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Abstract: Switch equivalence for transformation systems has been successfully
used in many domains for the analysis of concurrent behaviour. When using graph
transformation as modelling framework for these systems, the concept of negative
application conditions (NACs) is widely used – in particular for the specification
of operational semantics. In this paper we show that switch equivalence can be
improved essentially for the analysis of systems with NACs by our new concept of
permutation equivalence.

Two derivations respecting all NACs are called permutation-equivalent, if they are
switch-equivalent disregarding the NACs. In fact, there are permutation-equivalent
derivations which are not switch-equivalent with NACs.

As main result of the paper, we solve the following problem: Given a derivation with
NACs, we can efficiently derive all permutation-equivalent derivations to the given
one by static analysis. The results are based on extended techniques for subobject
transformation systems, which have been introduced recently.

Keywords: Graph Transformation, Adhesive Categories, Subobject Transformation
Systems, Negative Application Conditions, Process Analysis

1 Introduction

Transformation systems based on the double pushout (DPO) approach [CMR+97] with negative
application conditions (NACs) [HHT96, EEPT06] are a suitable modelling framework for sev-
eral application domains, e.g. definition of operational semantics and simulation. In this context,
the analysis of concurrent behaviour of an execution of the system is of interest. A process of an
execution describes all possible equivalent executions. Correspondingly, a process of a deriva-
tion defines an equivalence class of derivations. Processes of graph transformation systems based
on the DPO approach [CMR96] were defined as occurrence grammars in [Bal00]. Occurrence
grammars were lifted to the abstract setting of adhesive rewriting systems [BCH+06] in order to
generalise the process construction. This opened possibilities for analysing processes of trans-
formation systems based on arbitrary adhesive categories [LS04], such as typed graphs, graphs
with scopes and graphs with second order edges.

This paper extends the standard switch equivalence of derivations without and with nega-
tive application conditions to the so-called permutation equivalence of derivations with nega-
tive application conditions (NACs) in adhesive categories. The main difference is that there
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are permutation-equivalent derivations with NACs, which cannot be derived by switching NAC-
independent neighbouring derivation steps. The challenge is to efficiently calculate derivations,
which are equivalent in the sense that all NACs are respected and the matches of the original
derivation are preserved. However, a direct construction of all permutation-equivalent deriva-
tions is complex in general. First of all, the amount of possible permutations is high in general
and furthermore, the permutations have to be derived from the original derivation by computing
the new matches and the new intermediate objects from the old ones and checking that all NACs
are fulfilled.

The main result of this paper is a framework for the efficient analysis of permutation equiv-
alence, i.e. the efficient construction of all derivations, which are permutation-equivalent to a
given one (see Theorems 1 - 3 in Sec. 5). The presented technique is based on subobject trans-
formation systems (STSs) [CHS08], which can be constructed in advance, i.e. possibly before
a user requests an analysis. They are based on the process construction given in [BCH+06] and
we extend them for the case with NACs. This builds the basis for efficient dependency checks
between components of pairs of rule occurrences, where expensive pattern matching is avoided.

The next section reviews transformation systems and introduces the new notion of permuta-
tion equivalence. Thereafter, subobject transformation systems (STSs) as process model of a
derivation are reviewed and Section 4 shows how the process construction can be extended to
systems with NACs. Thereafter, Section 5 presents the analysis of permutation equivalence of
derivations with NACs and shows as a main result that the analysis can be transferred to the de-
rived STS leading to correct results for the original system. Section 6 concludes the main results
and discusses future work within the presented framework.

2 Transformation Systems and Permutation Equivalence

In this section we review transformation systems based on the double pushout (DPO) approach
and the standard switch equivalence of derivations. We present an example in the context of
workflow modelling, where we use negative application conditions (NACs) and show that switch
equivalence does not lead to all intuitively equivalent derivations in our example. For this reason
we introduce the new notion of permutation equivalence, which leads to the discussed equivalent
derivations.

A derivation in an adhesive category C is given by a sequence of rule applications within a
grammar. A transformation rule p = (L←l− K −r→ R) consists of three objects L,K,R ∈ Ob j(C)

being left-hand side, interface, and a right-hand side, respectively,
NAC

q |
EE

""EEE
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m ��

noo

(PO1)
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loo r //

�� (PO2)
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G Doo // H

and two monomorphisms l,r ∈Mor(C). The interface K contains
the part which is not changed by the rule and hence occurs in both L
and R. Applying a rule p to an object G means to find a monomor-

phism m : L→G and to replace the matched part in G by the corresponding right-hand side R of
the rule, thus leading to a transformation step G

p,m
=⇒H. In this paper, matches are required to be

monomorphisms. But as explained in [HE08, Her09b], the analysis based on subobject transfor-
mation systems is also possible for systems with non-monomorphic matching. A transformation
step is given by a double-pushout (DPO), where D is the intermediate object after constructing
the pushout complement for pushout (PO1) and in (PO2) H is constructed as gluing of D and R

Proc. Doctoral Symposium ICGT 2008 2 / 16



ECEASST

via K. A sequence of transformation steps d = (d1; . . . ;dn) is called a derivation. A rule may con-
tain a set of negative application conditions (NACs) [HHT96, EEPT06]. A NAC (N,n : L→ N)
of a rule consists of a negative pattern N together with a monomorphism n from the left hand side
of the rule to N. Intuitively, it forbids the presence of a certain pattern in an object G to which
the rule shall be applied. A match L −m→ G satisfies a NAC n : L→ N, written m |= N, if there is
no monomorphism N −q→ G with q◦n = m.

Typed transformations are based on a type object TG and the derived slice category C ↓ TG,
where each object G is typed over TG by typeG : G→ TG and morphisms are compatible with
the typing morphisms. A grammar specifies a start object, a type graph and a set of rules for
performing typed transformations.

Definition 1 (Grammar) Given a category C, a grammar GG = (SG,TG,P,π) consists of a type
object TG, a start object SG, a finite set of rule names P and a function π , which maps a rule
name to a rule with NACs p = (p,N) containing a rule p = (L←l− K −r→ R) and a finite set of
negative application conditions N. The start graph and the productions of GG are typed over TG.
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2:Task
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Figure 1: The graph grammar GG

Example 1 (Graph Grammar GG) Figure 1 shows the graph grammar GG = (SG,TG,P,π) for
mobile agents in reconfigurable networks. The mappings of the rule morphisms are specified
by numbers. Rule “startTask” assigns a person to a task via an edge of the type “worksOn”,
but the rule is not applicable if the task was already started, as specified by the NAC “NAC1”.
Rule “finishTask” is inverse to “startTask” and removes the assignment and the edge of the type
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“started”, while rule “stopTask” also deletes the assignment, but not the flag “started”. Finally,
rule “continueTask” specifies that a person may continue the work, which possibly was started
by another person and stopped meanwhile. The NACs NAC1 and NAC2 of this rule require that
neither the person itself nor another person is working on the task to be assigned.

Switch equivalence of derivations without NACs is based on sequential independence.

Definition 2 (Sequential Independence without NACs) Let d = (G0 =
p1,m1===⇒ G1 =

p2,m2===⇒ G2)
be a derivation without NACs in a grammar GG. Then, d1 =
G0 =

p1,m1===⇒ G1 and d2 = G1 =
p2,m2===⇒ G2 are two sequentially inde-

pendent derivation steps, if there exist i : R1 → D2, j : L2 → D1
in the diagram on the right, which shows parts of the derivation
diagrams, s.t. l′2 ◦ i = m′1 and r′1 ◦ j = m2.

K1

��

// R1

m′1

//

��// i ""

L2

m2
��

����j
||

K2

��

oo

D1 r′1 // G1 D2l′2oo

Remark 1 (Local Church Rosser) Two sequentially independent derivation steps without NACs
can be switched by the Local Church Rosser Theorem (Thm. 5.12 in [EEPT06]). By mk :
Lk→ G′k we denote the match for rule pk in the new order of the steps.

Given a derivation without NACs, switch equivalence leads to the complete set of its equivalent
derivations [BCH+06]. Note that DPO derivation diagrams are unique up to isomorphism only,
thus we relate isomorphic derivation diagrams by “∼=” meaning that there are isomorphisms
between the objects compatible with the involved morphisms.

Definition 3 (Switch Equivalence without NACs) Let d = (d1; . . . ;dk;dk+1; . . .dn) be a deriva-
tion without NACs in grammar GG, where dk;dk+1 are two sequentially independent derivation
steps. Let d′ be derived from d by switching (dk;dk+1) to (d′k+1;d′k) according to the Local

Church Rosser Theorem. Then, d′ is a switching of d, written d sw∼ d′. Switch-equivalence
sw
≈

is the union of the transitive closure of sw∼ and the relation ∼= for isomorphic derivations.

We now extend the notion of switch equivalence to derivations with NACs using sequential
independence for derivations with NACs according to [HHT96, LEO06].

Definition 4 (Sequential Independence with NACs) Let d = (G0 =
p1,m1===⇒ G1 =

p2,m2===⇒ G2) be a
derivation with NACs in a grammar GG. Suppose
that i : R1→ D2, j : L2→ D1 exist in the two deriva-
tion diagrams on the right, s.t. l′2 ◦ i = m′1, r′1 ◦ j = m2.
Suppose also that the derived match m1 : L1 → G′1

L1

m1
��

K1

��

//oo R1

m′1

//

��// i ""

L2

m2
��

����j
||

K2

��

oo // R2

m′2��
G0 D1

r′1
//

l′1
oo G1 D2

l′2
oo

r′2
// G2

by the Local Church Rosser Theorem and the match m2 = l′1 ◦ j : L2→ G0 fullfill all NACs, i.e.
m2 |= N2 for each NAC (n2 : L2→ N2) of p2 and m1 |= N1 for each NAC (n1 : L1→ N1) of p1.
Then, G0 =

p1,m1===⇒ G1, G1 =
p2,m2===⇒ G2 are two sequentially independent derivation steps with NACs.

Definition 5 (Switch Equivalence with NACs) Let d = (d1; . . . ;dk;dk+1; . . .dn) be a derivation
with NACs in grammar GG, where dk;dk+1 are two sequentially independent derivation steps
with NACs. Let d′ be derived from d by switching dk;dk+1 to d′k+1;d′k according to the Local
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Church Rosser Theorem. Then, d′ is a switching with NACs of d, written d swN∼ d′. Switch

equivalence with NACs
swN
≈ is the union of the transitive closure of swN∼ and the relation ∼= for

isomorphic derivations.

G1
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3:Task
6:started

2:Person

⇒ ⇒ ⇒

G0

1:Person

3:Task
6:started

2:Person G2
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2:Person G3

5:worksOn

1:Person

3:Task 6:started

2:Person G4

1:Person

3:Task
6:started

2:Person

⇒

Figure 2: Derivation d in the grammar GG

Example 2 (Derivation in GG) Derivation d = (d1;d2;d3;d4) = (G0 =
continueTask,m1========⇒ G1

=
stopTask,m2======⇒ G2 =

continueTask,m3========⇒ G3 =
stopTask,m4======⇒ G4) in Fig. 2 describes that at first person “1”

works on task “3” and afterwards person “2” works on the same task, but both of them stop
without finishing the task. Derivation steps d2 to d4 are dependent from their preceding steps and
thus, no switching of independent steps is possible: the second step deletes edge “4” produced
by the first step, the NAC of the third step forbids the presence of “4”, which is deleted by the
second, and finally, the fourth step deletes edge “5” that was created by the third step. However,
there is a permutation of the steps, which is conceptually equivalent to the depicted derivation.
Consider d′ = (d′3;d′4;d′1;d′2), where the third and fourth steps are moved to the front, all NACs
are respected and the rules of GG are applied at the same places of the graph that is transformed.

Since switch equivalence is not general enough for transformation systems with NACs as
shown and explained in Example 2, we introduce the notion of permutation equivalence for
derivations with NACs, which relates all equivalent derivations that respect the NACs. In partic-
ular, the equivalent permutation of the example can be derived by the new notion.

Definition 6 (Permutation Equivalence of Derivations) Two derivations d and d′ with NACs in
a grammar GG are permutation-equivalent, written d

π

≈ d′, if disregarding the NACs, they are
switch-equivalent.

A direct analysis of permutation equivalence in the adhesive category of the derivations is
possible, but can be quite complex, if e.g. the graphs of the derivation are much bigger than
in the simple running example. For each possible switching disregarding the NACs we have
to update the derivation diagrams and perform pattern matching for the NACs on the updated
objects in order to check whether the new derivation is permutation-equivalent. Therefore, we
suggest to first construct a process model based on Subobject Transformation Systems, and then
to perform a more efficient analysis on it. Accordingly, the main results of this paper, given by
Theorems 1 - 3 in Sec. 5, show that the analysis on the basis of STSs is sound and complete and
that the process model can be constructed efficiently.

Next, we will show how subobject transformation systems can be used as process model for
a derivation without NACs. Thereafter, we present in Sec. 4 how they can be extended to the
case with NACs leading to an efficient analysis framework for permutation equivalence, which
is shown and explained in Sec. 5.
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3 Subobject Transformation Systems

Processes of a graph grammar are defined as occurrence grammars together with a mapping to
the original grammar. The concept of occurrence grammars was extended to the more abstract
setting of adhesive rewriting systems [BCH+06] based on subobjects. This technique was fur-
ther elaborated in [CHS08] introducing the general concept of subobject transformation systems
(STSs). In this section we review STSs and their construction from a given derivation without
NACs.

A subobject A of an object T of a category C is an equivalence class of monomorphisms
a : A→ T . We write A for short to denote a representative of the equivalence class and we
leave the monomorphism a implicit. The category of subobjects of T is called Sub(T ) and its
morphisms f : A→ B are those monomorphisms in C, which are compatible with the implicit
monomorphisms to T , i.e. b◦ f = a for a : A→ T and b : B→ T . If such an f exists, we write
A⊆ B for short.

Definition 7 (Subobject Transformation Systems) A Subobject Transformation System S =
(S0,T,P,π) over an adhesive category C consists of a super object T ∈ C, a start object S0 ⊆ T
in Sub(T ), a set of production names P, and a function π , which maps a production name q to a
production

〈
Lq,Kq,Rq

〉
, where Lq,Kq, and Rq are objects in Sub(T ), Kq ⊆ Lq and Kq ⊆ Rq.

The application of a production in an STS is based on union and intersection, which are co-
product and product in category Sub(T ) and they can be constructed in the underlying adhesive
category C as follows: A∩B is given by the pullback of A→ T ← B and A∪B is given by the
pushout of A← A∩B→ B. The implicit monomorphism of A∩B is given by A∩B→ A→ T
and the one of A∪B is the induced one by the pushout property [LS04].

Definition 8 (Direct Derivations) Let S = (S0,T,P,π) be a Subobject Transformation System,
π(q) = 〈L,K,R〉 be a production, and let G be an object of Sub(T ). Then there is a direct
derivation from G to G′ using q, written G =

q⇒ G′, if G′ ∈ Sub(T ) and if there exists an object
D ∈ Sub(T ) such that: (i) L∪D∼= G; (ii) L∩D∼= K; (iii) D∪R∼= G′, and (iv) D∩R∼= K.

According to Proposition 6 of [CHS08] a direct derivation in an STS induces a DPO diagram in
the underlying adhesive category C. Therefore, a derivation in an STS, specified by its sequence
of rule names, gives rise to a derivation in C.

Definition 9 (Derivation of an STS-sequence) Let dS = (G0 =
q1=⇒ G1 =⇒ . . . =

qn=⇒ Gn) be a deriva-
tion in an STS S. Let s = 〈q1; . . . ;qn〉 be the sequence of the rule occurrences according to dS.
Then, drv(s) denotes the sequence of DPO diagrams in C for each derivation Gi−1 =

qi⇒ Gi in S.

In order to derive all switch-equivalent derivations to a given one we can analyse its process,
which is given by an isomorphism class of occurrence grammars together with a mapping to
the original grammar as presented in [CMR96, BCH+06]. An occurrence grammar directly
corresponds to an STS and in fact, the construction of an STS in [CHS08] from a given derivation
tree coincides with the above construction of an occurrence grammar in the case of a linear
derivation, i.e. there is a one-to-one correspondence between both representations. In analogy to
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[BCH+06], we explicitly define the start object S0 of an STS derived from a derivation instead
of leaving it implicit. Furthermore, this paper does not consider general derivation trees, but
derivation sequences, for which we extend the analysis to the case with NACs in Sec. 5.

Definition 10 (STS of a Derivation) Let d = (G0 =
q1,m1===⇒ . . . =

qn,mn===⇒ Gn) be a derivation in an
adhesive category. The derived STS of d is denoted by Prc(d) and constructed as follows:
Prc(d) = (S0,T,P,π), where T is the colimit of the DPO-diagrams given by d, S0 is given by the
embedding G0 ⊆ T , P = {(qi, i) | i ∈ [n]} is a set that contains a rule occurrence name for each
rule occurrence in d and π maps each rule occurrence name (qi, i) to the rule occurrence at the
i(th) step in d extended by the embeddings into T . The sequence of rule occurrence names of P
according to d is denoted by seq(d).

In [BCH+06] the set of all linearisations of the process is derived using compound relations,
which can be obtained from basic relations as shown in [CHS08]. Hence, we can use the follow-
ing general relation of independence subsuming the basic relations for analysing switch equiva-
lence.

Definition 11 (Independence of Productions in STSs) Let S = (S0,T,P,π) be an STS and let
q1,q2 ∈ P be two production names, and π(pi) = 〈Li,Ki,Ri〉 for i ∈ {1,2} be the corresponding
productions. Then, q1 and q2 are independent, denoted q1 ♦ q2, if

(L1∪R1)∩ (L2∪R2)⊆ (K1∩K2).

In the following, we define the switch equivalence for sequences of rule occurrence names
within an STS, which will be used in Sec. 5 for the analysis of permutation equivalence.

Definition 12 (Switch-Equivalence of Sequences) Let S = (S0,T,P,π) be an STS, let d be a
derivation in S and let s = 〈q1, . . . ,qn〉 be its corresponding sequence of rule occurrence names.
Let qk,qk+1 be independent in S, then the sequence s′ = 〈q1, . . . ,qk+1,qk, . . . ,qn〉 is switch-
equivalent to the sequence s, written s sw∼S s′. Switch equivalence

sw≈S of sequences is the
transitive closure of sw∼S .

4 Subobject Transformation Systems with NACs

In this section, we extend the definition of subobject transformation systems to STSs with NACs.
Each rule in an STS is extended by an ordered list of NACs, which is later used by the dependency
relations in Sec. 5 for specifying the NAC that is causing a dependency.

Definition 13 (STS with NACs) A Subobject Transformation System with NACs S =(S0,T,P,π)
over an adhesive category C consists of a super object T ∈ C, a start object S0 ⊆ T in Sub(T ),
a set of production names P, and a function π , which maps a production name q to a production
with NACs (

〈
Lq,Kq,Rq

〉
,N), where Lq,Kq, and Rq are objects in Sub(T ), Kq ⊆ Lq, Kq ⊆ Rq and

N is an ordered list of negative application conditions with L⊆ N[i]⊆ T , where N[i] denotes the
i(th) element of N.
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Direct derivations with NACs in an STS correspond to direct derivations with NACs in the
underlying adhesive category, but the check of a NAC to be found in the intermediate object G
is simplified, because a NAC in an STS cannot occur at several positions in G.

Definition 14 (Direct Derivations with NACs) Let S = 〈S0,T,P,π〉 be a Subobject Transforma-
tion System with NACs, π(q) = (〈L,K,R〉 ,N) be a production with NACs, and let G be an object
of Sub(T ). Then there is a direct derivation with NACs from G to G′ using q, written G =

q⇒ G′,
if G′ ∈ Sub(T ) and for each N[i] in N: N[i] * G and if there exists an object D ∈ Sub(T ) such
that: (i) L∪D∼= G; (ii) L∩D∼= K; (iii) D∪R∼= G′, and (iv) D∩R∼= K.

The extension of the process mapping Prc for derivations with NACs in an adhesive category
is based on the following instantiation of NACs applied for all derivation steps.

Definition 15 (Instantiated NACs) Let (Ni,ni)∈N be a NAC of a rule p = (p,N) of a grammar
GG = (SG,TG,P,π) in an adhesive category, with p = (L←l− K −r→ R),
let d be a derivation with NACs in GG, where p is applied at step k
via the match mk, and let T be the colimit of the derivation diagram
of d. An instantiated NAC M of (Ni,ni) is a subobject of T (M ⊆ T ),
such that M ∼= Ni, L ⊆ M and M is compatible with the typing of Ni

and with ni, i.e. typeNi
= typeT ◦ incM,T ◦ isoM and incL,M = isoM ◦ ni

as shown on the right. The set of all instantiated NACs of p is denoted
by NacsT (p,mk).

Ni

typeNi 00

isoM

GG

##GG

Loonioo
� _

��

lL

zzvvvvvv
(=)

M �� // T
typeT��(=)

T G

Remark 2 Note that given a NAC, then the set of its instantiated NACs may be empty, which
means that the NAC cannot be found within T . Furthermore, a set of instantiated NACs may be
infinite if T or d are infinite. In this case the analysis in Sec. 5 may not be decidable. However,
in the case of finite derivation sequences and objects being finite in its structural part, e.g. finite
graph structure of an attributed graph with an infinite algebra, we get a finite list for each NAC.
Note further that (Ni, incM,T ◦ isoM)∼= (M, incM,T ) in Sub(T ).

Definition 16 (Derived STS with NACs) Let GG be a grammar in an adhesive category C and
let d = (G0 =

p1,m1===⇒ . . . =
pn,mn===⇒ Gn) be a derivation in GG. The STS for d is given by Prc(d) =

(S0,T,P,π), where T is the colimit of the derivation diagram of d, S0 is given by G0 and its em-
bedding to T , P is a set of rule names, each distinguished name qk corresponds to a derivation step
dk = Gk−1 =

pk,mk===⇒ Gk in d and the mapping π is given as follows: π(qk) = (〈Lk ⊇ Kk ⊆ Rk〉 ,Nk),
where Nk is an ordered list of the set NacsT (qk,mk). The order of Nk is arbitrary but fixed. The
sequence of rule names of P in d is denoted by seq(d).

T

4:worksOn

1:Person

3:Task
6:started

2:Person

5:worksOn

S0

1:Person

3:Task
6:started

2:Person

Figure 3: Super object T and start object S0 of the STS Prc(d)

Example 3 (STS of a Derivation) For the derivation d = (G0 =
continueTask,m1========⇒ G1 =

stopTask,m2======⇒ G2
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Figure 4: Rule occurrences of the STS Prc(d)

=
continueTask,m3========⇒ G3 =

stopTask,m4======⇒ G4) in Fig. 2 we construct the STS S = Prc(d) = (S0,T,P,π)
as shown in Fig. 3 and Fig. 4, where numbers denote the embeddings to the colimit T of the
derivation diagram. The start object S0 is given by G0 in d and its embedding to T . Rule
occurrences “cont1” and “cont2” correspond to the first and third derivation step, respectively.
Each NAC of “continueTask” can be instantiated once, given by N1[1] and N1[2] for “cont1”.
For “cont2” they are instantiated to N2[1] and N2[2]. The rule occurrences “stop1” and “stop2”
correspond to the second and forth derivation step of d. As explained before in Example 2, no
switching is possible in d.

5 Efficient Analysis

In order to analyse dependencies within the process Prc(d) of a derivation d with NACs two
new relations are introduced specifying weak enabling and weak disabling dependencies. Here
we can use the fact that the NACs in an STS are given as ordered lists to indicate the concrete
NAC instantiation that is causing a dependency. These relations are used to characterise the
permutation equivalence of derivations with NACs by properties in the derived STS shown by
the main technical result of the paper in Thm. 1.

Intuitively, q1 weakly enables q2 if it deletes an item that is part of the forbidden structure
of the NAC N2[i] of q2. This means that there is an element in L1 ∩N2[i] that is not contained
in K1 ∪L2. Analogously, q1 is weakly disabled by q2 if q2 produces an item that is part of the
forbidden structure of the NAC N1[i] of q1.

Definition 17 (Weak NAC Enabling) Let q1 and q2 be two rules in an STS and let N2[i] be a
NAC of q2, i.e. N2[i] ∈ N2 for π(q2) = (〈L2,K2,R2〉 ,N2). The relation <wen[i] is defined on P as
follows: q1 <wen[i] q2⇔ L1∩N2[i] * K1∪L2.
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Definition 18 (Weak NAC Disabling) Let q1 and q2 be two rules in an STS and let N1[i] be
NAC of q1, i.e. N1[i] ∈ N1 for π(q1) = (〈L1,K1,R1〉 ,N1). The relation <wdn[i] is defined on P as
follows: q1 <wdn[i] q2⇔ N1[i]∩R2 * K2∪L1.

Note that the STS is an unfolding of the original derivation. Thus, e.g. for the category
Graphs we have that elements can be created and deleted, but never re-created after they have
been deleted in a derivation of the derived STS, because the colimit construction distinguishes
each creation of an element. This implies that each item is either produced by exactly one rule
or it is present in the start object and not produced by any rule. Thus, a NAC is satisfied, if
an item of the elements it forbids has already been deleted (weak enabling) or such an item
is created later (weak disabling). This condition is formalised by the following notion of legal
sequences based on the new dependencies. It allows us to first characterise equivalent derivations
with NACs within an STS. Afterwards we show that this characterisation is sound and complete
for analysing the permutation equivalence of derivations with NACs in the original adhesive
category.

Definition 19 (Legal Sequence) Let d = (d1; . . . ;dn) be a derivation with NACs in an adhesive
category and let Prc(d) = S = (S0,T,P,π) be its derived STS with NACs. A sequence s =
〈q1; . . . ;qn〉 of rule names of P is locally legal at position k ∈ {1, . . . ,n} with respect to d, if each
rule name in P occurs exactly once in s and the following conditions hold:

1. s
sw
≈S seq(d)

2. ∀ NACs Nk[i] of qk :
(
∃ e ∈ {1, . . . ,k−1} : qe <wen[i] qk or
∃ d′ ∈ {k, . . . ,n} : qk <wdn[i] qd′ .

)
The sequence s of rule names is legal with respect to d, if it is locally legal at all positions k ∈
{1, ..., n} with respect to d.

The second condition of Def. 19 considers NACs and ensures that each NAC of a rule cannot
be found in the subobject to which the rule is applied, which is a consequence of Thm. 1 and
explained above. This subsumes the special case of s = seq(d), where we have that seq(d) is
always legal with respect to d. The following definition of permutation equivalence of sequences
is based on the notion of legal sequences and therefore, it suffices to evaluate the presented
relations on rule occurrence names in order to analyse permutation equivalence of sequences.

Definition 20 (Permutation Equivalence of Sequences) Let d be a derivation with NACs and
let S = Prc(d) = (S0,T,P,π) be its derived subobject transformation system with NACs. Two
sequences s,s′ of rule names in S are permutation equivalent, written s

π

≈S s′, if they are legal
sequences with respect to d.

Now, we are able to state by Thm. 1 below that the analysis of permutation equivalence within
the framework of STSs is sound and complete.

Theorem 1 (Analysis of Permutation Equivalence of Derivations based on STSs) Let d be a
derivation with NACs in a grammar GG in an adhesive category and let S = Prc(d). Then the
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analysis of permutation-equivalence within S is sound and complete:
Let d′ be a derivation with NACs in GG, then: d

π

≈ d′⇔ seq(d)
π

≈S seq(d′).

Proof. The proof is given in [Her09a].

Based on Thm. 1 we define for a given derivation d the set EQU(d) of all canonical deriva-
tions, which are derived from permutation-equivalent sequences of seq(d) in Prc(d). Note that
the set EQU(d) is finite, if d is finite.

Definition 21 (Canonical Equivalent Derivations) Let d be a derivation with NACs in grammar
GG in an adhesive category and let S = Prc(d). The set EQU(d) = {drv(s′) |s′

π

≈S seq(d)} is
called set of canonical permutation-equivalent derivations of d.

Now we can state the second main result of this paper by Thm. 2, which shows that for each
derivation d′, wich is permutation-equivalent to d, there is an isomorphic representative in the
set of canonical equivalent derivations EQU(d).

Theorem 2 (Generation of all Permutation-Equivalent Derivations based on STSs) Let d be a
derivation with NACs in a grammar GG of an adhesive category C and let S be the derived STS
from d. Then, ∀ d′ : d

π≈ d′ ∃ d′′ ∈ EQU(d) : d′ ∼= d′′.

Proof. This is a consequence of Def. 21 and Thm. 1, where the derivation d′′ is obtained by
drv(s′) with s′ being the sequence of rule occurrence names that correspond to the steps of
d′.

Furthermore, the construction of the process model of a derivation is efficient as stated by the
next theorem. This ensures that the effort for the construction of the presented framework does
not lead to efficiency problems of the overall analysis.

Theorem 3 (Efficient Construction of the Process Model) Let d be a derivation with NACs in
a grammar GG of the category Graphs and let S be the derived STS from d. If additionally
the size of each NAC is bounded by the size of the left hand side of the corresponding rule plus
an arbitrary but fixed c, then the complexity of the construction of the process model S and its
dependency relations is in O(nc+4), where n is the length of the input I = (GG,d).

Proof. The super object T is constructed as colimit of d by incremental pushouts for each deriva-
tion step and the intermediate colimit object is extended by at most n elements at each step. Thus,
this construction has a complexity of O(n2). The size of T is at most n, because - in the worst
case - T is given as disjoint union of the graphs in d. Furthermore, the construction of S0 with
its embedding to T and the construction of P is linear.

The mapping π is given by composing the morphisms in d with the embeddings to T and
instantiation of the NACs. For each derivation step we have at most n NACs of the current rule p.
The left hand side of p is already embedded into T and it remains to perform pattern matching for
the additional elements (at most c) for each NAC. We derive complexity O(nc ·n ·n) = O(n2+c)
and there are at most n1+c NAC-instances for each rule occurrence.
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The relations:For each pair of rules we store a Boolean value specifying whether the relation ♦
holds. We have at most n2 pairs and use the embeddings to T to check whether they overlap only
on interface elements of the rules. Thus, we have a complexity of O(n3) and a Boolean array of
size at most n2. For each instantiated NAC (at most n1+c) of a rule occurrence q we check the
relation <wdn[i] against each other rule q′, i.e. whether the rules overlap on Lq and Kq′ only. We
derive the complexity O(nc+1 · n2 · n) = O(nc+4) and a Boolean array of size at most nc+3. The
same procedure is applied for <wen[i]. Summing up all steps, we have complexity O(nc+4).

Remark 3 (Check for Permutation Equivalence) If we are interested whether two given deriva-
tions d and d′ with NACs are permutation-equivalent we can transfer this problem to the usual
analysis of switch equivalence without NACs. The reason is that we already know that d and
d′ respect all NACs. But note that this check also involves isomorphism checks, because the
modified structure of an intermediate object in d is not related to some structure in d′.

The following claim states that given a derivation d of a graph grammar, then for large in-
termediate graphs and long derivations the generation of a complete set of representatives for
all permutation-equivalent derivations with NACs is more efficient using the derived STS than a
direct generation based on the conditions of permutation equivalence.

Claim 1 (Efficiency of the Analysis of Permutation Equivalence of Derivations) Given a long
derivation d in category Graphs, where the intermediate graphs of d are large. Then, the gener-
ation of EQU(d) using Prc(d) is more efficient than a direct generation within Graphs.

Justification of Claim 1: We explain, why the complexity of the direct analysis of permuta-
tion equivalence of derivations with NACs in the adhesive category Graphs is higher than in
the derived STS for long derivations with large intermediate graphs. First of all, sequential in-
dependence has to be checked for each switching. Furthermore, we have to construct the new
transformation steps according to the switching in order to derive the current intermediate ob-
jects. For checking that a switching is valid, we then have to perform pattern matching of the
NACs of each derivation step that was involved in a switching. Pattern matching is of high com-
plexity even for medium sized objects, e.g. graphs with more than 20 nodes and edges. Finally,
many switchings can be possible at the same time, but not all of them will lead to an equivalent
derivation, which implies many backtracking points and paths.

The main advantage of the analysis using STSs is that we do not need to update the graphs of
the derivation and we do not need to perform pattern matching for the NACs after each switching.
Permutation equivalence of sequences within an STS does only concern the introduced relations
on rule occurrence names. This means that we only have to check whether rule components
overlap in the specified way. Therefore, we do not need to perform any pattern matching after
the STS is constructed. Furthermore, we can compute the relations once and for all and store
the results in Boolean arrays. This allows us to efficiently check the relations. A more detailed
explanation of the reasons for the claimed efficiency is presented in [Her09a].

Example 4 (Equivalent Sequence) The presented derivation d′ in Fig. 5 is permutation-equivalent
to the derivation d in Fig. 2 in Section 2. The last two steps are moved to the beginning. Using
the relations in an STS we derive the dependencies as listed in Fig. 5 for the rule occurrences
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G’1

4:worksOn

1:Person

3:Task
6:started

2:Person

⇒ ⇒ ⇒

G0

1:Person

3:Task
6:started

2:Person G’2

1:Person

3:Task
6:started

2:Person G’3

5:worksOn

1:Person

3:Task
6:started

2:Person G4

1:Person

3:Task
6:started

2:Person

⇒

d′ = (G0 =
continueTask,m′3========⇒ G1 =

stopTask,m′4======⇒ G2 =
continueTask,m′1========⇒ G3 =

stopTask,m′2======⇒ G4)

write causality weak enabling weak disabling
cont1 <wc stop1 stop1 <wen[1] cont1 cont1 <wdn[1] cont1
cont2 <wc stop2 stop1 <wen[1] cont2 cont1 <wdn[1] cont2

stop2 <wen[2] cont1 cont2 <wdn[2] cont2
stop2 <wen[2] cont2 cont2 <wdn[2] cont1

Figure 5: Derivation d′ equivalent to d in GG and the table of its dependencies

“cont1, cont2, stop1, stop2” in Fig. 4, where the basic relation for write causality “q1 <wc q2”
as defined in [CHS08] is a special case of dependency given by ¬(q1 ♦ q2). This implies that
“cont1” has to occur before “stop1” and “cont2” before “stop2”. According to Thm. 1 and
Def. 20 we can check, whether the sequence seq(d′) can be derived by the presented relations.
First of all, the sequence is derived by switchings of independent rule occurrences without con-
sidering NACs: stop1↔ cont2, stop1↔ stop2, cont1↔ cont2 and cont1↔ stop2 leading to
s = 〈cont2;stop2;cont1;stop1〉= seq(d′). Now, for each rule occurrence and NAC in s there is a
weak enabling rule before or a weak disabling rule behind or the rule disables itself. For instance
for N1[2] of “cont1” we have “stop2” with stop2 <wen[2] cont1 and therefore, N1[2] is not present
in the intermediate object. All together s = seq(d′) is a legal sequence with respect to d, which
implies that seq(d′)

π

≈S seq(d) and hence, d′
π

≈ d according to Thm. 1.

Note that a pairwise switching of the example derivation with NACs is not possible, because
each pair is sequentially dependent - either by causal relation or by NAC dependency. Therefore,
this sequence cannot be derived by standard switching of completely independent derivation
steps according to switch equivalence with NACs in Def. 5. This shows that switch equiva-
lence with NACs based on sequential independence of derivations with NACs [HHT96, LEO06,
LEOP08] only leads to a subclass of equivalent derivations and in general, many equivalent
derivations cannot be derived. But as the example derivation shows, all permutation-equivalent
derivations are of interest, because a certain person may not be available for a concrete time slot
while another person could use the time and give some support for the task.

6 Conclusion and Future Work

Up to now, process analysis of transformation systems did not consider negative application
conditions (NACs), which are widely used in practical case studies and applications. Switch
equivalence based on sequential independence of derivations with NACs [HHT96, LEO06] is
not sufficient, because rule applications may be possible in an equivalent way at several posi-
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tions of the derivation, which are not situated next to each other and these permutation-equivalent
derivations cannot be derived by switching sequentially independent steps as explained with the
presented example. Furthermore, also critical pair analysis [LEPO08] for systems with NACs
only leads to partial results in this context. Critical pairs specify the possible conflicts of produc-
tions without considering the current instance objects on which productions are applied to in a
concrete derivation. But in most cases rules have the ability to conflict each other. Analogously,
the criteria for the applicability of rule sequences in [LET08] cannot be applied, because they
are only sufficient but not necessary, and furthermore, matches can be arbitrary and do not have
to be equivalent.

For this reason, we introduced permutation equivalence for derivations with NACs. From a
general point of view permutation equivalence is maximal in abstraction, because it relates two
derivations, if they start at the same object, they end at the same object, both derivations are valid,
each one can be obtained by the other by permuting the applied rules, and finally all matches are
equivalent with respect to the gluing of all intermediate instances.

The main result of this paper is a framework for the efficient analysis of permutation equiva-
lence, i.e. the efficient derivation of all derivations, which are permutation-equivalent to a given
one. The presented construction of a process model for derivations with NACs is based on sub-
object transformation systems (STSs) [CHS08], which are defined for the abstract setting of
adhesive categories. Thus, the process analysis can be instantiated to several concrete categories.

The main benefit of using STSs in this context is that the construction of the process model can
be performed in polynomial time and in advance, i.e. possibly before a user requests an analysis.
Furthermore, the relations for the analysis are based on overlappings, which implies that there
is no need for pattern matching and updates of the derivation in order to analyse permutation
equivalence of derivations with NACs. A direct analysis in the adhesive category of the derivation
would cause high complexity as explained in detail in the previous section. In particular, many
of the possible permutations have to be constructed and checked including the high complexity
of pattern matching for the NACs on the updated intermediate objects.

This paper is a fundamental contribution to the PhD project: Process Construction and Anal-
ysis for Workflows modelled by Adhesive HLR Systems with Application Conditions [Her08].
While this paper concerns the extension of the process construction for NACs in the setting
of adhesive categories, also positive application conditions will be integrated in a further step,
which allow the modeller to specify rules that are more compact, which additionally leads to a
bigger class of permutation-equivalent derivations in general. Furthermore, the results will be
transferred to the more general class of adhesive high level replacement systems (AHLR sys-
tems) [EEPT06] as already explained in [HE08, Her09b]. The developed techniques will be
instantiated to typed attributed graph transformation systems and further more, to Petri net trans-
formation systems, which are used for modelling mobile networks.

The benefits of the overall framework of process analysis will be elaborated in future case
studies for reconfigurable workflow models as instances of AHLR systems, which shall show
that analysis and execution are efficient and convenient.While the running example of this paper
is simplified to show the results on compact instances, a full case study of mobile reconfigurable
workflow systems will cover complex scenarios and in particular emergency scenarios. A moti-
vation for the case study is to compute equivalent executions that show maximal parallelism or
improved properties with respect to the application domain.
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