
Electronic Communications of the EASST
Volume 19 (2009)

Guest Editors: Romain Rouvoy, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Second International DisCoTec Workshop on

 Context-Aware Adaptation Mechanisms for
 Pervasive and Ubiquitous Services

(CAMPUS 2009)

An Adaptation Reasoning Approach for Large Scale
Component-based Applications

Mohammad U. Khan, Roland Reichle, Michael Wagner, Kurt Geihs, Ulrich Scholz,

Constantinos Kakousis, and George A. Papadopoulos

12 Pages

 ECEASST

2 / 13 Volume 19 (2009)

An Adaptation Reasoning Approach for Large Scale
Component-based Applications

Mohammad U. Khan1, Roland Reichle1, Michael Wagner1, Kurt Geihs1,
Ulrich Scholz2, Constantinos Kakousis3, and George A. Papadopoulos3

1University of Kassel, Germany, {khan, reichle, wagner, geihs}@vs.uni-kassel.de

2European Media Laboratory GmbH, Germany, ulrich.scholz@eml-d.villa-bosch.de
3University of Cyprus, Cyprus, {kakousis, george}@cs.ucy.ac.cy

Abstract: There is a growing demand for context-aware applications that can dynamically
adapt to their run-time environment. An application offers a collection of functionalities
that can be realized through a composition of software components and/or services that
are made available at runtime. With the availability of alternative variants of such
components and/or services that provide the basic functionalities, while differ in extra-
functional characteristics, characterized by quality of services (QoS), an unforeseen
number of application variants can be created. The variant that best fits the current context
is selected through adaptation reasoning, which can suffer from the processing capabilities
of resource-scarce mobile devices, especially when a huge number of application variants
needs to be reason about. In this paper, we present a reasoning approach, which provides a
meaningful adaptation decision for adaptive applications having a large number of
variants within a reasonable time frame. The approach is validated through two arbitrary
applications with large number of variants.
Keywords: self-adaptation, ubiquitous computing, adaptation reasoning, variability,
scalability, utility function

1 Introduction
Mobile and ubiquitous computing introduce a growing demand for applications that are able to
adapt to dynamically changing execution environments, resources and user preferences. For
example, applications may want to react dynamically to fluctuations in network connectivity,
battery capacity, appearance of new devices and services, and to a change of user profiles and
their choices. Such adaptations are handled by automatically choosing a different variant of the
application that provides the same basic functionality with a changed quality of service. [1]

For component-based applications, with the option of integrating external services, application
variants can be created according to a variability model; similar to what is practised by the
product-line community [1]. An application is composed of components and/or services,
where each component/service can have a number of different variants1. Therefore, the total
number of application variants is a product of the variants of each of its constituent
components. In a ubiquitous computing environment, components and services can appear and
disappear at runtime. This fact advocates against a static architecture of the application, which
requires that at least one variant of a constituent component must be present. Therefore, the
architecture of the application can also evolve, with the possibility of using a completely
different set (and number) of components and services to realize the application. For such an

1 The details on constructing the variability model are presented in section 2.

An Adaptation Reasoning Approach for
Large Scale Component-based Applications

Proc. CAMPUS 2009 3 / 13

evolving architecture, possible application variants can not be foreseen at design-time. The
variability model of creating application variants suffer from the possibility of combinatorial
explosion, because in worst case the number of application variants is a product of number of
variants of individual components.

Runtime adaptation involves detecting and keeping track of available components, services
and their meta-information, selecting a variant through adaptation reasoning based on the
current context and then (re)configuring the composition to realize the selected variant of the
application. Adaptation reasoning performs the selection of the application variant that fits best
to the current context and resource situation. This step suffers the most from the combinatorial
explosion, because ideally the fitness of each variant needs to be checked. In the utility
function-based approach [3], the fitness is calculated by evaluating utility functions. In our
previous work [4], we have presented the concept and methodology for supporting such
adaptations. However, test results showed that the adaptation reasoning technique presented at
[4] works well only for applications with a limited number of variants; but becomes practically
useless for applications, which may offer a huge number of variants. Such a reasoning
technique requires evaluating not only the utility separately for each application variant; but
also property predictors [5] that compute its quality of service requirements and used by the
utility evaluation. Especially for resource scare mobile devices, such computational effort
makes meaningful adaptation infeasible.

In this paper, we present a reasoning approach which is stable against combinatorial
explosions and thus can provide adaptation reasoning within a meaningful time-frame, even
for devices with low computational resources. The rest of the paper is organized as follows:
Section 2 describes a technique of creating application variants with the help of a simple
example. Section 3 presents the reasoning approach and section 4 provides some evaluation
results for arbitrarily large application architectures. Section 5 compares the work with the
state of the art and in section 6, the paper is concluded summarizing its achievements and
pointing to future works.

2 Application Variability Model
The application architecture is created based on a variability model and thus it offers the
possibility of creating different variants of the application that differ in extra-functional
characteristics. When there is a significant context change, the middleware evaluates and
compares all available application variants based on different QoS-metadata associated to the
involved component realizations. Thus we consider applications that are developed with a
QoS-oriented component model, which defines all reasoning dimensions used by the planning-
based middleware to select and deploy the component implementation providing the best
utility. The utility of a component utilization is computed using a developer-defined utility
function. Such utility functions evaluate the fitness of a particular component variant based on
the QoS-properties required by its realization and that provided by the current context [6].

Application Conceptual Metamodel
An Application Type is viewed as a Component Type that can have different realizations
(Figure 1), where an application is such a realization of the application type. The meta-
information of a certain realization is described using Plans. A component type can be realized
by a single component, or by a composition of components, resulting in the concepts of atomic

 ECEASST

4 / 13 Volume 19 (2009)

and composite component types, respectively. Corresponding to the atomic and composite
component types, there are two types of Plans: Atomic Realization and Composite Realization.
In addition to the QoS-properties, an Atomic Realization Plan describes an atomic component
and contains a reference to the class or the data structure that realizes the component. The
Composite Realization Plan describes the internal structure of a composite component by
specifying the involved Component Types and the connections between them.

Figure 1: Application concepts and meta-information

Variation is obtained by describing a set of possible realizations of a Component Type using
Plans. In order to create a possible variant, one of the Plans of a Component Type is selected.
If the Plan is a Composite Realization Plan, it describes a collaboration structure of further
Component Types, which in turn are described by Plans. Now we proceed by recursively
selecting one realizing Plan for every involved Component Type. The recursion stops if an
Atomic Realization Plan is chosen. Therefore, by resolving the variation points we create
application variants that correspond to a certain composition of components depending on the
plans that are chosen for each of the Component Types.

With service-based adaptation a part-functionality may be provided through a dynamically
discoverable and accessible service. Thus, compositional adaptation is extended by taking a
service as a possible realization of a Component Type. To do so, the QoS-properties,
interfaces, and binding information have to be included in a corresponding plan. Service plans
are created at runtime, based on the discovery of a service and along with Composition and
Atomic Plans, they are also considered during the adaptation reasoning.

Runtime Creation of Application Variants
Application types, components, component types and plans are combined together in OSGi
bundles that are deployed on an adaptation middleware [6]. A distributed environment can
include any number of nodes in the middleware domain that are reachable or not due to

An Adaptation Reasoning Approach for
Large Scale Component-based Applications

Proc. CAMPUS 2009 5 / 13

changes in the network. Bundles can be deployed on these nodes at any time, such that
components, component types, and plans can appear and disappear unpredictably. When a new
bundle is deployed on an existing node or on a node entering the domain, the middleware
collects the information about the deployed application types, component types, plans and
components. References to these component types and plans are stored in respective
repositories. The middleware provides the repository service and therefore such repositories
can as well be distributed over several nodes. The relation between a component type and a
plan is established through their information model. When a node leaves the domain, the
bundles deployed on them are removed from the repository, eventually removing the bundle
contents like plans, component types etc. Thus the middleware keeps an up-to-date trace of all
the available component types and plans.

Another task of the middleware is to discover services that realize different component types,
marked as realizable through services. Each discovered service has a service description based
on which a service plan is created and registered in the plan repository. Thus, at runtime the
application architecture corresponds to a variability hierarchy containing component types and
their realization plans.

«applicationtype»
SatMotion

«compositionplan»
OneWayCommunication

«compositionplan»
TwoWayCommunication

«atomicplan»
Offl ine

«componenttype»
UserInterface

«componenttype»
Controller

«componenttype»
Recorder

«atomicplan»
HandsFreeUI

«serviceplan»
TextModeUI

«atomicplan»
SignalTra ceRecord

«atomicplan»
RecordTrace AndCommand

«atomicplan»
BasicMonitoring

«compositionplan»
Monitor ingAndControl

«componenttype»
SignalM onitor

«componenttype»
Computation

«atomicplan»
NormalEnv Monitor

«atomicplan»
NoisyEnv Monitor

«atomicplan»
BasicCommand

«atomicplan»
ReportAndCommand

«serviceplan»
WeatherReportGen

U1 = f(U(CT11), U(CT12), properties) U2 = f (U(CT21), U(CT22), U(CT23), properties) U3 = f(properties)

U(CT11) = U(CT21) = max (U211, U212)

U(App) = max (U1, U2, U3)

U211 = f(properties) U212 = f(properties) U231 = f(properties)

U221 = f(properties)

U2211 = f(properties) U2212 = f(properties) U2221 = f(properties) U2222 = f(properties) U2223 = f(properties)

U232 = f(properties)

U222 = f(U(CT221), U(CT222), properties)

U(CT22) = max (U221, U222)

U(CT23) = max (U231, U232)

U(CT221) = max(U2211, U2212) U(CT222) = max (U2221, U2222, U2223)

«compone...
UserInterface

«componen...
CrossPola rization

Figure 2 A variability hierarchy consisting of component types and plans

 ECEASST

6 / 13 Volume 19 (2009)

We illustrate the approach with a simplified version of a proof-of-concept application called
SatMotion [7]. The purpose of this application is to aid an installer of satellite antennas to
align them depending on the network characteristics of the execution environment. The
SatMotion application can run in a number of different modes. For example, in the Two Way
mode, besides receiving the trace of the antenna signal, it can communicate with a server and
send command signals requesting different antenna parameters. In the One Way mode, it can
only receive the signal trace but cannot send commands to the server. In the Offline mode, it
can only playback and analyze the recorded signal. The details of the application are beyond
the scope of the paper and are not required to understand the variability architecture.

Figure 2 presents an example of a variability hierarchy for the SatMotion application created at
runtime, consisting of component types and their realizing plans. These component types and
plans may be deployed separately on different nodes as part of different bundles. At runtime,
let us consider that the SatMotion application type has three realization plans; two of them are
composition plans and the other one, the Offline realization, is an atomic plan. The
OneWayCommunication composition plan realizes a variant that has a composition of two
component types UserInterface and CrossPolarization. The first one has two realizing plans;
but no plan is available at runtime for the CrossPolarization component type. The plan
TwoWayCommunication has a composition specification consisting of three component types,
UserInterface, Recorder and Controller. The component types UserInterface and Recorder
have only atomic and service plans, while the Controller component type has one atomic plan
BasicMonitoring and one composition plan MonitoringAndControl. Each of the component
types SignalMonitor and Computation has atomic and/or service realization plans.

In such a variability hierarchy, an atomic plan or a service plan indicates the bottom level of
the variability tree. So, they can be always applied to realize the component type. However, a
composition plan is only applicable if each of the component types involved in its composition
specification has at least one applicable plan. For example, the OneWayCommunication plan
is not applicable because there is no plan for the realization of the CrossPolarization
component type used in its composition. Therefore, the application can be realized either using
the Offline atomic plan or the TwoWayCommunication plan. Being a composition plan, the
latter contains a composition of components. The UserInterface and the Recorder component
types have two atomic plans each to choose from, while the Controller component type has
one atomic plan and one composition plan. Such options of alternating plans offer variability
in composing an application.

3 Runtime Reasoning
We have developed a middleware to provide the runtime support of adapting the application
[6]. The number of application variants (section 0) increases rapidly with the number of
component types participating in a composition. Though this increase is not prominent for a
very simple architecture like that presented in Figure 2, it becomes an issue of great concern
quite rapidly. For example, a composition plan having 6 different component types, where
each of the types has 10 different atomic plans, will have one million (1M = 106) variants for
this particular composition plan only. Selecting the best-fit variant calculating the utility of
each of such variants, resulting from a combinatorial explosion, is a time consuming task and
often fails to provide a solution within a reasonable time frame. Therefore, we have developed
a new reasoning approach, looking at the problem from a different perspective to make it free

An Adaptation Reasoning Approach for
Large Scale Component-based Applications

Proc. CAMPUS 2009 7 / 13

of such combinatorial explosions. We first present the reasoning approach and afterwards, we
explain the integration of related aspects like checking resource limits along with reacting on
context changes.

The Reasoning Approach
A component or a service has a certain utility for a particular context based on its QoS-
properties. The utility can be evaluated at runtime by a developer defined utility function. An
application is composed of components and services. Moreover, other properties, like the
communication among different components may influence the fitness of a particular
component composition. Therefore, it is assumed that the utility of the application can depend
on the utility of its constituent components as well as such properties. We also assume that a
higher utility of a constituent component will contribute to a higher utility for the overall
application.

In the application variability model (section 2), each atomic realization plan and service plan
has a set of QoS-property specifications that indicates the quality of service characteristics
required from the context and resources for the component or service to be usable. A utility
function takes those requirements into account and computes a utility for the realizing plan by
comparing them with the context and resource characteristics of the run-time environment.

In addition to a utility function, a composite realization plan contains a composition of
component types. Let us consider that CT = {CT1, CT2, …, CTn} is the set of component types
that is involved in a composition C. For all CTi ∈ CT, there exist sets A = {a1, a2..., ap}, B =
{b1, b2..., bq}, …, N = {n1, n2..., nz} where, ai ∈Realization Plans of CT1, bi ∈Realization Plans
of CT2, …, ni ∈Realization Plans of CTn.

Let us denote the utility of the realization plan ai as Uai. The utility of each chosen realization
plan for a component type contributes to the overall utility of a particular composition, and
eventually the composite realization plan, of which the component type is a part of. If UCT(ai)
denotes the contribution to utility for the composition when the realization ai is chosen, then it
is assumed that

(I) Uai ≥ Uaj ⇒ UCT(ai) ≥ UCT(aj); ∀ ai , aj∈A

The maximum utility available for the realization of a particular component type UCT1 is,

(II) UCT1 = max (UCT(a1), UCT(a2), …, UCT(ap))

In order to derive the maximum utility of the composition, Uc, a function satisfying (I) can be
defined as

(III) Uc = f(UCT1, UCT2, …., UCTn, Uprop)

where, Uprop is the contribution of properties (non-related to the individual components, rather
related to the composition, communication among components etc.) to the utility.

In general, the equation (III) can take any form, given that for each realization plan ai ,
equation (I) is also maintained. A special case of equation (III) can be represented as follows:

(IV) Uc = ∑
=

n

i 1
wiUCTi + wn+1Uprop

 ECEASST

8 / 13 Volume 19 (2009)

where, ∑
+

=

1

1

n

i
wi = 1.0 and each wi indicates the relative importance (weight term) of a component

type within a composition, as assigned by the developer while specifying the realization plan.

In order to illustrate the approach with the help of the example architecture presented in Figure
2, let us consider that the QoS-properties of the NoisyEnvMonitor plan are as follows:
 Memory = 100;
 EnvNoise = HIGH;
 NetworkType = WiFi;

Based on these QoS-properties, a utility function can be defined follows:

 U2212 = 0; if EnvNoise = LOW

 (
 (
 1.0; if context.Memory ≥ 100
 1.0 – (100 – context.Memory)/100; otherwise;
)
 + (
 1.0; if context.NetworkType = WiFi
 0.0; if context.NetworkType = None
 0.5; otherwise
)

)/2.0; otherwise
A runtime value of Memory = 90 and NetworkType = WiFi, with a HIGH EnvNoise will
result in a utility value of
 U2212 = ((1.0 – (100-90)/90) + 1.0)/2.0 = 0.95
U2211 can be calculated similarly according to another function and if U2212>U2211, the
NoisyEnvMonitor plan is chosen for the realization of the SignalMonitor component type.
Then U(CT221) = max(U2211, U2212) = 0.95

The utility for the Computation component type, U(CT222) can be computed in the same
manner. For this example, let us consider that U(CT222) = 0.8

Now, in the simplest case, let us assume that the utility of the MonitoringAndControl plan has
a contribution of 50% from U(CT221), 30% from U(CT222) and 20% from its properties. The
property contribution can be expressed the same way using a function. Let us presume that the
value is 0.7. Then,
 U222 = 0.5xU(CT221)+0.3xU(CT222)+0.2x0.7
 = 0.5x0.95+0.3x0.8+0.2x0.7 = 0.855

Following this approach, the utilities U2 for the TwoWayCommunication and U3 for the
Offline plan can be calculated and the one providing the highest utility is selected to run.
While realizing the application, the chosen plans at different levels are considered to
instantiate the components and/or to bind to the services.

It is to be noted that the successful application of the approach depends on a few reasonable
assumptions (e.g., equation (I)); but it does not apply to utility functions that violate these

An Adaptation Reasoning Approach for
Large Scale Component-based Applications

Proc. CAMPUS 2009 9 / 13

assumptions. For example, when the utility of a constituent component reduces the overall
utility of the composition (though, unlikely) or when the utilities of a component influences
the utility of another component in the composition, then the assumption becomes invalid.

Fitting within the Resource Constraints
In our approach, each running application is allowed to use a certain amount of resources,
assigned to it by an underlying middleware or operating system. Therefore, the application
variant chosen (by applying the reasoning approach of section 0) might not be practically
realizable. This problem demands a check of resource constraints of the chosen variant against
the runtime availability of the required resources. If such constraints are not met, another
variant must be chosen that will probably provide lower utility; but fits within the resource
constraints.

Ideally, resource constraints could be checked for each of the variants before checking for their
utilities; but that process would suffer from the combinatorial explosion, which we would like
to avoid. Therefore, we first find a variant by applying the reasoning approach and then apply
a local search mechanism to find a variant that provides a feasible solution satisfying
constraints for each of the resources with the minimum sacrifice to the utility.

The search is performed once for each of the resources. The target is to use a different variant
for the individual components until the resource constraints are met. The first step in the search
mechanism is to select the starting point among the chosen components for the application
composition. The component that requires the most resource can be a reasonable target,
because a second variant of that component would most probably release an appreciable
amount of resources, in a way to speed up the search. A second choice would be to start with
the least important component so that replacing it with its second best variant would not result
in much loss of utility. Both of these choices have their pros and cons and a combination of
them would suggest using the ratio resource needs to importance as the guiding factor to select
the starting point.

For the starting component, an alternative is chosen, which consumes less resource than the
previously chosen one, while provides the highest utility among the remaining options. For
example, in Figure 2, if ReportAndCommand plan (for corresponding component) was
initially chosen; but fails in resource constraint, then the one between BasicCommand and
WeatherReportGen provides the higher utility is chosen in this step, given neither of them
requires more resource than the ReportAndCommand plan. If the resource saved because of
selecting this new variant is still not sufficient to meet the resource constraint, then we proceed
with the next component. For example, we could now replace NoisyEnvMonitor by
NormalEnvMonitor, if the later requires less resource, though provides a slightly lower utility.
The search mechanism also takes into account the cases, where a composite realization plan
may appear as an alternative to an atomic realization plan. For example, if the
BasicMonitoring atomic realization plan were initially chosen; but fails in resource constraint,
then the search will consider the MonitoringAndControl composite realization plan to find the
best configuration applying the reasoning approach of section 0, given this configuration
collectively requires less resource than the component corresponding to the BasicMonitoring
plan.

The approach has the limitation that in extreme cases, we might have to sacrifice utilities in

 ECEASST

10 / 13 Volume 19 (2009)

great extent; but it helps avoiding the combinatorial explosion and therefore fits well within
the reasoning approach. Therefore, it will provide a feasible (satisfying architectural and
resource constraints) solution, if any, within a time frame acceptable to the user of the
application

Integrating the Effect of Context Changes
In order to further improve the adaptation reasoning performance, we selectively reason about
composition plans incorporating component types that have been affected by the specific
context change which has triggered the current adaptation process. Through realization plans
each component type explicitly defines its context and resource dependencies. Thus, whenever
a context change triggers an adaptation, the adaptation reasoner can omit recalculating the
utility values for the component types not being associated with the changed context elements.
Of course, such an optimization technique requires keeping track of the lastly calculated utility
score, for each component type or composition plan. This technique will enable evaluation of
composition plan utilities, without recalculating utilities of unaffected component types.

To illustrate the effect of context-based adaptation reasoning, we provide an example based on
the variability hierarchy model depicted in Figure 2. For the SatMotion application it is
reasonable to assume that only the SignalMonitor component type is associated with the
EnvNoise context element. Thus, a possible context change to the ambient noise level may
only affect the utilities of SignalMonitor and of its realizing components: NormalEnvMonitor
and NoisyEnvMonitor. Therefore, if we remember the previous utility score for the
Computation component type, we can evaluate U222 without recalculating U2221, U2222 and
U2223. Based on the same reasoning, we may skip U221, U231, U232, U211, U212 and U3
(U1 is omitted anyway since OneWayCommunication is not applicable) which leads us to a
total gain of 69.2 percent (i.e., only 4 out of 13 applicable utility functions were recalculated).

Advantages of the Approach
In this approach, the number of times the utility function has to be evaluated corresponds to
the number of ‘applicable’ plans. In the simple example of Figure 2 we need to evaluate it only
for 13 times (the OneWayCommunication plan is not applicable), while in the case of the one
million variant as mentioned at the start of section 3, we have to evaluate the utility for only 60
times. Thus, the approach becomes stable against scalability and more advantageous as the
number of variants increases.

Moreover, our experiences show that the specification of proper utility functions is a big
challenge requiring lot of intuition for the developer, especially for the one covering the
complete application. However, this task is simplified, if they have to specify utility for
individual components.

4 Evaluation Results
The superiority of the proposed evaluation approach is established by the fact that it requires
the evaluation of the utility function once for each plan. Therefore, with the increase of
number of plans in the variability hierarchy, the evaluation time should also increase linearly,
unlike the number of possible application variants, which may increase exponentially due to
combinatorial explosions.

An Adaptation Reasoning Approach for
Large Scale Component-based Applications

Proc. CAMPUS 2009 11 / 13

The effect is negligible for simple cases like what we have
presented in Figure 2. Therefore, we have tested the scalability
effect with two large scale examples; the first one comprises ~2M
application variants while a second set up consists of a total of
around 15M application variants. Please note that these examples
are no real life applications and therefore, the used components
only helps printing some messages to denote the selected variant.
The focus is on the speed of the adaptation reasoning, rather than
on the application functionalities.

The evaluation results are presented in Table 1. The reasoning
time on a Desktop PC is negligible, while for a Mobile device2, it
is only a few seconds. More importantly, the reasoning time does
not increase drastically, even though there is a huge increase in
the possible number of application variants. As a comparison to

such numbers, a Brute-force reasoning approach, which calculates
utility separately for each application variants, takes almost 14
minutes on a Desktop PC for the 2M (million) variant example.

Table 1: Evaluation result
Reasoning Time Device

for 2M variants for 15M variants

Desktop PC
WinXP, 3GHz, 1GB RAM

<20 ms < 20 ms

ARM 920T Device Emulator
Windows Mobile 5, 62MB

~ 1 s 1.5 – 2.0 s

These results show that this new approach can be applied to reason about the adaptation within
an acceptable time, even for large scale applications having a huge number of application
variants. This improvement is particularly important where the application architecture can
dynamically evolve at runtime, because the availability of new components, component types,
realization plans, and services may result in growing the number of possible variants quite
rapidly.

5 Related Work
Development methodologies, platforms and middleware supporting dynamic adaptation of
context-aware applications on mobile computing devices have been studied extensively during
the last decade. Some early approaches [11] provided support for adaptations foreseen during
the design of the application. They usually have only a limited number of adaptation options
and therefore, they are easier to handle and usually a policy-based approach [12] for the
adaptation decision is sufficient.

2 We have used Windows Mobile 5 Emulator on a Laptop to support using PhoneME with Knopflerfish,
which we could not run on a real device having WM 2003. The performance of an emulator depends
also on the host device (Laptop) and from our experience with WM 2003, Emulators usually perform
worse than a real device.

Figure 3 Reasoning time on
Windows Mobile Emulator

 ECEASST

12 / 13 Volume 19 (2009)

The complexity is increased when the need for runtime adaptation arises. The policy-based
approach becomes inapplicable, because the context and resource situation can not be fully
predicted. The utility function-based approach of adaptation decision might be applied in such
cases [3][4][13]. As for example, SAFRAN [9] is a framework for building self-adaptive,
component-based applications that separates the application logic from the adaptation. It is
very high level and, in principle, allows for the implementation of techniques similar to
distributed utility-based adaptation by allowing each component to decide upon which
reconfiguration to operate. In [3], utility functions express service level attributes to
dynamically allocate resources in an autonomic data centre system. Works like [4] and [13] are
predecessors of our work, applied in the same application areas, though they did not provide
solutions for taking care of scalabilities.

Utility-function based adaptation policies get rid of the shortcomings of predicting all
adaptation decisions at design-time; however, they introduce the need for evaluating utilities at
runtime. One of the shortcomings of the utility-function based solutions of adaptation decision
is the scalability [8], especially when they are combined with the variability approach of
creating the application architecture. The computation effort may increase exponentially with
the number of variation points. Some works [8][10] have tried to apply some heuristics in
simplifying that computation. However, the computation effort is still not linear with the
variation points and the need for property predictors has added to extra computation. The
approach presented in this paper can greatly aid the solution to such problems.

6 Conclusions
Adaptations of applications running in a ubiquitous computing environment require an
application architecture created through the composition of components and services available
at runtime. Such an adaptation process involves a number of tasks like retrieving information
about components and services, building the application architecture at runtime, reasoning
about them and configuring the best-fit composition. In this paper, we have presented an
approach that aids adaptation reasoning, which would otherwise suffer from the scalability
problem due to the combinatorial explosion of the number of application variants.

The presented approach provides a solution for adaptation reasoning, which is stable against
the scalability and can be applicable, even when the number of application variants becomes
quite huge. The combinatorial explosion is avoided by considering the utilities of each
realization plan separately than combining them together to find the complete application
variant before reasoning. The superiority of the approach is supported theoretically as well as
through practical test cases. It also aids the application developers by easing the process of
defining utility functions and QoS-properties for their components.

The solution also integrates support for checking resource constraints, which have to be dealt
with during the reasoning of adaptation. Besides, we are currently updating our solution to
architectural constraints [7], which would limit choosing among different realization plans by
specifying constraints, to fit within this new adaptation reasoning approach.

However, the effectiveness of the approach depends on a few assumptions. These assumptions
may not be applicable in cases, where the utility of a composition does not positively depend
on the utilities of its constituent components. In the future, we are going to investigate more on
such cases and improve the solution as necessary.

An Adaptation Reasoning Approach for
Large Scale Component-based Applications

Proc. CAMPUS 2009 13 / 13

7 References
[1] Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., “COVAMOF: A Framework for Model-

ling Variability in Software Product Families,” Proc. Third Software Product Line Confer-
ence, Springer, 2004, pp. 197–213.

[2] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund D., and Gjørven, E. Using architec-
ture models for runtime adaptability. IEEE Software 23(2):62--70, 2006.

[3] Walsh, W.E., et al. Utility Functions in Autonomic Systems. In proceedings of First Inter-
national Conference on Autonomic Computing (ICAC'04), pp. 70-77. 2004.

[4] Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjørven, E., Hallsteinsen, S.,
Horn, G., Khan, M. U., Mamelli, A., Papadopoulos, G.A., Paspallis, N. Reichle, R., Stav,
E., A Comprehensive Solution for Application-Level Adaptation. Journal on Software Prac-
tice and Experience, 2009; No. 39; pp. 385 - 422.

[5] Brataas, G., Floch, J., Rouvoy, R., Bratskas, P., and Papadopoulos, G.A. A Basis for Per-
formance Property Prediction of Ubiquitous Self-Adapting Systems. In: Proceedings of the
International Workshop on the Engineering of Software Services for Pervasive Environ-
ments (ESSPE'07), pp. 59–63, Dubrovnik, Croatia, ACM. AICPS. 2007.

[6] Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A.,
and Scholz, U. MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Ser-
vice-Oriented Environments. Chapter in book on Software Engineering for Self-Adaptive
Systems (SEfSAS), LNCS, Springer, 19 pages, 2009. Accepted for publication.

[7] Khan, M.U., Reichle, R., and Geihs, K. Architectural Constraints in the Model-Driven
Development of Self-Adaptive Applications. IEEE Distributed Systems Online, vol. 9, no.
7, 2008.

[8] Scholz, S. and Rouvoy, R. Divide and Conquer - Organizing Component-based Adapta-
tion in Distributed Environments. Communications of the EASST, 11, 2008.

[9] David, P.-C. and Ledoux, T. An Aspect-Oriented Approach for Developing Self-Adaptive
Fractal Components. In 5th International Symposium on Software Composition. LNCS
3089, pp. 82–97. Springer, 2006.

[10] Alia, M., Horn, G., Eliassen, F., Kahn, M.U., Fricke, R., and Reichle, R. A Compo-
nent-based Planning Framework for Adaptive Systems. The 8th International Symposium
on Distributed Objects and Applications (DOA), Oct 30 – Nov 1, 2006. Montpellier,
France.

[11] Mätzel, K. and Schnorf, P. Dynamic Component Adaptation. In ECOOP 2002 Work-
shop Reader, LNCS 2548. Springer, 2002.

[12] Lutfiyya, H., et. al. Issues in Managing Soft QoS Requirements in Distributed Systems
Using a Policy-Based Framework. In proceedings of 2nd International Workshop on Poli-
cies for Distributed Systems and Networks (POLICY’01). Springer, p. 185-201. 2001.

[13] Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S., and Stav, E. Composing Compo-
nents and Services using a Planning-based Adaptation Middleware. In proceedings of the
7th International Symposium on Software Composition (SC’08), LNCS 4954. Springer,
2008.

