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Abstract: The current evolution of Service-Oriented Computing in ubiquitous sys-
tems is leading to the development of context-aware services. These are services
whose description is enriched with context information related to the service execu-
tion environment and adaptation capabilities. This information is often used for dis-
covery and adaptation purposes. However, in real-life systems context information
is naturally dynamic, uncertain and incomplete, which represents an important issue
when comparing service description and user requirements. Uncertainty of context
information may lead to an inexact match between provided and required service
capabilities, and consequently to the non-selection of services. In order to handle
uncertain and incomplete context information, we propose a mechanism inspired
by graph-comparison for matching contextual service descriptions using similarity
measures that allow inexact matching. Service description and requirements are
compared using two kinds of similarity measures: local measures, which compare
individually required and provided properties, and global measures, which take into
account the context description as a whole. We show how the proposed mechanism
is integrated in MUSIC, an existing adaptation middleware, and how it enables more
optimal adaptation decision making.
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1 Introduction

The term Ubiquitous Computing, introduced by Weiser [1], refers to the seamless integration of
devices into users’ everyday life [2]. This term represents an emerging trend towards environ-
ments composed of numerous computing devices that are typically mobile or embedded and that
are connected to a network infrastructure composed of a wired core and wireless edges [3]. In
pervasive scenarios foreseen by Ubiquitous Computing, context awareness plays a central role.
Context can be defined as any information that can be used to characterize the situation of an
entity (a person, place, or object considered as relevant to the interaction between a user and
an application) [4]. Context-aware systems are able to adapt themselves to their environment,
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aiming at optimizing QoS for the user and resource consumption by taking context information
into account.

The dynamicity of pervasive environments encourages the adoption of a Service Oriented
Architecture (SOA). Service-Oriented Computing (SOC) is the computing paradigm that utilizes
services as fundamental elements for developing applications [5]. The key feature of SOA is that
services are independent entities, with well-defined interfaces, that can be invoked in a standard
way, without requiring the client to have knowledge about how the service actually performs its
tasks [6]. Such loose coupling fits the requirements of highly dynamic pervasive environments,
in which entities are often mobile, entering and leaving the environment at any moment. The
adoption of SOA in pervasive environments is leading to the development of ”context-aware”
services. Context-awareness becomes a key feature necessary to provide adaptable services, for
instance when selecting the best-suited service according to the relevant context information or
when adapting the service during its execution according to context changes.

However, in ubiquitous environments, context information is naturally uncertain and incom-
plete. Uncertain and incomplete context information may prevent perfect matches between re-
quired and provided properties, which may lead to the non-selection of a service. In other words,
when executing in pervasive environments, service matching mechanisms have to deal with the
question: how to reduce problems related to mismatching between contextual conditions related
to the execution of a service and the current context? Service selection mechanisms have to
cope with this issue: if some needed context information is missing or if it is uncertain, service
selection still has to proceed and choose a corresponding service that best matches the current
situation. These mechanisms should take into account uncertainty when ranking context-aware
services. Even if context requirements seem to match, if context information is too uncertain,
this match should be considered as proportionally imprecise. Consequently, a service that is well
ranked can receive a lower rank since this ranking is based on uncertain information. Then if this
ranking is calculated by a utility function, a service with medium utility can be chosen over one
with high utility, if the latter utility has a high uncertainty value associated with it.

We propose in this paper a mechanism inspired by graph-matching to overcome this issue.
The matching combines local and global similarity measures that compare context elements in-
dividually and context information and requirements as a whole. Such measures use uncertainty
associated as metadata with context information in order to better rank discovered services. This
paper is organized as follows. Section 2 gives an overview of the MUSIC middleware. Then,
section 3 presents the approach and section 4 shows how it is integrated in MUSIC using an
example GPS service. Section 5 presents related work and we conclude in section 6.

2 MUSIC middleware

The service selection approach proposed in this paper is part of a larger initiative, the MUSIC
Project. The MUSIC Project [14] is a focused initiative aiming at the development of context-
aware self-adapting applications. The main target is to support both the development and run-
time management of software systems that are capable of being adapted to highly dynamic user
and execution context, and to maintain a high level of usefulness across context changes. MU-
SIC adopts a service-oriented approach in which modeling languages allow the specification of
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context dependencies and adaptation capabilities. Such adaptation capabilities are based on the
specification, at design time, of multiple variations (implementations) for each component (or
service). The selection of the most appropriate variant is performed at runtime by the MUSIC
middleware based on the context dependencies associated with each variant and based on the
current execution context. Property predictor functions express the expected QoS provided by
components in a given context. These values are used in a utility function to calculate the utility
of a variant. Finally, the application is adapted to the variant with the highest utility given the
current context.

The MUSIC context modeling approach [16] identifies three basic layers of abstraction that
correspond to the three main phases of context management: the conceptual layer, the exchange
layer and the functional layer. The conceptual layer enables the representation of context infor-
mation in terms of context elements. These provide context information about context entities
(the concrete subjects the context data refers to: a user, a device, etc.) belonging to specific
context scopes. Such context scopes are intended as semantic concepts belonging to a specific
ontology described in OWL. Moreover, the ontology is used to describe relationships between
entities, e.g. a user has a brother. The exchange layer focuses on the interoperability between de-
vices. Context data in this layer is represented in XML and is used for communication between
nodes. The functional layer refers to the implementation of the context model internally in the
different nodes.

Additionally, the MUSIC middleware collects context information from a set of context plug-
ins [17]. Each plug-in handles a given pair of context entity and scope, periodically updating
the corresponding context element. In addition to context values, context plug-ins associate
different metadata with context elements they observe. These metadata include timeout and
other indicators concerning the quality of collected data.

The next section introduces a service selection mechanism, which is integrated in the MUSIC
platform and considers uncertainty of context information. As such, this mechanism adheres to
the MUSIC principles described above, namely: (i) evaluation of service variants using utility
functions; (ii) modeling of context information by means of context entities and scopes; (iii)
association of metadata with such context elements. These principles used in the MUSIC mid-
dleware form the basis for the proposed service selection approach.

3 Service selection under uncertainty

3.1 Services and MUSIC

The MUSIC project aims at exploiting SOA by allowing MUSIC applications to consider the
variability and non-functional properties of context-aware services. In other words, several ser-
vice implementations can supply the same functional capabilities (with a similar syntax), but
with different non-functional context-related properties.

The service selection approach proposed here complements the service selection mechanism
used by the MUSIC middleware for selecting the most suitable service among discovered and
compatible services. The MUSIC middleware compares context-aware service descriptions and
current execution context in order to rank suitable services, taking into account the current sit-
uation. Our service selection mechanism assumes that suitable services exist. It is part of a
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two-step process in which the first step discovers all services whose functional properties match
the functional requirements that are needed. This means our approach (the second step), dealing
with non-functional requirements, is employed only after suitable services are discovered. If
there are several discovered services able to satisfy a request formulated by a client application,
one has to select the service that suits best the current execution context. Such service selection
should take into account the fact that context information is naturally uncertain and incomplete.

We focus on non-functional context-related aspects of a service description, assuming the
selection process for meeting functional requirements (inputs and outputs) already took place.
Functional aspects of a service have the priority and are fulfilled in the first step of the selection
process, since mismatching on service input or output may affect correctness and execution
flow on both the service and the calling application. Thus, in this paper we focus only on non-
functional conditions related to the execution environment of context-aware services.

Service context requirements are modeled following the MUSIC context modeling approach,
presented in the previous section. The description of the non-functional service requirements,
illustrated in Figure 1, belongs to the exchange level, since it is used for information exchange
among different nodes. Thus, context information is described in XML by context elements,
which refer to a given entity and scope. Figure 1 illustrates the description of a context-aware
service that indicates the conditions to which this service implementation is best suited to (i.e.
the contextual situation in which it is most appropriate to call this service). More details about
this description can be found in [15].

The matching algorithm compares these descriptions of services with the description of the
current context. This matching is inspired on local and global similarity measures used in graph-
matching. From a conceptual point of view, the descriptions of the service context requirements
and of the current context can be represented as graphs, in which context elements represent
nodes and relations between these represent edges. Local measures can be used to compare node
to node of these graphs, while a global measure structurally looks at the similarity of the graphs.
This general matching algorithm is described in previous work . In this paper, we integrate the
theory worked out in [15] in the MUSIC adaptation mechanism that uses utility functions. While
in this paper we do not work explicitly with graphs, the analogy with graphs still remains valid.

3.2 Matching with uncertainty

The goal of the matching algorithm is to rank the available services based on their contextual
non-functional properties. It compares the context description related to available services with
the current execution context. This matching starts with comparing individual context elements
from both descriptions (from the context description of the service and from the current context)
individually, using local similarity measures. Then the global similarity measure is taken into
account by building the utility function from the local measures. The results of such global
measures, which are utility function values, are used to rank the services for their suitability in
the current context.

First we compare the current context values with the service requirements using local simi-
larity measures. For the node-to-node (i.e. context element to context element) comparison we
use measures as those proposed by SimPack [18], depending on the scope of the corresponding
context element. For example, for numerical values the measure represents how close the num-
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Figure 1: Context description of a service.

bers are lying together, relative to their range. The result of one node-to-node comparison is a
mean (between 0 and 1) with an uncertainty degree. The uncertainty of a context value is given
as a metadatum of that element between 0 and 1. A context plug-in, when collecting/calculating
a given context element, can estimate an uncertainty degree associated with context values. It is
the only one that can perform such an estimation, since the context middleware is not directly
aware of how data is collected. Thus, when looking at the similarity, we also take into account
uncertainty by combining the uncertainty of a current context value with the uncertainty result-
ing from the prediction of the QoS properties of a service (note that a MUSIC service will run
locally on the node). Incompleteness of context information is dealt with by taking the average
value as mean and the uncertainty degree as maximal, i.e. 1.

Thus, the local similarity of the service context requirements with the current context is ex-
pressed by the mean. A low mean expresses a low similarity and vice versa. In case the uncer-
tainty degree is 0 and the current context value and service context requirement are equal (exact
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match), the similarity measure is 1. We call the combination of mean and resulting uncertainty
degree the partial utility for the context element.

When the partial utilities of each service variant have been calculated, we have to combine
them. In other words, based on these partial utilities, we calculate a global similarity measure
and use a ranking scheme to select the service with the highest overall utility. The overall utility
is a normalized weighted sum of the different partial utilities. Highest utility is not necessarily the
utility with the highest mean because of the uncertainty of the context information: a given utility
with a mean that is only a little bit higher than another, but that has much greater uncertainty
degree is worse as a result. We prefer to minimize the ”risk”, which is defined as the probability
that an event will occur times the consequences (impact) if it does occur. A higher uncertainty
degree expresses more risk that the actual mean value will be different. For example, when
looking at the uncertainty degrees expressing the current available memory, we will prefer a
lower amount of memory if we are more certain that the amount of memory will actually be
available than risking a memory shortage. If the means are equal then of course less uncertainty
degree is better. If the uncertainty degrees are equal then higher mean is preferable. In the
borderline case, we use thresholds for both mean and uncertainty values. For example, let us
consider thresholds of 0.1 for mean values and 0.2 for uncertainty values: if two utilities differ
less than 0.1 in their mean values, then the utility with the highest mean is the best only if its
uncertainty degree is maximum 0.2 higher than the uncertainty degree of the utility with lower
mean. If mean difference between the overall utilities is more than 0.1 than the highest is in each
case the best utility, whatever the uncertainty degree is. The result of this utility function is then
used to rank available variants of a service.

The following section presents an example of a route planner service (”GPS service”) with
several variants. We explain how the partial utility functions and the overall utility function are
calculated. We also give examples of how uncertainty can be given as metadatum of a context
element or even can be the consequence of a property predictor function (which calculates the
expected QoS of a component in a given context).

4 Case study

In this section, we illustrate our approach through a case study. For this, let us consider a
route planner service (”GPS service”) that calculates the route for a user based on GPS infor-
mation. This service has several implementations, which vary according to two main criteria
(non-functional properties): route quality and response time. Such non-functional properties
correspond to user preferences represented, according to MUSIC context modeling approach, as
part of the user context, and more precisely, as part of the user profile (i.e. context elements with
scopes routequality and response, as indicated in Figure 2).

Additionally, we consider the following observed context scopes: available memory resources,
GPS signal strength (0-100), and light conditions (0 or 1). For each context scope observed, a
partial utility function is proposed in order to compare locally context elements corresponding
to this scope. Examples of such partial utility functions are proposed in Figure 3.

In addition to these partial utility functions, property predictor functions can be defined for
each service variant. For example, the route planner service proposes variants based on the
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Criteria for GPS service variants:

• route quality requested by application varies between 0 and 1
• time requested by application varies between 4 and 20
• context.routequality and context.response are user preferences

Figure 2: Non-functional properties determining service variants.

Partial utility functions: 〈mean,uncertainty〉
memory-utility = if (context.availablememory > service.neededmemory) 1

else 0
routequality-utility = if (context.routequality) > service.routequality) 1

else 1 - (service.routequality - context.routequality)
response-utility = if (context.response > service.response) 1

else 1 - (service.response - context.response)
light-utility = if (context.light and service.light) or

(!context.light and !service.light) 1
else 0

Figure 3: Partial utility functions evaluating memory, route quality, response time and light.

response time information, which are calculated using the GPS signal strength, as well as the
available memory observed by the corresponding context plug-ins (Figure 4).

In order to rank available services, the service selection mechanism considers mean values
obtained with previous functions in a overall utility function. Thus, considering the route plan-
ner service, let us suppose that the following context elements are currently available: con-
text.availablememory, context.routequality, context.response and context.light. Service.neededmemory,
service.routequality, service.response and service.light are non-functional requirements of this
service, obtained from the XML context description file associate with service variants. It is
worth noting that we indicate observed context values by context.scope and service values by
service.scope.

Then, supported variation points are light (2 variants), memory needed (3 variants with dif-
ferent response times, as discussed in Figure 4) and offered route quality (3 variants), which
means that, in total, there are 18 service variants. We need to select the service variant with the
highest utility. However, service.response element is uncertain because context.signalstrength
measured value in property predictor function is uncertain (e.g. since signal strength fluctuates
and measurement is done by imprecise software). This means that context.signalstrength is a
context value with a mean value and an uncertainty as metadatum.

The response-utility function uses the mean value of the previous step to compute the response-
utility and transforms the uncertainty value into an uncertainty degree. As a result, the output
of the response-utility is a mean and an uncertainty degree, which is input for the overall utility
function. The similarity of current context value and service requirement is used as an extra
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Property predictor functions for service.response:

• low-response-service:
service.response = if (context.signalstrength >80) 5

else 5 + ((80 - context.signalstrength) / 80) * 20
This variant needs minimal 10 units memory

• medium-response-service:
service.response = if (context.signalstrength >50) 5

else 5 + ((50 - context.signalstrength) / 50) * 20
This variant needs minimal 40 units of memory

• high-response-service:
service.response = if (context.signalstrength >20) 5

else 5 + ((20 - context.signalstrength) / 20) * 20
This variant needs minimal 100 units of memory

Figure 4: Examples of property predictor functions.

weight in the utility function. The overall utility function for the case study considered here is
presented in Figure 5.

The result of each partial utility function is a mean with an uncertainty degree. The means are
filled in as values of the overall utility function. This gives a value that is the ”utility mean”. The
utility also has an uncertainty degree: this is a function of the uncertainty degree of each partial
utility function weighted according to the weights in the overall utility function. Service variants
are ranked based on these values (utility mean and uncertainty), as explained in Section 4.2: for
”normal” cases, variants with higher mean will be better ranked than variants with a lower mean
value. However, in the borderline cases, when the difference between values associated with two
variants is lower than a predefined threshold (0.2 in this case), the service variant with a lower
uncertainty degree will be better ranked than a variant with a higher one.

5 Related work

A growing interest in context-aware services can be observed in the literature. For instance, sev-
eral European projects are focusing on Service-Oriented Computing [7], and context-awareness
appears as a crosscutting issue for these works. According to Tonielli et al. [8], in pervasive
scenarios, users require context-aware services that are tailored to their needs, current position,
execution environments, etc. According to Suraci et al. [9] user and service entities have require-
ments on context information they need in order to work properly. A user may have requirements
on the context of the service he is looking for (availability, location...) and on the context pro-
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Overall utility function:
utility(mean) = if (memory-utility(mean) = 0) 0

else (0,25 * light-utility(mean) + 0,50 * response-utility(mean)
+ 0,25 * routequality - utility(mean))

utility (uncertainty-degree) = if (memory-utility(mean) = 0)
memory-utility(uncertainty-degree)
else (0,25 * light-utility(uncertainty-degree)
+ 0,50 * response-utility(uncertainty-degree)
+ 0,25 * routequality - utility(uncertainty-degree))

Figure 5: Example of overall utility function.

vided by the environment (wireless connection...). A service can require the user to provide
specific context information (location, terminal capabilities...) and the environment to provide
context information too (network QoS...).

Most research tracks on context-aware services focus on how to describe and discover these
services [7]. For instance, Suraci et al. [9] propose a semantic modeling of services in which
service profile descriptions in OWL-S are enriched with a ”context” element pointing to this
required context information. Ben Mokhatar et al. [10] propose the use of ontologies in OWL-
S for the semantic description of functional and non-functional features of services in order to
automatically and unambiguously discover such services. Other works, such as [11], focus on
service matching algorithms considering context information. For instance, Klusch et al. [11]
propose a service matching algorithm which combines reasoning based on subsumption and
similarity measures for comparing inputs and outputs of service description and user request.
Reiff-Marganic et al. [12] propose a method for automatic selection of services based on non-
functional properties and context.

However, works cited above do not consider inexact matching caused by incomplete or un-
certain context information. Context information is naturally dynamic and uncertain: it may
contain errors, be out-of-date or even incomplete. Uncertainty in context information is tradi-
tionally handled by appropriate models, such as proposed by Chalmers et al. [13], who represent
context values by intervals or sets of symbolic values. Other approaches such as [19] and [20]
deal with uncertainty using fuzzy logic. However, they do not concentrate on inexact service
matching. Service selection algorithms ought to consider uncertainty represented in their mod-
els. These algorithms should take into account uncertainty when ranking and selecting services.
Nevertheless, algorithms proposed in previously cited works do not consider uncertainty of con-
text information, assuming that such information is precise enough. We argue that uncertainty
on context information must be considered when ranking and selecting available services.
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6 Conclusions

In this paper, we proposed a service selection mechanism that takes into account uncertainty of
context information when ranking service variants. This mechanism integrates theory worked
out in the MUSIC project that uses utility functions to evaluate available variants. Inspired by
this theory, the service selection mechanism uses partial utility functions combined to overall
utility functions in order to compare the context-related requirements of each service variant
with the current context values. Such functions are based on the analysis of mean values and
uncertainty degrees, allowing the MUSIC middleware to rank available variants considering not
only context values, but also their mean and estimated uncertainty. As future directions, we
expect to test the performance of the mechanism with traditional service selection mechanisms
initially proposed in MUSIC (that do not deal with uncertain context information) in ubiquitous
environments. This will allow us to experimentally evaluate the threshold values that need to be
set concerning the uncertainty degree and utility.

Acknowledgements: The authors would like to thank their partners in the MUSIC-IST project
and acknowledge the partial financial support given to this research by the European Union (6th
Framework Programme, contract number 35166).
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