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Abstract: MOF QVT introduces ImperativeOCL as an imperative language for op-
erational descriptions of model transformations (QVT operational mappings). Im-
perativeOCL extends conventional OCL by expressions with side-effects. A couple
of semantical problems arise from the way OCL is embedded into ImperativeOCL
– imperative expressions are modelled as a subtype of OCL expressions. This pa-
per points out these semantical problems and proposes a change to the operational
mappings language of QVT that resolves these problems, following an approach
that reuses OCL by composition rather than by inheritance in the abstract syntax
of ImperativeOCL. The proposed change reduces the complexity of the imperative
language, removes undefinedness, and leaves OCL conformant to its original defi-
nition.
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1 Introduction

OCL [OMG06] has proven to be a valuable ingredient in modeling, model validation, and model
transformation. It can be used to precisely describe model constraints such as invariants, guards,
and pre- and post-conditions, and to formulate queries to system states in general. In model
transformation, it can be used to express queries to models, e.g., to specify source objects for
transformations.

By now, several OCL tools exist, including ATL [ABJK06], the Dresden OCL toolkit [DOT08],
Eclipse MDT OCL [MOT08], KMF [AP05], OCLE [COT08], Octopus [Kla05], RoclET [RT08],
and USE [GBR07].

In MOF QVT [OMG08] OCL is extended to so-called ImperativeOCL as part of QVT’s “op-
erational mappings”. Within ImperativeOCL, statements with side-effects can be formulated. It
adds facilities to manipulate system states (e.g, to create and modify objects, links, and variables)
and certain constructs from imperative programming languages (e.g., loops, conditional execu-
tion). ImperativeOCL is used in QVT to specify transformations operationally (complementary
to the relational language of QVT).

While the usefulness of a combination of OCL with imperative language elements is unques-
tioned, we criticise the way OCL is extended to ImperativeOCL. The chosen abstract syntax
leads to a couple of semantical problems which we point out in this paper. In our opinion, the
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intention of ImperativeOCL can be achieved without modifying the semantics of OCL itself fol-
lowing an approach that favours a composition of OCL into an imperative language over reuse
by inheritance in the abstract syntax.

This paper is structured as follows: In Sect. 2 we give a short overview of ImperativeOCL
and its role in QVT. In Sect. 3 we explain the various semantical problems that arise from the
QVT definition of ImperativeOCL. In Sect. 4 we suggest a change to the QVT specification that
resolves these problems. We also sketch a (second-best) alternative in form of a clarifying textual
addendum to [OMG08] that could probably be realized with less effort. We conclude in Sect. 5.

2 ImperativeOCL

Figure 1: ImperativeOCL - miscellaneous facilities

QVT defines two ways to express model transformations, a declarative approach and an op-
erational approach. The declarative approach is the Relations language where transformations
between models are specified as a set of relations that must hold for the transformation to be
successful. The operational approach allows either to define transformations using a complete
imperative approach or allows complementing relational transformations with imperative opera-
tions implementing the relations. The imperative language introduced by QVT is called Impera-
tiveOCL.

ImperativeOCL adds imperative elements to OCL which are typically found in general pur-
pose programming languages such as Java. Its semantics is defined in [OMG08] as usual by an
abstract syntax model. The complete abstract syntax of ImperativeOCL is depicted in Fig. 1,
Fig. 2, and Fig. 3.

An element of this extension is the ability to use block expressions to calculate a given value.
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Figure 2: ImperativeOCL - control and instantiation constructs

The compute expression (meta-class ComputeExp in Fig. 2)

compute( v:T=initExpr ) { e1; ... ; en }

returns the value of the variable v after ending the sequential execution of the body (e1; ... ;en).
Within the body, variables defined in outer scopes can be freely accessed and changed.

New loop expressions such as forEach and while have been introduced to iteratively execute
expressions (meta-classes ForExp and WhileExpr):

company.employees->forEach(c) { c.salary := c.salary * 1.1}

while(x<10) { x := x + 2 }

An imperative version of conditional evaluation is available (meta-class AltExp):

if ( x < 0 ) { x := 0 } else { x := 1 } endif

Variables can be declared in the current scope using the var statement (meta-class VariableInit-
Exp):

var x : String
var y : Integer := 2

Instances of classes can be created using a new operator (meta-class InstantiationExp):

var p : Person
p := Person.new
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Figure 3: ImperativeOCL - side-effect expressions hierarchy

The most important aspect of the abstract syntax to that we refer in this paper is the fact that
all imperative expression classes inherit from OclExpression (Fig. 3). OclExpression is the base
class for all expressions in conventional OCL (cf. [OMG06]). Consequently, ImperativeExpres-
sions can be used at all locations where OclExpressions occur. Thus, we can have imperative
expressions consisting of OCL expressions that again consist of imperative expressions. For
example,

var z : Set(Integer) := Set{1,2,3}->select(y |
compute(x:Integer) { x := y * 2 } < 5

)

becomes a valid OCL expression under the QVT extension. The right-hand side of this imper-
ative assignment expression is an OCL select expression. This OCL select expression requires
a boolean body expression, which is given by a relational OCL expression whose left-hand side
is an imperative compute expression. The body of this compute expression is an assignment
expression whose right-hand side is again a conventional OCL expression (y * 2). While this is
a very simple example, trickier mixtures of imperative expressions and OCL expressions exist
that comprise several semantical problems. In the following section we explain these problems
that all follow from the design by inheritance of ImperativeOCL.
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3 Problems

This section explains semantical problems that arise from the embedding of OCL into QVT Im-
perativeOCL. First (and most formally) we show that ImperativeOCL redefines the interpretation
of OCL expressions and that this redefined interpretation leads to undefined semantics of several
OCL expressions that had a perfectly well-defined semantics under conventional OCL. Second,
we show that several equivalence rules for OCL not longer hold if ImperativeOCL is around.
Third, we further show that (under the current design) some of the new imperative expressions
are actually redundant to conventional OCL expressions. Finally, we generalise this critique and
discuss that the abstract syntax of ImperativeOCL violates the subtype substitution principle in
various other locations in UML, too. All of these problems arise from the fact that the abstract
syntax of ImperativeOCL allows imperative expressions at all locations where OCL expressions
are expected – ImperativeExpression is modeled as a subclass of OclExpression.

3.1 Undefined Semantics for OCL Expressions

In conventional OCL, the semantics of an OCL expression e can be formally expressed by an
interpretation function

I[[e ]] : ENV→ VALUE

where ENV = (σ ,β ) is the environment in which the expression is evaluated (σ is a system
state – objects, links, and attribute values –, and β maps bound variables to their values). Cf.
[OMG06, Annex A] and [Ric02] for the formal semantics of OCL.

However for ImperativeOCL expressions, the interpretation function described above is not
sufficient. The evaluation (or execution) of an ImperativeOCL expression does not only return a
value, it also results in a (possibly) modified state and a (possibly) modified variable binding. To
take this into account, the interpretation of an ImperativeOCL expression must be defined like
follows:

IIMP[[e ]] : ENV→ VALUE×ENV

While this is not done formally in [OMG08], the effect of all imperative expressions are de-
scribed in natural language, and one could define IIMP[[e ]] for all imperative expressions from
this descriptions.

But, since ImperativeExpression is modeled as a subclass of OclExpression, the imperative se-
mantics MUST be defined for all “ordinary” OCL expression, too, as ImperativeOCL expression
can occur everywhere a OCL expression is expected. Figure 4 depicts this structural problem
using the OCL metamodel – the redefinition of eval() in ImperativeExpression is invalid.
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eval( e : Env ) : (Value, Env)

of eval

OclExpression

ImperativeExpression

eval( e : Env ) : Value

incompatible redefinition

Figure 4: Problem illustrated using the OCL meta-model

The following imperative OCL expressions illustrates this problem:

compute(z:Boolean) {
var x : Boolean := true
var y : Boolean := true
if ((x:=false) and (y:=false)) { ... }
z := x

}

The value of this compute expression is false: the block is executed and the value of the block
variable z at the end of the block becomes the value of the compute expression. Since false is
assigned to x in the condition of the if statement, z becomes false at the end (the assignment
expression has the value of its right-hand side, like in C or Java, therefore the expression x:=false
is false).

But what happens if we change the last line as follows:

compute(z:Boolean) {
var x : Boolean := true
var y : Boolean := true
if ((x:=false) and (y:=false)) { ... }
z := y

}

Is the value of this expression true or false? It depends on how we define the imperative semantics
of the logical connectives. Given boolean expressions e1 and e2, we have at least two choices to
define IIMP[[e1 and e2 ]](env):

1. Lazy evaluation semantics like in Java or C (returns true for the above example):

IIMP[[e1 and e2 ]](env) =

{
IIMP[[e2 ]](env1) if v1 = true
(v1,env1) otherwise

where (v1,env1) = IIMP[[e1 ]](env). Under this semantics (also called short-circuit evalua-
tion) the right-hand side of the and operator is not evaluated if the left-hand side already
evaluates to false. Therefore, y stays true.
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2. Strict evaluation semantics (returns false for the above example):

IIMP[[e1 and e2 ]](env) =

{
(true,env2) if v1 = true∧ v2 = true
(false,env2) otherwise

where (v1,env1) = IIMP[[e1 ]](env) and (v2,env2) = IIMP[[e2 ]](env1). Under this semantics,
both sides of the and operator are always evaluated. Therefore, false is assigned to y.

The QVT specification does not say which semantics should hold. But since ImperativeOCL
expressions can occur everywhere OCL expressions can occur, this semantics has to be defined.

One can find further similar locations where the imperative semantics of OCL expression is
not obvious, e.g. for the collection operation iterate (what happens if the body of the expressions
modifies the range variable?) or the treatment of undefined values in arithmetic expressions
(similar to the logical connectives – lazy or not?).

3.2 Breaking Equivalence Rules

In conventional OCL, several equivalence rules hold, most of them well-known from predicate
logic. If we include imperative expressions into the set of OCL expressions, they all do not
longer hold. This is not necessarily a problem but at least contrary to the logical character of
conventional OCL.

1. Substituting variables by let expressions. In conventional OCL, the following equivalence
holds:

let x : T = e1 in e2⇔ e2{x/e1}

In ImperativeOCL, this equivalence does not hold. The left-hand and right-hand term are
only equivalent if x occurs exactly once in e2.

2. Commutativity laws.

e1 and e2⇔ e2 and e1

In ImperativeOCL, the commutativity laws for conjunction (and also disjunction) do not
longer hold. Notice that this is a different problem than the one discussed in subsection
3.1. The following example illustrates it (returning false and true):

compute(z:Boolean) { y := (z:=true) and (z:=false) }

compute(z:Boolean) { y := (z:=false) and (z:=true) }
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3.3 Redundancy of Existing OCL Language Features

Some of the new language features in ImperativeOCL such as forEach and the imperative condi-
tional are not really necessary (as long as ImperativeExpression is a subclass of OclExpression).
Their effect can be achieved using conventional OCL expressions:

company.employees->forEach(c) { c.salary := c.salary * 1.1}

has the same effect as

company.employees->iterate(c; r:OclAny=Undefined |
c.salary := c.salary * 1.1

)

and

if ( x < 0 ) { x := 0 } else { x := 1 } endif

is the same as

if x < 0 then x := 0 else x := 1 endif

3.4 Further Problems

Apart from the problems illustrated above, we can find several other locations where allowing
imperative expressions does not make sense. For example, ImperativeOCL would allow us to
modify the system state in an invariant or a post-condition. The evaluation of the invariant could
evaluate to true and invalidate the state at the same time.

Apart from the structural problems discussed above, we have the opinion that the subtype re-
lation between ImperativeExpression and OclExpression violates the substitutability of subtypes
for supertypes (e.g., [LW94]) very clearly. An imperative expression cannot be used everywhere
a OCL expression is expected. On the contrary, there are only very few locations where impera-
tive expressions can be safely used where an OCL expression is expected. Therefore, we propose
a change to the QVT specification that leaves the semantics of conventional OCL unchanged and
reuses OCL (as is) as a part of QVT’s imperative language instead.

4 Suggested Change to the QVT specification

We think that ImperativeOCL expressions have not been intended to be used at all locations
where OCL expressions occur. Therefore, imperative languages such as the one defined in QVT
(called ImperativeOCL at the moment) should use OCL by composition rather than by inheri-
tance, as depicted in Fig. 5.

Several concrete changes in the abstract syntax of ImperativeOCL follow from this modifi-
cation. Most important, two versions of assignment expressions will be required: one whose
right-hand side is of type OclExpression (as current) and one whose right-hand side is an Imper-
ativeExpression (to capture the result of a compute or instantiation expression). Figure 6 shows
the modifications to the abstract syntax class diagram.
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*

OclExpression

ImperativeExpression

eval( e : Env ) : Value

eval( e : Env ) : (Value, Env)

OclExpression

ImperativeExpression

eval( e : Env ) : Value

eval( e : Env ) : (Value, Env)

/ expressions

Figure 5: Suggested change to the abstract syntax of QVT

{xor}

OclExpression
(from EssentialOCL)

AssignExp

ImperativeExpression

OclExpression
(from EssentialOCL)

AssignExp

1

1

left

value

1

0..1

left

oclValue

0..1 computedValue

Figure 6: Suggested change to meta-class AssignExp

The body of imperative loops will not longer be inherited from the OCL meta-class LoopExp.
Iterators and the (imperative) body expression are modeled explicitly now (Fig. 7).

Similar changes have to be made for conditional execution (meta-classes AltExp and Switch-
Exp), while loops (meta-class WhileExp), and general block expression (meta-class BlockExp).

The sketched modification makes a clear distinction between imperative and logical language
elements (i.e., conventional OCL). This solves all of the aforementioned problems: For the OCL
part (then unchanged from [OMG06]), no under-definedness is introduced and the expected
equivalence rules hold again. Also, it is made clear that no expressions with side-effects can
occur at unexpected locations such as invariants and post-conditions. Imperative loops and con-
ditional execution are clearly separated from the logical versions.

However, constellations such as the one provided in the introduction of this paper are not
longer possible if the abstract syntax of ImperativeOCL is changed this way. While imperative
expressions can still contain OCL expressions, OCL expressions can no longer contain impera-
tive parts to calculate sub-results:

1..*
LoopExp

(from EssentialOCL)
OclExpression

(from EssentialOCL)

Variable
(from EssentialOCL)

ImperativeLoopExp

ImperativeLoopExp

OclExpression
(from EssentialOCL)

ImperativeExpression

Variable
(from EssentialOCL)

0..1 condition

source

1

body

1

1..* iterator
source

1

condition0..1

body1

iterator

Figure 7: Suggested change to meta-class ImperativeLoopExp
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z := Set{1,2,3}->select(y |
compute(x:Integer) { x := y * 2 } < 5

)

will be no valid expression. The example would have to be reworked either as pure OCL for the
right-hand side of the assignment

z := Set{1,2,3}->select(y | y * 2 < 5)

or into a fully imperative version (except the arithmetic and relation expressions that are OCL):

z := Set{}
Set{1,2,3}->forEach(y) {

if (compute(x:Integer) { x := y * 2 } < 5) { z += y }
}

Of course, this is a very simplified example. Imperative expressions in real QVT applications
may be more complicated to rewrite. Especially, if imperative operations are invoked as part
of an expression. For example the following imperative expression, using an operation with
side-effects (calcAgeImperatively)

if (calcAgeImperatively(p1) > calcAgeImperatively(p2)) {...}

would have to be rewritten as

var ageOfP1 : Integer = calcAgeImperatively(p1);
var ageOfP2 : Integer = calcAgeImperatively(p2);
if (ageOfP1 > ageOfP2) { ... }

because the arguments of the relational OCL expression cannot be imperative expressions.

4.1 Alternative (cheaper) Solution

The solution we have sketched so far implies a major rework of the QVT specification. In
an alternative, pragmatic approach the QVT specification could also be improved by making a
textual addendum that at least clarifies the scope of ImperativeOCL:

Conventional OCL expressions as described in [OMG06] are not allowed to have
side effects unless used as part of a top level ImperativeOCL expression.

Therefore, even in a system supporting ImperativeOCL, class invariants and pre- and postcon-
ditions will not be allowed to contain ImperativeOCL sub-expressions. And to distinguish the
purpose of the new flow control constructs:

ImperativeOCL’s flow control statements have been introduced solely to write con-
cise imperative programs. The side-effect free forms of conditional evaluation (if-
then-else-endif ) and iterate should not be used to program side-effects. Instead, the
ImperativeOCL forms should be used.
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5 Conclusion

In this paper, we have pointed out a couple of semantical problems that all arise from the way
OCL is embedded into QVT’s ImperativeOCL. The design which subclasses OclExpression in
the abstract syntax does not allow to replace subtype instances for supertype instances. It also
requires an extended semantics of all conventional OCL expressions which is not defined at the
moment.

We outlined a change to ImperativeOCL that resolves these problems by reusing OCL (as it
is) in a non-intrusive way, making OCL a part of the imperative language. While this change
requires certain (intermixed) expressions to be rewritten, it essentially reduces the complexity
of the imperative language, removes undefinedness, and leaves OCL conformant to its original
definition.

We have informed the OMG about the problems depicted in this paper by means of an OMG
issue regarding [OMG08], also including the cheaper solution.
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