompie case seeSRH"07]. A zone

in a diagram is a maximal set of minimal regions that can berd®d as being inside certain
contours (possibly no contours) and exterior to the remgimiontours. In figure, ds has six
zones, of which two are insid&. The diagrands has ten minimal regions but only eight zones,
such as the disconnected zone indidaut outside the remaining curves.

Concrete Euler diagrams may possess certain propertiestisoes called wellformedness
conditions, such as containing no triple points (wheredloe more curves intersect at a sin-
gle point) or no concurrency between curves (where curviessect at a non-discrete set of
points). Typically, generation algorithms produce coteiagrams that possess certain prop-
erties, in part for reasons of interpretability. We say #habncrete Euler diagraniCurvel) is
wellformed if

1. the functionl is injective (no pair of distinct curves have the same lgbel)
2. all of the curves are simple (no curve self-intersects),
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3. there are no triple points of intersection between cyrves
4. the zones are connected (each zone consists of exactipiaimeal region), and

5. every time two curves intersect they do so transverselg(tnat this implies that no curves
run concurrently);

see BRH"07] for formalizations of these properties. The generatiaqoathm in [FHOZ], for
example, draws diagrams that are wellformed.

In figure 3, bothds anddg are wellformed butls is not. Whilst all ofds’s curves are simple
(that is, they do not self-intersect), it has a triple poitianeA, B andC intersect, the zones are
not all connected, and the curv@sandD do not meet transversely at the point they intersect.

The concept ohestingin diagrams is of particular importance in automated layotihe
(images of the) curves in a concrete Euler diagram form attedecomponents dR?. If the
curves give rise to exactly one connected component thetiageam is calleétomic, otherwise
the diagram imested[FHTO4. In figure 3, d4 andds are atomic whereads is nested and
comprises three atomic components. When laying out neségpladns, we can automatically
generate each of the atomic components separately and tge ithe results together. In the
case of wellformed diagrams, it has been shown that nesediaa be detected from diagram
descriptions and the atomic components identified prioayouit [FHTO04].

Concrete Euler diagrams are associated with various graphsse dual graphs play an in-
strumental role in their automated layout; s€hd07 FHOZ for more details. First, we can
take a concrete diagramy = (Curvel) and construct itEuler graphwhich has a vertex at each
point two curves meet, these vertices are showayjrigure4, and the edges are then the curve
segments that connect the vertices. As a special case, thedeaph of a diagram containing a
single curve has exactly one vertex placed on that curvenfine Euler graph, we can construct
anEuler graph duawhich is simply a dual graph of the Euler graph, as showairinally, we
have what is called aoncrete dual A concrete dual graph is a maximal subgraph of an Euler
graph dual that contains all of the vertices but no multiplges. The diagrardg shows one
concrete dual that can be derived from the depicted Euldr ddfa note that all of the graphs
described include layout information and are plane. Foiptimposes of this paper, we require

C C C
m ) @;
d; dg do

Figure 4: Various graphs.

the following results.

Lemmal Letd be a concrete Euler diagram. Any two concrete dual gsafoluals of Euler
graphs) of d, are isomorphic.

Corollary 1  Let d be a concrete Euler diagram. Given any two concrete duegbhs (duals
of Euler graphs) of d they are either both Hamiltonian or heitare Hamiltonian.
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In the context of layout, typical algorithms take a diagraesatiption, convert it into an ab-
stract dual graph (sometimes called the superdual) ane:gubstly seek subgraphs of this ab-
stract dual as candidate concrete dual graphs. Once armpaigpeccandidate concrete dual graph
is found, the curves are embedded around the vertices.

3.2 Diagram Descriptions

In order to generate an Euler diagram, we start with a ddgmmijpf that diagram. To illustrate,
ds in figure 3 can be described as having three curv&sB andC, which are also contours.
These contours divide the plane in such a manner that theisxazones present. Each zone can
be described as being inside certain contours and outsedesthaining contours. For instance,
there is one zone insid& only and another zone inside precisé@yandC. Thus, each present
zone can be described by the labels of the contours that tie iganside. Note that there is
always a zone outside all of the contours (the infinite miriragion).

Definition 2 An abstract Euler diagram description (or, simply, abstract descriptiond, is
apair,(l,Z) wherel =1(d) is a subset ofZ andZ = Z(d) C Pl such that @ Z(d). Elements of
Z are called (abstrachones

Definition 3 Given a concrete Euler diagradn= (Curvel), we mapd to abstract description
ab(d) = (im(l),Z), called theabstraction of d, whereZ contains exactly one abstract zone for
each concrete zone i in particular, given a concrete zorejn d, the abstract zone

ab(z) = {l(c) :ceC(2)}
is in Z whereC(z) is the set of curves id that contaire.

The diagrand, in figure 3 has abstractio(L,Z) whereL = {A,B,C} and
Z = {07 {A}7 {A7C}7 {C}7 {B7C}7 {B}}

The generation problem can be summarizediasn an abstract description dfind a con-
crete Euler diagram, g] such that abd,) = d;. Sometimes, the generation problem is restricted
by imposing certain conditions ailp, for instance requiring that the concrete diagram is well-
formed.

4 Adding a Curve

There are situations when we want to add a curve to a givenilay@ specified manner, such as
when generating diagrams. In order to do this, we need to kwmoat is meant by adding a curve
and how to specify its addition. In this section, we formalike notion of adding a curve at both
the abstract and concrete levels. At the concrete leveidlgasy: we simply take a diagram and
add to it a curve and a label. In figusewe addC to dig, giving d11.

Definition 4 Letd = (Curvel) be a concrete Euler diagram. Llebe a label inZ and letc be
a curve that is not i€urve Then we defined + (c,L) = (Curveu {c},l U(c,L)). If L ¢ im(l)
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and the number of zones doubles when additigend + (c,L) is said to be derived frord by

splitting each zone.
C
O OO
dll

d]O

Figure 5: A more complex example.

At the abstract level, things are not quite so straightfodwaNe note that each zone can be
either completely contained by the new curve, completetgida the new curve, or split by the
new curve. In figuré, the diagrand;; has a curve€ that completely contains the zone insBle
is completely outside the zone insideand splits the zone outside bothandB. We can think
of the split zone as being both inside and outsidelo describe hovC is added at the abstract
level, we state which zones are to be instt@nd which are to be outsid& those which are split
are stated as being both inside and outside. Thus, the imsitless and outside zones between
them include all of the zones.

Definition 5 Letd = (I,Z) be an abstract description. Llebe a label inZ and letin andout
be two subsets df such thainUout = Z and 0c out. Thend + (L,in,out) is defined to be

wherezZ, = {zU{L} : z€in} andZy, = out. If in =Z andout= Z andL ¢ | thend+ (L, in, out)
is said to be derived frord by splitting each zone.

In figure5, in = {{B},0} andout = {{A},0}; when addingC to dio to gived;;, C contains
the zone{B} (in the setin — out), splits the zone 0 (in the setNout) and does not contain the
zone{A} (in the sebut—in). The following lemma shows that the notions of splittingleaone
at the abstract and concrete level coincide.

Lemma2 Letd= (Curvel) be a concrete Euler diagram. Let L be a label#i and let c be
a curve that is not in Curve. Therd(c,L) is derived from d by splitting each zone if and only
if ab(d+ (c,L)) is derived from atd) by splitting each zone.

5 Adding Curves to Wellformed Atomic Layouts

Intuitively, when adding the curve to an atomic diagram, weseeeking a path that cuts zones to
be split in two, contains certain zones, excludes the remgirones, and returns to its starting
point. First, we consider the special case of splitting eamte. To illustrate, if we wish to add
a curve tod, in figure 3 that splits each zone then we can do so by finding a Hamiltaryale
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Cc C
D
d[z d13

Figure 6: Splitting zones and Hamiltonian cycles.

in the concrete dual (figuré dg), as shown in figuré, d;». This Hamiltonian cycle then, rather
nicely, gives us the new curve and wellformedness is maiathias shown id; .

Of course, there are concrete dual graphs that have difflergwuts, but corollanl establishes
that this is not an issue when splitting each zone. The fatigiheorem, importantly, provides
a constructive method for embedding the new curve, nametly ditdamiltonian cycle in an
arbitrary concrete dual graph and use that cycle as the iwidhe new curve.

Theorem 1 Letd= (Curvel) be an atomic wellformed concrete Euler diagram containibg a
least two curves. Let L be a labelif —im(l). There exists a curve, c, that is not in Curve such
that d+ (c,L) is wellformed and derived from d by splitting each zone if anly if a concrete
dual graph of d is Hamiltonian.

Figure 7: An extended Euler dual.

There are topologically different ways of adding a curve #pdits each zorfe In fact, given
all concrete dual graphs (reduced by equivalence up to aopg®f a subset oR?; we omit
the details) we can exactly classify the number of topolagicdifferent ways of adding such a
curve. To do this, we define a new type of dual graph for aton@grdms that generalizes both
the concrete dual graph and the Euler graph dual:ettiended Euler dual Its construction
is the same as the Euler graph dual, except that it has adliteriges as follows. Given an
edge in the Euler graph dual that connects a vesgXo the vertexys,, in the infinite face, we
had a choice about the direction that edge wraps around tivessuFor each such edge, we
add a new edge incident with andv, that wraps the opposite way around the curves. Note
that the extended Euler dual is not necessarily planar; dy fais only planar when exactly
one zone is topologically adjacent to the infinite face. W @ new edges in such a manner

1 Givend and curves; andc, added tod, d + (c1,L) is topologically different tad + (¢, L) if ¢; andc, are not
isotopic inR2 —V (G) whereV (G) is the set of (images of the) vertices in the Euler graph.
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that a minimal number of edge crossings are introduced. Tihemmal number of crossings is
1+24...+ (% —1). The construction is illustrated in figufewhered; 4 shows the extended
Euler dual ofd, in figure 4.

These extra edges are required in order to make the grapttmdflpossible ways (up to some
notion of equivalence) of adding a new curve and maintaimietiformedness. We note that we
only add extra edges incident with since the infinite face is the only zone that is not simply
connected in an atomic wellformed diagram. In simply cotegdaces, there is essentially no
choice about the ‘direction’ of the edges.

Theorem 2 The set of all plane Hamiltonian cycles in the extended Edled of an atomic
wellformed concrete Euler diagram, d, gives all the topatally different ways of introducing
a curve that splits each zone in d and maintains wellformssine

The method of adding a curve that splits each zone genesali¥¢hen we want to add a
curve that splits a specified set of zones, we instead seana,@imple cycfein the extended
Euler dual that passes through exactly the vertices carnelipg to the zones that are to be spilit.
Suppose that we wish to add a curvedidn figure 3 such that the zone inside exad@yis split
as is the zone outside all curves. Then there are severalafaging this, resulting in diagrams
with different abstract descriptions. The method is to firginaple cycle in the extended Euler
dual that contains precisely the vertices inside these timeg. One such cycle is showndis,
figure 8, which results in the curv® being added as shown thg. Another cycle gives;7,
which has an abstraction different from thatdag. Typically, we want to specify which zones
are to be contained by the new curve as well as those whiclo & $plit. A method for adding
an appropriate curve is captured by the following theorem.

D

dy7

Figure 8: Splitting specified zones.

Theorem 3 Let d= (Curvel) be an atomic wellformed concrete Euler diagram. Let L be a
label in .2 —im(l). Given alid) = (I,Z), let in C Z and outC Z be such that i out = Z
and 0 € out. Then there exists a curve, c, that is not in Curve suchdha(c,L) is atomic,
wellformed and has abstraction &b + (L,in, out) if and only if either

1. there exists a plane, simple cycle, C, in the extended Hubd, G, such that

2 Assimple cycle is a cycle, containing at least one vertex, do@s not pass through any vertex more than once. A

plane cycle is a cycle in which no pair of edges cross.
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(a) the vertices in G that correspond to zones that are elésneithe set imout are
exactly those in C,

(b) the vertices in G that correspond to zones that are elésnefnthe set in- out are
located inside C, and

(c) the vertices in G that correspond to zones that are elésneinthe set out-in are
located outside C,

or

2. |in] = [inNout| = 2 and the two concrete zones corresponding to the abstraeszthrat
are elements of the setrnout are topologically adjacent.

Again, it is the plane, simple cycle that provides the imafjghe curve to be added except
in case 2, where we do not seek a such a cycle. Instead, wefectively seeking a path of
length 1 (indicating the adjacency of the two zones) and aplg add a curve that is a circle,
for example, in the appropriate manner.

6 Adding a Curve to Wellformed Nested Layouts

The previous section characterizes exactly when a curvdeauded to an atomic wellformed
diagram and maintain wellformedness. Moreover, the cl@riaation provides a constructive
method to add a curve to give a new diagram with some specibisttazt syntax. Here we
demonstrate how to extend the approach to the nested cagarbyple only, due to space limita-
tions. In figure9, we may want to add a new curvedgs that splits the zone outside all curves,
that inside jusB and that inside jusD, and all remaining zones are outside the curve. To do
this, we decompose the diagram into its atomic componedtkitee new curvek, to each part

in the required manner and then recompose the diagramrmgpip the curves labelldd in each

of the atomic parts to create a single curve labelleghown indig. The curveE is called a
disconnecting curvéor d;g, the theory of which is developed iRIF0].

Qe

d18

Figure 9: Adding curves to wellformed nested diagrams.

In summary, the approach is to add the required curve to ganofi@component and then join
the pieces of the new curve together, to create one curvereButs of the previous section tell
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us when the curve can be added to the atomic pieces. The atigfuequirement is that these
new curves can be joined together to create an appropriate tuthe original nested diagram.
We note that being able to add a curve to each atomic part duemply that it is possible to
add that curve to the entire diagram. For example, supposeadevanted to add a curve to
dig so that instead of splitting the zone inside jOstve split the zone inside bot@ andD. It
would not then be possible to join the curves labelied the atomic components together to
form an appropriate curve idig whilst maintaining wellformedness. The following theorem
characterizes the case when we wish to split each zone.

Theorem 4 Let d be a wellformed concrete Euler diagram containing #yat atomic com-
ponents, sayd ... , th. Let L be a label inZ —im(l). Then there exists a curve, c, such that
d+ (c,L) is wellformed and derived from d by splitting each zone if anly if each ghas a a
Hamiltonian concrete dual or contains exactly one curve.

In the more general wellformed case (where we do not nedlgssash to split every zone),
we must be able to add a curwgto each atomic component in the required manner (as eestr
above). We need to know when the curves added to the atomipamnts can be joined up to
form c. Suppose that is to be added to a diagrard, consisting of two atomic components
d; andd,, with d, nested in a zone; of d;. Then the curveg; andc, added tod; andd,
respectively can be joined whenever they both pass thrdugladnez;: in other words, ind;
the curvec; splitsz and ind, the zone outside all of the curves is splitd&gy This observation
generalizes to the case when there are more atomic comggonent

7 Adding Curves In General

We aim to be able to generate an embedding of any abstraaipteEst which is not possible
when imposing the wellformedness conditions. Thus, we ngdo insist that the wellformed-
ness conditions are met and allow ourselves to add a curvebitoaay Euler diagrams. There
are many ways of adding curves in the general case and it candven that methods exist that
allow the inductive construction of a concrete diagram @yesuccessively adding contours) for
any abstract description. Here we informally outline onehsmethod, but better layouts can be
achieved by using more sophisticated techniques; for spEas®ns we do not provide details.
Since we are allowed multiple label use, the method may add/roarves (which constitute a
single contour) in order to achieve the correct zone set aftdition.

One point to note is how the interior of a contour is defined nwhwultiple curves have the
same label; such a definition is given iBRH"07] and extends work in\[V04]. To illustrate,
in figure 10, dyg contains three curves labelléd which we will refer to as the contouk. A
point is interior to the contouA if the number of curves labellef to which it is interior is odd,
otherwise it is exterior to the contoé: Thus, the zones in the diagram are

Z(dZO) = {07 {A}v {Av B}v {8}7 {C}v {A,C}}

and the zone 0 is disconnected.
Suppose, to the abstract descriptiain(dyo), we wish to add a contour labelldd, given
in = {0,{A},{C}} andout = {0,{A},{A,B},{B},{A,C}. The diagramdy; has the required
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4 B 45 5 O
C 4O D_C
2

Figure 10: Inside contours and adding curves in general.

abstract description and is obtained fraly by following the following method. Given a
concrete diagrand = (Curvel), a labelL € . —im(l), and setsn,out C Z(ab(d)) such that
inUout=Z(d), we can add a curve tsuch that:

1. for each abstract zone in the sethout, add a curve labellel properly inside some
minimal region of which the corresponding concrete zonesisbs),

2. for each abstract zone in the set- out, add a curve labelled for each boundary of
any minimal region of which the corresponding concrete zmmesists (note that minimal
regions may have many boundaries) such that the image otithe s that boundary, and

3. if in =0 then add a curve labellddwhose image is a straight line segment.

The resulting diagram has abstractain(d) + (L, in, out).

8 Application to the Generation Problem

As stated earlier, the generation problem is to find an ermibgdd any given abstract description
(or, at least, each atomic component). Several approaevesieen devised to date and they all
proceed to find a layout of the entire diagram and do not alsagseed. Our results provide a
new approach to generation, in that we can inductively predbe required diagram. Suppose
we have an abstract descriptiah,= (I,Z), that we wish to draw. In both the wellformed and
non-wellformed cases, we can decompdsénto a sequence of layout problems, starting with
the diagram(0,{0}) and successively adding curves in the required manner kt thui= (I, 2).
Of course, there are choices about how to inductively addctimees to achieve a good final
layout, but there are some obvious methods one can use thérep

If we want to produce a wellformed layout then we can deteativr the diagram is atomic at
the abstract level and consider the abstract componerdsately, as discussed above. Moreover,
there may be some labé|,and abstract descriptiodg, such that + (I,in,out) = d;, for some
setsin andout, andd, contains more atomic components thlthnin such cases, it may be more
efficient to add the curve labellédast. To illustrate, we provide an example in figdrk which
produces a wellformed embeddingdf (1,2) wherel = {A,B,C,D} and

Z=1{0,{A},{B},{A,B},{A,C} {A D},{AB,C},{AB,D},{A,C,D},{A,B,C,D}}.
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d, d> d;

~ &)

ds

Figure 11: Application to the general generation problem.

There are limits to the inductive construction method. tFine know of wellformed concrete
diagrams that cannot be produced using the inductive apprdane such diagram can be seen
in figure 12; the removal of any curve results in a diagram that is notfaretied. In this case,

a wellformed diagram with the same abstract descriptionbeagenerated using the inductive
method even though this particular layout cannot be actielteremains the subject of future
work to establish whether any abstract description thaaheeliformed embedding can be drawn
using our inductive approach that utilizes the extende@tdial. However, the general method
for adding a contour, outlined in sectigncan be shown to yield an embedding of any abstract
description using such an inductive construction.

Figure 12: A wellformed Venn-5 embedding.

9 Implementation

To prototype the generation mechanism, we have starte@imaiting the method as a Java pro-
gram. This draws closed curves with polygons, detects ttendrd Euler dual using geometric
algorithms and routes the edges around this dual as showguire fi3, where the polygons are
regular and form Venn-3. Note that the routing mechanisnd fiseconstructing the extended
Euler dual means that some edges are very close togethenarienistaken as tangential.
In figure 13, we show the result of finding a Hamiltonian cycle in the estsh Euler dual,

and using that cycle to add a new polygon, labelled ‘d’ to thegyim, resulting in Venn-4.
In this case we chose the new curve so that it intersects wihyezone, but we could have
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Figure 13: Using the extended Euler dual graph to add a curve.

used any simple cycle in the extended Euler dual to add a engenaintained wellformedness
(of course, the chosen cycle impacts the abstract desarjptiWe can enumerate every simple
cycle by finding sets of faces in the extended Euler dual tteat@nnected; the cycle formed by
traveling around such a set of faces then gives rise to a newe.cluayout improvements, such
as those applied irFRMO03, are required in order to improve the appearance of theraliag
this is currently being implemented.

Our intention is to use this generation mechanism to enuméhnaough possible diagrams,
looking for those that can be drawn ‘nicely’, for instanceenda regular polygon can be added
to a diagram already consisting of regular polygons. Thegss of generating the extended
Euler dual and discovering a single simple cycle within itaasonable efficient and works in
real time. However, the time complexity of enumerating gwaicle is exponential relative to
the number of edges and so will be infeasible as the size afitgrams increases beyond the
small diagrams shown in this paper; heuristics will needaa®veloped for this task.

10 Conclusion

In this paper we have presented several methods for gemgeratiler diagrams by modifying
existing layouts. The technique we have presented to addva authe wellformed case guar-
antees to preserve wellformedness. Moreover this noviehtgae of using inductive generation
methods can be used to produce embeddings of a class ofcalussaription. Indeed, our gen-
eral method of adding a curve in the non-wellformed case eamsbd to generate an embedding
of any abstract description.

We plan to use these inductive embedding methods (contiegtriaitially on wellformed
diagrams) to populate a library of drawn examples from whieltan subsequently create further
embeddings by adding further curves. We anticipate thdt auibrary will contain a concrete
diagram for each abstract description with up to three &ksid many with four labels (there
are 28 abstract descriptions with four labels). We will then beeatiol take abstract descriptions
and select sub-diagrams from the library and add curvesta th produce the required concrete
diagram.
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Further work also includes extending the generation dlgms to allow subsets of the well-
formedness conditions to be imposed. We anticipate usingbachof the Euler graph and the
extended Euler dual to allow, for example, concurrency iptetrpoints to be present in the cre-
ated layouts. This will enable a wider variety of layouts éodroduced and will allow us to take
user preference more fully into account, for example.
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EP/E010393/1 for the Visualization with Euler Diagramsjpct Thanks also to John Taylor for
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