
Electronic Communications of the EASST
Volume 19 (2009)

Proceedings of the
Second International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2009)

An Architecture to Support Learning-based Adaptation of Persistent
Queries in Mobile Environments

Jamie Payton, Richard Souvenir, and Dingxiang Liu

6 pages

Guest Editors: Romain Rouvoy, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

An Architecture to Support Learning-based Adaptation of
Persistent Queries in Mobile Environments

Jamie Payton, Richard Souvenir, and Dingxiang Liu

Department of Computer Science
University of North Carolina at Charlotte
{payton, souvenir, dliu}@uncc.edu

Abstract: Queries are frequently used by applications in dynamically formed mo-
bile networks to discover and acquire information and services available in the sur-
rounding environment. A number of inquiry strategies exist, each of which em-
bodies an approach to disseminating a query and collecting results. The choice of
inquiry strategy has different tradeoffs under different operating conditions. There-
fore, it is beneficial to allow a query-based application to dynamically adapt its in-
quiry strategy to the changing environmental conditions. To promote development
by non-expert domain programmers, we can automate the decision-making process
associated with adapting the inquiry strategy. In this paper, we propose an architec-
ture to support automated adaptative query processing for dynamic mobile environ-
ments. The decision-support module of our architecture relies on an instance-based
learning approach to support context-aware adaptation of the inquiry strategy.

Keywords: adapation, context-awareness, pervasive computing, machine learning,
query processing, ad hoc network

1 Introduction

Mobile computing devices have become more powerful, affordable, and widely available, which
has led to their widespread adoption. Interest in developing new applications that take advantage
of connections among devices to achieve a task continues to grow. Such applications would al-
low emergency responders carrying mobile devices to exchange information to coordinate triage
activities; construction supervisors could connect to sensors to monitor and react to the presence
of hazardous chemicals on a construction site; tourists could use mapping, transportation, and
weather services available in the vicinity to generate an itinerary for sightseeing. These and other
applications can be supported by mobile ad hoc networks, which are formed on-demand without
any fixed network infrastructure, allowing for deployment at any time in virtually any location.

Developing applications that must acquire information and services across a highly dynamic
mobile ad hoc network (MANET) can be challenging. Queries are a popular abstraction used
to hide the complex network communication details associated with discovering and collecting
distributed information. Often, applications must continuously monitor for changes in informa-
tion or conditions in the environment. For example, a construction supervisor’s application may
monitor for the presence of a dangerous leak to ensure the safety of workers, or a tourist may
wish to take advantage of any audio guide services she encounters as she wanders through a his-

1 / 6 Volume 19 (2009)

An Architecture to Support Learning-based Adaptation of Persistent Queries in Mobile Environ-

ments

torical area. In such cases, a persistent query, which provides continuous reporting of relevant
state changes, can support application development.

Employing an ideal persistent query that reports all state changes in a rapidly changing envi-
ronment is expensive in terms of message overhead and resource consumption. Instead, we can
approximate a persistent query as a sequence of one-time queries (i.e., queries that are issued
and evaluted once). The persistent query’s inquiry strategy, which defines where, when, and how
one-time queries are issued, has different tradeoffs and its suitability depends on the operating
conditions. Therefore, the notion of an adaptive persistent query [RJPR08] has been introduced
to allow the inquiry strategy to be dynamically adjusted.

In previous work, the task of determining how to adapt the inquiry strategy was left to the ap-
plication programmer. Here, we focus on automating the process of adaptation for adaptive per-
sistent queries to simplify the programming task. We present an architecture to support persistent
query-based application development in MANETs. Our approach to persistent query adaptation
is independent of application-specific details; the adaptation decision is based on maximizing the
reflection of changes in available data while minimizing the overhead associated with the query’s
execution. We use an instance-based learning approach to estimate the quality of the persistent
query’s result as a function of the changing state of the environment.

2 Background on Adaptive Continuous Queries

Researchers have begun to develop a formal framework to support expression of adaptive per-
sistent queries and to support reasoning about their execution [RJPR08]. The framework defines
a persistent query as a sequence of one-time queries. This sequence is controlled by the spec-
ification of an inquiry strategy, which defines: 1) the frequency with which one-time queries
are issued, 2) the inquiry mode (i.e., the protocol used to implement a one-time query), and 3)
inquiry mode parameters. To create a persistent query result, the results from the component
one-time queries can be coalesced.

Using the formal framework as a foundation, a set of inquiry modes have been identified and
formalized [RJPR09]. Flooding queries are commonly used in mobile settings [IGE+03, JMB01,
PR99] to acquire information from all network nodes. In a flooding query, the sending node
broadcasts the query to all of its one-hop neighbors; every recipient of the query will rebroadcast
the query to its one-hop neighbors until the network boundary is reached. This approach can be
very expensive in terms of message overhead and resource consumption [NTCS99], but yields
the most information about the state of the environment. In a static network (no value or con-
nectivity changes), successive one-time flooding queries should give exactly the same results.
Location-based queries operate in a similar fashion, but can reduce overhead costs by targeting
a specified region of the network. Probabilistic queries can also reduce overhead; a parameter is
provided for query propagation to randomly select the subset of neighbors that will receive (and
probabilistically propagate) the query. Similarly, random sampling queries propagate the query
to all one-hop neighbors but randomly select nodes to execute and reply to the query.

Different inquiry strategies are appropriate in different situations. For example, a construction
site worker may prolong the lifetime of a network when conditions are normal by randomly
sampling for safety information; if the query returns a dangerous chemical reading, a flooding

Proc. CAMPUS 2009 2 / 6

ECEASST

query is needed to acquire as much information as possible about a possible leak regardless of
the cost. In the formal framework, a persistent query’s intermediate result (i.e., the coalesced
history of one-time query results) can be assessed to determine the suitability of the inquiry
strategy. In the framework, a persistent query’s introspection strategy is a function that defines
the “quality” of the query result. Adaptation of the inquiry strategy is based on the evaluation
of the introspection strategy’s metric. The goal of this paper is to provide automated support for
the processes involved in deciding when and how to adapt persistent queries. In Section 3, we
present an architecture that allows for learning a general introspection metric that minimizes the
overhead associated with the query while maximizing the quality of the query result.

3 Architecture Description

Learner PC

F

Adaptive Persistent
Query Module

AutoAdapt
Learner

Application

One-time Query Simulator Module

Network Simulator

Network Node

Messaging Sensing

One-time Query Module

Discovery

Adaptive Persistent Query
Module

AppAdapt AutoAdapt

Query
Propagator

Reply
Processor

Application

F

Network Node

One-time Query Module

Adaptive Persistent Query
Module

AppAdapt AutoAdapt

Query
Propagator

Reply
Processor

Application

F

Figure 1: Adaptive Per-
sistent Query Architec-
ture

Figure 1 illustrates our architecture for supporting adaptation in per-
sistent query processing. Although omitted from the diagram, we as-
sume every network node has low-level functions which support ex-
change of messages, interaction with local sensors, and maintenance
of an up-to-date list of its own one-hop neighbors. The One-time
Query module supports an inquiry mode through the use of the appro-
priate conjunction of query propagation schemes implemented in the
Query Propagator (QP) and reply processing schemes implemented
in the Reply Processor (RP). Both the QP and the RP units make use
of the discovery module to send query-related messages over network
links to the appropriate one-hop neighbors. Applications that require
knowledge about the changing state of the environment can be devel-
oped using the Adaptive Persistent Query (APQ) module; a persistent
query is implemented as a series of one-time queries, which are exe-
cuted by the One-time Query module. Applications that wish to have
tight control on the conditions that trigger adaptation of a persistent
query and the manner in which the inquiry strategy is adapted can specify these conditions within
a code fragment that is given to the architecture and automatically deployed. The AppAdapt
module is responsible for managing the user-specified adaptation, but is not the focus of this
paper. Instead, we focus on the further development of the AutoAdapt module, which uses a
learned function F (shown as an oval) that captures the “quality” of the query result under a set
of environmental conditions to automatically adapt the inquiry strategy. Below, we describe how
we learn the function F and how the AutoAdapt module uses this function to adapt a persistent
query’s execution.

3.1 Learning Problem Overview

It is desirable for our persistent query (comprised of a sequence of one-time queries) to closely
approximate the ideal persistent query. In other words, we want our persistent query to capture as
much information as possible about the changes that occur in the environment. We could simply
use an inquiry strategy with a high frequency of issue and an inquiry mode that collected infor-

3 / 6 Volume 19 (2009)

An Architecture to Support Learning-based Adaptation of Persistent Queries in Mobile Environ-

ments

mation from all nodes (e.g., a flooding query), but message overhead and resource consumption
is a concern in networks of mobile devices. Therefore, we want to learn when and how to adapt
the inquiry strategy to balance the tradeoff between the “quality” of result (i.e., how well the
approximate persistent query reflects the ideal query) and the cost of the query.

Learner PC

F

Adaptive Persistent
Query Module

AutoAdapt
Learner

Application

One-time Query Simulator Module

Network Simulator

Network Node

Messaging Sensing

One-time Query Module

Discovery

Adaptive Persistent Query
Module

AppAdapt AutoAdapt

Query
Propagator

Reply
Processor

Application

F

Figure 2: Architecture for the Offline
Learner

We frame this as a numerical optimization problem
where the goal is to maximize the difference, F −αC,
where F is a function that defines this “quality” value, C
is the cost of execution using a particular inquiry mode,
and α is a scaling constant. F(R,R∗,s), where R is the
set of results (i.e., representations of responding hosts)
returned by a one-time query with inquiry strategy s and
R∗ is the ideal set of reachable results reachable using
strategy s, is defined as |R|/|R∗| if s is a flooding strat-
egy and |R|/(|R∗|∗ p) if s is a probabilistic strategy with
probability p. That is, F represents the percent of hosts
that, ideally, should have responded.

In reality, however, we cannot compute R∗, and there-
fore we cannot compute F . So, our approach is to ap-
proximate F using the history of previous query results.
It is the task of the AutoAdaptLearner in Figure 2 to
learn a function F̂ that approximates F to estimate how well we use one-time queries to imple-
ment a continuous query. To do so, we use an instance-based learning approach to learn F̂ and
modify our optimization function to F̂ −αC; this allows us to learn a general function without
requiring the overhead associated with an online learning approach.

3.2 Learning the Quality Function

To learn our quality function, F̂ , which is based on the history of query results, we need to define
how to compute the difference between sets of results for successive one-time queries. Each
query collects a node’s data as well as local properties of the node at the time that the query
executed. The result of the ith one-time query, Ri, is a set of hosts that responded to the query.
We define a host, h, as a tuple, (ι ,ν ,λ ,ω,ε) where ι is a unique node identifier, ν is a data value,
λ is the node’s location, ω is the node’s velocity, and ε is a measure of the remaining energy. Our
approximation of quality of the query’s execution, then, is defined as a function of the difference
between the query results for Ri and Ri−1.

As a first step, we propose simple metrics for computing the difference between successive
query results; we expect that more complex metrics will be developed and can be applied using
our method. In our metrics, we compare values of nodes that provided results in successively
issued one-time queries. We define M as the set of nodes that contribute results both in Ri and
Ri−1: M = {hx ∈ Ri

⋂
hy ∈ Ri−1 : hx.ι = hy.ι}. For each component of the host tuple (excluding

the ID), we use the variance of the values in M as input to F̂ . This gives us σ(νM), σ(λM),
σ(ωM), and σ(εM) as parameters. In addition, we calcuate a matching score m = |M|

|Ri−1| which
penalizes for differences between the sets of responding nodes. Other measurements, such as
higher-order statistics or domain-specific metrics, may prove to be useful.

Proc. CAMPUS 2009 4 / 6

ECEASST

To learn F̂ by example, we run a series of one-time queries in simulation. For each query,
we compute m, σ(νM), σ(λM), σ(ωM), and σ(εM). We also compute the value of F using the
“oracle” view of the network provided by the simulator. To compute the approximation F̂ , we
use generalized radial basis functions (GRBF) [PG90], which estimate functions of the form:
F̂(~x,s) = ∑

C
j=1 w jφ(||~x−~z j||2) + b, where F : R5 ∗Z → R, ~x is a vector whose components

are m, σ(νM), σ(λM), σ(ωM), and σ(εM), s is an inquiry strategy, b is a bias vector, w j is the
real-valued weight of kernel center~z j, for j ∈ 1,2, ...,C, and φ is a real-valued basis function. In
our algorithm, we choose the Gaussian function for φ : φ(r) = e−r2/σ2

w , where σw is the average
intra-center distance.

The learned function F̂ is incorporated into the AutoAdapt module that is deployed on the
network nodes. The AutoAdapt module makes decisions regarding how to adapt the inquiry
strategy to best suit the conditions of the environment by finding an inquiry mode and frequency
to maximize F̂−αC, where C is the cost of issuing a query using a particular inquiry strategy.

4 Related Work

Query processing for streaming data has been an active area of research in the sensor networks
community [IGE+03, MFHH03, MFHH02], and several query processing systems provide some
version of persistent queries, typically implemented as a sequence of one-time queries. Previous
work noted the need for adaptive persistent queries and strategies for deciding when to adapt
inquiry strategies [RJPR09, RJPR08]. Other work has also studied the problem of how to adapt a
probabilistic persistent query’s execution [RJ08] by using application-specified data quality met-
rics and thresholds to adapt the value of the probability parameter that influences propagation of
query-related messages, while we propose the use of a machine learning algorithm to determine
how to adapt the inquiry strategy. Our work uses a simple set of metrics to capture the quality of
a persistent query’s execution and to determine adaptation; more complex metrics, like measures
of consistency [PJR07], may be appropriate.

5 Conclusions and Future Work

In this paper, we have taken a first step towards developing an architecture to support appli-
cations that use adaptive persistent queries in MANETs. Here, we focused on automating the
process of deciding when and how to adapt a persistent query to deliver results with the most
suitable degree of quality given the conditions of the environment. Currently, an implementa-
tion of the offline learner is in progress using the Omnet++ network simulator [Var], its mobility
framework [LWK], and battery module extension [For] to implement and collect data about the
execution of persistent queries; we apply the radial basis function implementation in the Weka
machine learning workbench [HDW94] to the collected data. To determine if this approach is
truly useful, we plan to perform a thorough evaluation of a full implementation and will compare
performance measurements to those of traditional persistent queries. Future work also includes
further investigation of properties of the environment that can impact the quality and cost of
a persistent query’s execution, as well as more careful study of metrics that define meaningful
differences between sets of query results.

5 / 6 Volume 19 (2009)

An Architecture to Support Learning-based Adaptation of Persistent Queries in Mobile Environ-

ments

Bibliography

[For] A. Forster. Downloads Web Page. http://www.inf.unisi.ch/phd/foerster/downloads.
html.

[HDW94] G. Holmes, A. Donkin, I. Witten. Weka: A machine learning workbench. In Proc. of
the 2nd Austrailia and New Zealand Conference on Intelligent Info. Systems. 1994.

[IGE+03] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heideman, F. Silva. Directed Diffu-
sion for Wireless Sensor Networking. IEEE/ACM Trans. on Networking 11(1):2–16,
February 2003.

[JMB01] D. B. Johnson, D. A. Maltz, J. Broch. DSR: The Dynamic Source Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks. Ad Hoc Networking 1:139–172, 2001.

[LWK] M. Loebbers, D. Willkomm, A. Koepke. The Mobility Framework for OMNeT++
Web Page. http://mobility-fw.sourceforge.net.

[MFHH02] S. Madden, M. Franklin, J. Hellerstein, W. Hong. TAG: A Tiny AGgregation service
for ad-hoc sensor networks. ACM SIGOPS 36(SI):131–146, 2002.

[MFHH03] S. Madden, M. Franklin, J. Hellerstein, W. Hong. The Design of an Acquisitional
Query Processor For Sensor Networks. In Proc. of the 2003 ACM SIGMOD Int’l.
Conf. on Management of Data. Pp. 491–502. 2003.

[NTCS99] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu. The Broadcast Storm Problem in a
Mobile Ad Hoc Network. In Proc. of the 5th Int’l. Conf. on Mobile Computing and
Networking. Pp. 151–162. 1999.

[PG90] T. Poggio, F. Girosi. Networks for approximation and learning. Proceedings of the
IEEE 78:113–125, 1990.

[PJR07] J. Payton, C. Julien, G.-C. Roman. Automatic Consistency Assessment for Query
Results in Dynamic Environments. In Proc. of ESEC/FSE. Pp. 245–254. 2007.

[PR99] C. Perkins, E. Royer. Ad Hoc On-Demand Distance Vector Routing. In Proc. of the
IEEE Wkshp. on Mobile Computing Systems and Applications. February 1999.

[RJ08] V. Rajamani, C. Julien. Adaptive Data Quality for Persistent Queries in Sensor Net-
works. Technical report TR-UTEDGE-2008-001, 2008.

[RJPR08] V. Rajamani, C. Julien, J. Payton, G.-C. Roman. Supporting Adaptive Persistent
Queries in Dynamic Environments. Technical report TR-UTEDGE-2008-017, 2008.

[RJPR09] V. Rajamani, C. Julien, J. Payton, G.-C. Roman. Inquiry and Introspection for Non-
Deterministic Queries in Mobile Networks. In Proc. of FASE. May 2009.

[Var] A. Vargas. OMNeT++ Web Page. http://www.omnetpp.org.

Proc. CAMPUS 2009 6 / 6

http://www.inf.unisi.ch/phd/foerster/downloads.html
http://www.inf.unisi.ch/phd/foerster/downloads.html
http://mobility-fw.sourceforge.net
http://www.omnetpp.org

	Introduction
	Background on Adaptive Continuous Queries
	Architecture Description
	Learning Problem Overview
	Learning the Quality Function

	Related Work
	Conclusions and Future Work

