Electronic Communications of the EASST

Volume 18 (2009)

Proceedings of the
Eighth International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Euler Diagram Transformations
Andrew Fish

17 pages

Guest Editors: Artur Boronat, Reiko Heckel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Euler Diagram Transformations

Andrew Fish!

I andrew.fish@brighton.ac.uk, http://www.brighton.ac.uk/cmis/contact/details.php?uid=agf
School of Computing, Mathematical and Information Sciences
University of Brighton, UK

Abstract: Euler diagrams are a visual language which are used for purposes such as
the presentation of set-based data or as the basis of visual logical languages which
can be utilised for software specification and reasoning. Such Euler diagram rea-
soning systems tend to be defined at an abstract level, and the concrete level is
simply a visualisation of an abstract model, thereby capturing some subset of the
usual boolean logic. The visualisation process tends to be divorced from the data
transformation process thereby affecting the user’s mental map and reducing the
effectiveness of the diagrammatic notation. Furthermore, geometric and topologi-
cal constraints, called wellformedness conditions, are often placed on the concrete
diagrams to try to reduce human comprehension errors, and the effects of these con-
ditions are not modelled in these systems.

We view Euler diagrams as a type of graph, where the faces that are present are
the key features that convey information and we provide transformations at the dual
graph level that correspond to transformations of Euler diagrams, both in terms of
editing moves and logical reasoning moves. This original approach gives a corre-
spondence between manipulations of diagrams at an abstract level (such as logical
reasoning steps, or simply an update of information) and the manipulation at a con-
crete level. Thus we facilitate the presentation of diagram changes in a manner that
preserves the mental map. The approach will facilitate the realisation of reasoning
systems at the concrete level; this has the potential to provide diagrammatic reason-
ing systems that are inherently different from symbolic logics due to natural geo-
metric constraints. We provide a particular concrete transformation system which
preserves the important criteria of planarity and connectivity, which may form part
of a framework encompassing multiple concrete systems each adhering to different
sets of wellformedness conditions.

Keywords: Euler Diagrams, Graph Transformations, Logical Reasoning

1 Introduction

Euler diagrams are used as the underlying structures in many application areas for the represen-
tation of set-based information, such as: non-hierarchical directories [DES03, DF07], complex
genetic set relations [KMGBO05], ontologies in semantic web applications [HES ™ 05], statistical
data [CRO3], and as the basis of logical specification and reasoning systems which can be used
in software systems development (e.g. Constraint diagrams [FFHOS, Ken97]). Logical reasoning

1/17 Volume 18 (2009)

mailto:andrew.fish@brighton.ac.uk
http://www.brighton.ac.uk/cmis/contact/details.php?uid=agf

Euler Diagram Transformations Eﬁ

systems based on Euler diagrams (e.g. Spider diagrams [HST05]) tend to apply to the abstract
level, with the concrete level simply being a visualisation of the abstract level. Wellformedness
conditions are often imposed on concrete diagrams in order to try to enhance comprehensibility
of the diagrams, but this can lead to some abstract diagrams not being representable by concrete
diagrams. Developing abstract level reasoning systems avoids the complexities of concrete level
reasoning, but accordingly denies us the development of a truly diagrammatic reasoning system
affected by geometric and topological constraints. If we are to define transformation rules at the
concrete level then they should /ift to the abstract level (in the sense that they can be viewed
as an instantiation of an application of the abstract rules to their abstract models, but the con-
straints imposed at the concrete level can restrict the application of the rules). The development
of broader transformation systems with more generic manipulations than logical reasoning rules
will enable wider applicability of the systems.

We present a brief outline of the methodology used upfront, using Figure 1, for reference
purposes; details and explanations of terminology will follow. The left hand part of Figure 1
depicts the generation process for wellformed Euler diagrams (see [FFHOS] for details) which
involves constructing an abstract labelled graph (called the superdual in [FFHO8], or a closeness
graph in [Cho07]) from an abstract diagram d, finding a planar spanning subgraph that satisfies
connectivity conditions and embedding it in the plane so that it satisfies certain face conditions,
yielding the “dual” of an appropriate concrete diagram. Varying the wellformedness conditions
that are imposed on the system affects the conditions imposed on the graphs but the same general
approach can be taken (this relaxation of some conditions was performed in [Cho07]).

abstract level transformation
Abstract diagram d, Abstract diagram d,
\

Abstract Labelled Graph

Planarise subject

to some conditions Abstraction

Generation l

Concrete Labelled Graph 31 * —> Concrete Labelled Graph 3;

// dual graph level transformation
d,

Concrete diagram d, Concrete diagram tfz

concrete level transformation

Figure 1: An overview of the generation process and the transformation systems involved.

Transformations of diagrams at the abstract level can only alter the abstract sets of zones and
contours, and these are straightforward to describe (typically they would be add or remove ab-
stract contours or zones; see Definition 6 and Example 3). However, transformations of diagrams
at the concrete level would involve geometric transformations which can be very hard to describe
(see Section 3 for an example). Also, one must ensure that the transformations do not cause the
violation of the wellformedness conditions that are imposed on the system. Therefore, we define
a transformation system on the labelled dual graphs of the concrete diagrams. Note that we per-
form operations on the embedded labelled dual graphs because we want to preserve the mental
map, but a similar approach can be taken at an abstract dual graph level; this may provide a
system in which rules are more often applicable, but will lose some of the geometric information

Proc. GT-VMT 2009 2/17

Eg ECEASST

contained in the concrete dual graphs. So, as depicted in Figure 1, given an abstract diagram
d; and a generated concrete diagram d) with labelled dual graph dy, we apply transformations
which take cf]* and return Ciz*, which is the dual of concrete diagram d>. We show that these trans-
formations lift to abstract level transformations in the sense that the abstraction of the concrete
diagram d is the abstract diagram d> obtainable from the abstract level transformation.

After discussing some related work in Section 1.1, we recall background definitions of Euler
diagrams at both concrete and abstract levels, the notion of wellformedness conditions imposed
on concrete diagrams, and develop further the notions of the graph of an Euler diagram and its
labelled dual graph in Section 2. We develop transformation systems at the abstract diagram level
and then at the concrete dual graph level (corresponding to concrete diagram transformations
that lift to abstract diagram transformations), in Section 3. Conclusions and future work plans
are discussed in Section 4.

1.1 Related work

In [MMMO8] the authors present a general layout approach which operates on either the ab-
stract or concrete syntax levels of a diagram language, using graph transformations at the con-
crete level and model transformations at the abstract level. They examined the relative benefits
of each level of application using deterministic finite state automata as their example language,
and indicated that concrete level specification was more natural, whereas abstract level specifica-
tion was less error prone. Layout refinement, or beautification [CMP99], refers to the process of
improving an initial layout via small changes measured by metrics designed to capture aesthetic
qualities for example. In [RMF04], the problem of the production of pairs of Euler diagrams
(with additional graphs overlaid) that were similar in appearance was addressed using layout
refinement methods: they developed comparison measures for Euler diagrams, integrated them
into a multicriteria optimizer, and applied a force model for the associated graphs that attempted
to move nodes towards their positions in the original layout. This approach utilises existing gen-
eration techniques for each of the pair of diagrams independently, not taking account the other
diagram. Therefore, this does not facilitate on-line transformations such as contour addition; an
on-line approach is likely to be more efficient in this case due to the complexity of the generation
procedure (in [ChoO7] the Euler diagram generation problem is shown to be NP-complete under
a given set of wellformedness conditions). In this paper, our approach inherently takes account
of a diagram to be transformed and enables the on-line update of diagrams. Furthermore, the
Euler diagram comparison measures and beautification methods of [RMF04] could be applied
as a post-processing step after the creation of the transformed dual graphs, thereby avoiding the
major computational difficulties but gaining the major benefits of their approach.

In [SHRZO08], the addition of curves to wellformed Euler diagrams is considered, adopting an
ad-hoc approach utilising an extension of a dual graph, but no proof of correctness is provided.
Their approach extends to nested wellformed Euler diagrams by using the method of decom-
posing Euler diagrams developed in [FF08]. This method for curve addition could be viewed as
a slightly obscured version of a specific case of the methodology for curve addition developed
in this paper. However, our method is generic, operating on and returning actual concrete dual
graphs, and can be applied to diagrams which break several of the wellformedness conditions.

3/17 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

In [MELS95], the term layout adjustment is used for geometric transformations that adjust
a layout after its initial creation. They suggest several models (orthogonal ordering, proximity
relations, topology) for the mental map, which should be preserved if possible when adjusting
graph-based diagrams; that is, when adjusting a diagram the relative ordering of nodes and the
proximity of nodes of the original graph should be preserved as much as possible, as should
the dual graph. In an interactive setting they consider node addition and identify techniques for
ensuring node disjointness after the insertion. More recently, in [LLY06] simulated annealing is
used to try to maintain the mental map, with cost function incorporating six criteria of [BT02]
where similarity measures of graphs were defined and tested against human perception. In this
paper we are considering substantial transformations to a diagram such as adding or removing
contours, and we consider the primary notion of preserving the mental map to be realised by the
preservation of as much the embedded dual graph of the original diagram as possible. Since the
diagrams are constructed from the dual graphs in this context, this preservation encompasses the
main concepts of the mental map models above. Further techniques for layout adjustment of the
transformed dual graph could then be performed if necessary.

2 Euler Diagrams and Graphs

First of all we recall the definitions of Euler diagrams, separating the abstract and concrete mod-
els as usual, and then we provide a set of wellformedness conditions that are often imposed with
the intention of reducing human comprehension errors; Definitions 1 and 2 are adapted from
those in [FFHOS].

Definition 1 An abstract Euler diagram is a pair: d = (C(d),Z(d)) where: C(d) is a finite set
whose members are called (abstract) contours, Z(d) C ZC(d) is the set of (abstract) zones of

d, where &X denotes the powerset of set X, and |J z=C(d). If Z(d) # ZC(d) then the
Z€Z(d)
elements of ZC(d) — Z(d) are called missing zones.

Definition 2 A concrete Euler diagram is a pair d = (C(d),F;) where: C(d) is a finite set
of closed curves, called (concrete) contours, in the plane, and F; : C (d) — % is a function
associating with each contour a label drawn from an infinite alphabet of labels .Z. The label set
Z(d) of d is the set of labels associated with d: £ (d) = {F;(¢)|¢ € C(d)}. A minimal region
of a concrete Euler diagram d is a connected component of RZ— |J ¢é. Let X C C(d) be a set
éec(d)
of contours, and let interior (¢) and exterior (¢) denote the interior and exterior ! of a contour ¢,
respectively. If the set Z= () interior(¢) N () exterior(¢) is non-empty, then Z is a zone of
cex eeC(d)-X
d (note that a zone is a union of minimal regions); the set of labels associated with the contours
in X is the zone label set £(2) of 2: £(2) = {F;(¢)[é € X}.
We say d is wellformed if all of the following wellformedness conditions (WFCs) hold:

WFC 1 Simple contours: The contours are simple closed curves.

1" In the transformation systems that we develop in this paper the usual meaning of interior and exterior of simple

closed curves are adopted. Suitable extensions are used if non-simple curves are present; see [FS06] for example.

Proc. GT-VMT 2009 4/17

Eg ECEASST

WFC 2 Unique contour labels: Each contour has a unique label; that is, F}; is injective.

WFC 3 Transverse intersections: Contours meet transversely. This can be subdivided into:

WEFC 3a No tangential intersections.

WEFC 3b No concurrency; that is contours meet at a discrete set of points.
WFC 4 No multiple points: At most two contours meet at a single point.
WFC 5 Connected concrete zones: Each concrete zone is a minimal region.

These are the most commonly considered wellformedness conditions but other constraints
could be imposed, such as using fixed geometric shapes like circles or ellipses; for example, the
generation of area proportional Euler diagrams with small numbers of circles was investigated
in [ChoO7].

{
A B
{A} {A,B} {B}

B A
C c

agy ABC

Figure 2: A concrete Euler diagram (left), its graph together with an unlabelled dual graph
overlaid in grey (middle) and the labelled dual graph (right) where the vertex labels sets and the
induced edge labels are shown (with set brackets on edge labels omitted for readability purposes).

Example 1 The left of Figure 2 shows a concrete Euler diagram d with three contours labelled
A, B and C, and six zones which can be informally described as: outside all contours; inside A
and outside B and C; inside B and outside A and C; inside A and B but outside C, inside A and C
but outside B; inside A, B and C. The associated abstract diagram d is a set of abstract contours,
together with a set of abstract zones: ({A,B,C},{{}, {A}, {B}, {A,B}, {A,C}, {A,B,C}}),
where the abstract zones correspond to the set of contours that the concrete zone is “inside”.
The concrete diagram d fails WFC 3a and WFC 4 since it has a point of intersection of the
three curves (i.e. a multiple point) where the contours labelled A and C meet tangentially. The
diagram d forms a single component and has three branch points (see Definition 4), giving rise to
the graph G(d) shown in the middle of the figure. An unlabelled dual graph of G(d) is overlaid,
shown in grey, whilst the right of the figure shows d*, the dual of the diagram d.

Definition 3 Let .2 be an alphabet of labels. An abstract labelled graph G is a vertex-labelled
graph, whose vertex labels are set of labels drawn from .#. The label set of G, denoted .Z(G),
is the union of the vertex label sets of G. An abstract labelled graph which has been embedded
in the plane is called a concrete labelled graph (i.e. this is a drawing in the plane with no edge

5/17 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

crossings, which is sometimes called a plane labelled graph). A labelling on the edges of the
graph is induced by taking the symmetric difference of the label sets of the incident vertices.

One can view a concrete diagram as a graph as follows; this definition generalises the cases
given in [Cho0O7, FFHOS]: the intuition is that branch points are either points of intersection of
the curves or places where concurrent curves separate.

Definition 4 Let C = {Cy,...,C,} be a set of curves in the plane, where we also refer to C; as
the images of the curves, as usual. Let x be a point on any curve in C and let B¢ (x) = {y € R?:
|x —y| < €} denote a ball of radius € around x. If 3¢ >0 and i € {1,...,n} such that B¢(x) NC;
is (topologically) a line, but B¢(x) NCj = 0 for any j # i then x is a non-singular point. If
de>0,k>1landij #... #ir € {1,...,n} such that B¢(x) NC;, = ... = Be¢(x) NC;, is a line but
Be(x)NCj =0 for any j # i1,...,i then x is a point of k-concurrency. If x is not a non-singular
point nor a point of k-concurrency then x is a branch point.

Let d be concrete diagram. Then a graph of d is a plane graph G(d) whose vertex set consists
precisely of one vertex at every branch point, together with one vertex on each component (i.e.
a maximal set of images of curves that is connected) that has no branch points; and whose edges
are the images of the curves joining these vertices. A dual of d, denoted d*, is a concrete labelled
graph that is a geometric dual graph of G(d) such that: if vertex v of d* is placed in zone Z of d
then v is labelled by .Z(2).

The Euler diagram generation process, in [FFHO08], takes an abstract diagram and creates a
concrete diagram realising it, utilising a “dual graph” of the Euler diagram as part of the con-
struction process; Definition 5 and Theorem 1 are rephrased from [FFHOS].

Definition 5 Let G be a labelled graph. For/ € .Z, let Gt (1) and G~ (1) denote the subgraphs of
G induced by deleting any vertices whose labels contain /, and induced by deleting any vertices
whose labels exclude , respectively. If GT (1) and G~ (1) are connected then we say that [sarisfies
the connectivity conditions. If G is connected and [satisfies the connectivity conditions for all
l € Z(G) then we say that G is well connected.

Let G be a well connected plane labelled graph. Then G passes the face conditions if each
face cycle of G (with distinct vertices and edges) of length 2n has crossing index n — 1, where
the crossing index of a face is the number of pairs of labels that are non-nested in the edge-word
around the face, read cyclically.

Example 2 The dual graph d* shown on the right of Figure 2 has three faces with edge words
BABA, CBCB and BACBCA. A pair of labels x and y in an edge word are nested if and only
if the occurrences of x (and the occurrences of y) are adjacent (reading the word cyclically) in
the projection of the edge word onto the word containing only x and y. In each of the words
BABA and CBCB we have only a single pair of labels and these are non-nested. Therefore, both
of these internal faces have length 4 = 2n and crossing index 1 = n— 1, and so they pass the
face conditions. For the outside face word, BACBCA, we have 3 projections onto its pairs of
labels to consider: BABA, ACCA and BCBC. The occurrences of C are adjacent in ACCA and so
the labels A and C are nested, whereas the other two pairs are non-nested. Therefore, we have

Proc. GT-VMT 2009 6/17

Eg ECEASST

0
A B
7< {A} A7\ B
.‘[\ o 0
C/ B A
C\) ey 8
' BT

B

Figure 3: Understanding the face conditions: a concrete Euler diagram (left) and its dual graph
(right) for comparison with Figure 2.

word length 6 = 2n and crossing index 2 = n — 1, and so d* passes the face conditions. Since
the process of taking the dual graph places exactly one vertex in each region, a word of length
more than four causes the creation of a multiple point in the corresponding Euler diagram; this
can be seen on the left of the Figure 2 where there is a multiple point incident with the outer
zone. However, since d* passes the face conditions, one can add edges which subdivide faces
with edge word length greater than four, having the effect of modifying the Euler diagram by
removing the multiple points, as shown in Figure 3. This observation follows directly from the
work in [FFHOS]. In contrast, if a well connected plane labelled graph G has a face cycle with
word ABCABC then all three pairs of labels are non-nested and so the graph would fail the face
conditions, indicating that the multiple point in the Euler diagram is necessary and cannot be
removed by the above procedure.

Theorem 1 Let d be an abstract diagram. Then there is a concrete diagram d which satisfies
all of the WECs and whose abstraction > is d if and only if there exists a concrete labelled graph
G for d that has the vertex labeled {} incident with the outer face, and the properties that: G
is well connected (P1), G has unique vertex labels (P2); vertices of G whose label sets differ by
more than one label are not adjacent (P3); and G passes the face-conditions (P4).

The construction used in [FFHOS] did not allow multiple edges between pairs of vertices, and
such a concrete labelled graph G may require the addition of extra edges in order to construct the
labelled dual graph d*. In [ChoO7] a dual graph approach to the generation problem was adopted
and similar existence theorems provided. From the theory developed in [FFHO08] or [Cho07]:

Proposition 1 Let d be a concrete diagram and let d* be a dual of d. If d satisfies (WFCI,2
and 5) then d* satisfies (P1 and 2). If d* satisfies (P1 and 2) then there is a concrete diagram d’
which has dual d* and which satisfies (WFC1,2 and 5).

The idea is if d has only uniquely labelled simple contours with connected zones then unique-

2 The abstraction refers to the natural mapping from concrete to abstract diagrams; see [FFH08] for details if

required. A concrete labelled graph G for d is a concrete labelled graph with the property that there a bijection
between between the set of vertices of G and the set of zones of d in which the vertex label sets correspond exactly to
the “inside” set of contours of the zones.

77117 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

ness of contour labels and connectedness of concrete zones in d ensure that the vertex label sets
of d* are all distinct. Then, since the regions in d which are “inside” and “outside” the contour
labelled [are both connected, we have that the connectivity conditions for the label / € . in d*
hold. Conversely, if d* satisfies (P1 and 2) then one can take a dual d’ which is a graph that can be
viewed as an Euler diagram (i.e. we are utilising the usual diagram generation process). The fact
that it only uses uniquely labelled simple closed curves follows from the connectivity conditions,
whilst the connected zones condition then follows from the unique vertex label condition.

3 Transformation Systems

We first provide paramaterised transformation rules which enable both the generation and ma-
nipulation of diagrams at the abstract level, generalising the logical reasoning rules in [FHJTOS].

Definition 6 Let d = (C(d),Z(d)) be an abstract Euler diagram. Define:

1. RemoveContour(l,d): If £ € C(d), then d with ¢ removed is d’ where C(d’) = C(d) — {¢}
and Z(d') ={Y —{l}:Y € Z(d)}.

2. AddContour(1,Z.,Zs,d): Let Z. and Z; denote (possibly empty) disjoint subsets of Z(d),
and suppose that ¢ ¢ C(d). Then, d with ¢ added, zones Z. covered and zones Z; split is
d where C(d") =C(d)U{l} and Z(d') = (Z(d) — Z.) U{xU L : x € Z;UZ.}.

3. AddZone(z,d): If z € 22C(d) — Z(d) then d with z added is d’ where C(d") = C(d) and
Z(d") =2z(d)u{z}.

4. RemoveZone(z,d): Let z € Z(d) — {} (so z is not the zone outside all contours). Let
X C Z(d) be the set of contours which are in zone z but are not in any other zone in Z(d).
Then d with z removed is d’ where C(d') = C(d) — X and Z(d') = Z(d) — {z}.

Example 3 Firstly, let d be the abstract diagram ({A,B,C},{{}, {A}, {B}, {A,B}, {A,C},
{A,B,C}}). Then the operation RemoveZone({A,B,C},d) yieldsd' = ({A,B,C},{{}, {A}, {B},
{A,B}, {A,C}}). A concrete diagram with abstraction d is shown at the top middle of Figure 4,
whilst a concrete diagram with abstraction d’ is shown at the top left of Figure 4.

Secondly, let d be the abstract diagram ({A,B,C},{{}, {A}, {B}. {C},{A,B}, {A,C}, {B,C},
{A,B,C}}). Then the operation AddContour(D,{{A,B,C}}, {{A}, {B}, {C}, {A,B}, {A,C},
{B,C} }.,d) yieldsd' = ({A,B,C.D}.{{}, {A}, {B}, {C}, {A.B}, {4,C}, {A.D}, {B.C}. {B.D},
{C,D},{A,B,D},{A,C,D}, {B,C,D},{A,B,C,D}}). The effect of this operation is to copy the
zones that are “split” (zones {A}, {B}, {C}, {A,B}, {A,C}, {B,C} in this instance) and to add
the new label to the copy as well as to the zones that are “covered” (zone {A,B,C} in this in-
stance). A concrete diagram with abstraction d is given in Figure 5 at the top middle (called d;),
whilst a concrete diagram with abstraction d’ is shown at the top right (called d5).

Remark 1 In settings where Euler diagrams represent propositional logic (e.g. see [FHITO0S])
such transformations can be restricted to those that induce logical inferences to provide a reason-
ing system (the transformations are then often called reasoning rules). For instance, the addition

Proc. GT-VMT 2009 8/17

Eg ECEASST

7N\ 7S 7\

dh d- d>
B & " b
“ {A,B} * " app gy
AC} {AC} ABCH {AC) {(AB.CH
dr* da* ds*

Figure 4: Left/middle: Addition/removal of a vertex to/from the dual graph and a zone to/from
the diagram. Middle/Right: a post-processing graph transformation step for removing tangential
intersections.

of a new contour by AddContour(l,Z.,Zs,d) is a reasoning rule if Z; = Z(d) and Z. = 0; if shad-
ing is used in the system, then the reasoning rule for zone removal has the extra precondition that
the zone is shaded, whilst zone addition has the extra postcondition that any missing zone that is
added is shaded. The effects of altering rule sets within an automated reasoning environment for
Euler diagram systems were investigated in [SMF*07].

Corresponding (geometric) transformations at the concrete level are very difficult to try to
realise consistently, and this has not been managed in the literature. For example, there are
different possible ways of attempting to realise zone removal: if a zone z has nice properties such
as being star-shaped (i.e. there is a point p in z such that every other point in z is connectable to
p via a straight line within z) then one could use radial contraction. More generally, an operation
to squash the zone to a point could be used if the region is simply connected, but if the zone
is not simply connected (e.g. an annulus) then one may desire a transformation that does not
identify all of the boundary of the zone to a point. The application of these operations may
cause the violation of some wellformedness constraints (such as the simplicity of the contours),
thereby either preventing their application at the concrete level or requiring a different concrete
representation to be recreated, if one exists, destroying the mental map and the utility of the
visualisation even in the case that such a recreation exists. This contrasts with the effect of
zone removal at the abstract level which can always be applied to a (non-outside) zone z in the
syntactic transformation system.

Therefore, we wish to build concrete level transformation systems for Euler diagrams based
on concrete dual graphs manipulations; any instance of a concrete transformation should lift to
the appropriate instance of an abstract transformation of Definition 6. Accordingly, we develop

9/17 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

*
. d1 dao*
’ ~
o . o)
o . D JB.} - 2RN TN
N . N {aBc .
N e . . {aAD} {A.CD} C
N ’ ., o
AN JRe > N e ——> {AB,CD}
o o {AB.D}
{AB} {A,B}

Figure 5: Transformations of the dual graph, and the corresponding Euler diagrams. The top
left to top right diagrams show the addition of contour C then D, and the corresponding dual
graph transformations are depicted below. Reading from right to left shows the reverse process
of contour deletion.

a concrete dual graph transformation system in which all of the plane graphs are well connected
and the vertex label set are unique. We note that any abstract diagram has a representation as a
concrete diagram which are unions of regions with holes [MF94, RZF08], or Euler-like [Cho07],
but commonly one wishes to keep the system as straightforward as possible for the users, and
here we have chosen to enforce the use of uniquely labelled simple closed curves and connected
zones. However, there are many other variations at the plane graph level that could be adopted,
or one could consider abstract dual graph level transformations if one is willing to sacrifice some
geometric information.

3.1 Adding and removing contours

We define operations at the dual graph level in order to realise contour addition at the concrete
level. Intuitively a collar of a path, or a cycle, is a thickening of that path or cycle. However,
in this context we incorporate the use of labels and we choose to alter the resulting graph so
that we retain planarity, connectivity and uniqueness of vertex label sets. Note that as stated this
collaring operation is non-deterministic; any choices involved when edges are to be crossed by
the insertion of the collar can lead to different diagram layouts, but here we concentrate on the
fundamental properties of planarity and connectivity.

Definition 7 Let d be a concrete diagram and let d* be a dual of d. Let p be a path of distinct
vertices and edges, except possibly for the first and last vertex (i.e. p can be a simple cycle), in
d*. Let p’ be a new path (or cycle) which is a copy of p but which has an additional label / added
to all of its vertex label sets. Suppose that py, ..., p, is the vertex sequence of p and p|,..., p), is

Proc. GT-VMT 2009 10/17

Eg ECEASST

the vertex sequence of p’, where the label of p; differs from the label of p! by the label /. Then
collar(p;d*,l), a collaring of p, is a graph obtained from d* by:

1. embedding p’ in the plane such that:

(a) for each i, the vertex p} is disjoint from d* (i.e. the position of p/ in the plane is not
the same as any vertex and it does not liec on any edge of d*).

(b) the edges of p’ are disjoint from the edges of p and the vertices of d*.

(c) each vertex p§ is in a neighbourhood of vertex p; (that is, if p; has coordinates (a;, b;),
then J& > 0 such that p} € Be(p;) = {(x,y) € R?*|(x — a;)* + (y — b;)? < €}) that
contains no other vertex of d*, and

(d) if pis a cycle then p’ is in the interior of the bounded region that is bounded by p .

(e) if p is not a cycle, then there is a vertex of d*, labelled by {}, which is not in any
region of the plane bounded by p’ and d*.

2. adding an edge labelled / between vertex p; and vertex p}, for eachi € {1,...,n}.
3. for each edge e = (p;,v) € E(d*) which crosses the path p/,

(a) ifveV(d*)—{pi,...,pn} then delete e and add an edge from the vertex p/ to v.
(b) ifv=p; € {p1,...,pn} then delete e and add an edge from the vertex p; to p’;.

Example 4 The dual graph d} at the bottom left of Figure 5 has a simple cycle p highlighted
using dashed edges. The effect of collaring p is shown in the middle dual graph d; in this case
no edges of di were crossed by the insertion of p’ and so no edges of dj were deleted. The effect
of the application of collaring on the highlighted cycle in d; is shown by d3 at the bottom right;
three edges of d; were crossed by the insertion of the path p’ and so these were deleted and three
new edges were added (the alterations are shown in grey). However, note that the label D has also
been added to the vertex labelled {A,B,C}, which was in the interior of the cycle p in d;, after
the collaring operation described; this corresponds to the new contour covering the zone in the
diagram (see Theorem 2). The corresponding Euler diagrams are shown, starting at the top left
with d|, performing a transformation that lifts to AddContour(C,{},Z(d;),d;) to give d», shown
in the top middle, and then performing a transformation that lifts to AddContour(D,{{A,B,C}},
{{A}, {A,C}, {C},{B,C}, {B},{A,B}},d>) to give d3 shown at the top right.

Theorem 2 Let d* be a well connected plane labelled graph with unique vertex label sets
which is the dual of a concrete Euler diagram d, let p be a path of distinct vertices and edges, or
a simple cycle, in d*, | be a label which is not in £ (d*) and let H denote collar(p;d*;l). Then:

1. ifno edge of d* is missing from H, then H is a well connected plane labelled graph.

2. if there are edges of d* that are missing from H, then collaring p yields a labelled plane
graph which is wellconnected if and only if H™ (1) is connected.

3 Note that 4* is embedded in the plane and so the cycle p splits the plane into two regions by the Jordan curve

theorem; of course, one can adapt the theory to the non-embedded dual graph level.

11/17 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

3. if ¢ is a simple cycle of d* with no vertices in int(c), the interior of the bounded region
bounded by c, and the path p lies entirely on the cycle c (this includes the case that p is
the entire cycle c), then collaring p yields a well connected plane labelled graph.

4. Let Zs denote the set of vertex label sets of p and let Z, denote the set of vertex label
sets of the vertices in int(p) if p is a cycle (and Z. = {} otherwise). Then collar(p;d*;l)
followed by the addition of label | to all vertex labels of vertices in int(p), if p is a cycle,
yields a graph K which is the dual of a concrete diagram d' that differs from d by the
addition of a new contour labelled |, covering zones Z. and splitting zones Zs,; that is, the
composite transformation lifts to AddContour(l,Z.,Zs,d). In particular, if p is not a cycle
then collaring p lifts to AddContour(1,{},Zs,d).

Proof. A path p of distinct edges and vertices in d* corresponds to a sequence of adjacent zones
in d. Adding a collar of p splits each of these zones into two adjacent zones, one inside / and one
outside /, where [is the new label. The definition of collaring ensures that the resultant graph
is planar. If no edges of d* were removed upon collaring then the connectivity conditions also
hold: the subgraph H* (1) is the copy of p with the additional label /, embedded in the plane and
viewed as a graph, and so is connected; the subgraph H~ (/) = d* is connected by hypothesis;
the other induced subgraphs do not become disconnected by the addition of the collar. So case 1
holds.

However, if any edges of d* were removed during collaring then the connectivity conditions
for H could be broken. Now H" () is connected by definition, but H~ () could be disconnected.
The extra edges added during collaring ensure that there are no other obstructions to H being
wellconnected, as follows. Suppose that we have a vertex labelled x adjacent to a vertex labelled
y in d* and this edge is removed by the collaring operation. Then, without loss of generality,
there is either a path x —x/ —y or a path x —x/ —yl —y in H. Thus, if x and y had a label k in
common in d*, then all of the vertices in this new path in H have label k, and similarly if they
both exclude a label m in d* then so do all of the vertices in this new path in H. Therefore, the
connectivity of G* (k) and G~ (m) are preserved upon collaring, and part 2 holds.

Part 3 follows since if p lies entirely on a simple cycle ¢ which has no vertices in its interior
then H~ (1) is connected. In fact, since the only obstruction to the collaring operation preserving
the connectivity conditions is the connectivity of H~ (), we can ensure that it is preserved in the
case of the path being a simple cycle by adding the new label / to any vertices in int(p); this
operation does not affect the other connectivity conditions. This composite transformation of
dual graphs corresponds to the addition of a new contour, where the zones to be split into two
correspond to vertices in the simple cycle p, whilst those to be covered lie in int(p). The effect
of lifting to the abstract level can be checked by considering the label sets of the vertices that
were present before and are present after the transformation, and so part 4 follows. O

Definition 8 Let G be a concrete labelled graph, and let / be a label in £ (G). Define the
operation RemoveLabel(I) to be the contraction of every edge labelled by exactly /, together
with the identification of the corresponding vertices *, followed by the removal of the label !

4 The label set taken is the union of the two label sets; the intuition is that this edge contraction corresponds to

stretching the contour labelled / so that it also covers the zones that it previously split.

Proc. GT-VMT 2009 12/17

Eg ECEASST

from all vertex label sets.

Proposition 2 Let d* be a well connected plane labelled graph with unique vertex label sets
which is the dual of a concrete diagram d, and suppose that c is a contour of d with label l. Then
the operation RemoveLabel (1) on d* corresponds ° to the removal of the contour c from d.

Proof. Contraction of edges labelled by exactly ! corresponds to the merging of each pair of
adjacent zones whose label sets differ by the label /. The removal of the label [from all vertex
label sets suitably updates all vertices. O

Example 5 The dual graphs in Figure 5 from right to left show the removal of labels D and
C corresponding to Euler diagram contour deletion. In this case we note that the RemoveLabel
operation actually leaves multiple edges between vertices such that there are no other vertices
in the interior of the region bounded by these vertices and edges. However, since such multiple
edges have no significant effect on the diagrams constructed we can assume that these excess
edges can be discarded.

3.2 Adding and removing zones

When considering the operations of adding or removing zones at the concrete level, the natural
addition or deletion of vertices of the dual graph may break the connectivity conditions. Since
we wish to ensure that planarity and wellconnectedness are preserved, we consider extra edge
additions on the neighbourhood of the vertices to be added or removed.

Definition 9 Let G be a labelled graph and let E be a set of edges in the complement of G.
Then E is a wellconnecting edge set for G if G together with the edges in E is wellconnected. If
G is a plane labelled graph then a plane wellconnecting edge set for G is a wellconnecting edge
set E for G together with an embedding of £ such that GUE is a plane graph.

Definition 10 Let G be a well connected plane labelled graph, let v be a vertex of G, and let
G — v denote G with v removed. Suppose that E is a plane wellconnecting edge set for G —v.
Then let RemoveVertex(v,G) denote the operation of removing vertex v from G and adding E °.

Lemma 1 Ifvis a vertex of a well connected plane labelled graph, G, and v has vertex degree
at most 3, then the set of edges of the complete graph on the set of vertices incident with v in G
is a plane wellconnecting edge set for G —v.

Proof. If vertices v; and vy (not equal to v) in G are connected by a path p = vv, ... that passes
through v (i.e. v=v; for some i € {2,...k— 1}) then they are still connected in (G —v) UE by
the path vivy...v;_1viy1...v. Planarity is ensured to be preserved since v had degree at most
3. O

5 Note that the remove contour operation in our system is not applicable if the removal of the contour leaves a

disconnected zone. This corresponds to the existence of vertices differing by label / which are not adjacent in d*.
Relaxing the zone connectedness condition would mean that contour removal is always applicable.
6 The choice of edge set used effects the layout but we are primarily concerned with planarity and connectivity.

13/17 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

Definition 11 Let G be a well connected plane labelled graph and let Y be a set of labels which
is not the label set of any vertex of G 7. Suppose that G has a face F whose incident vertices have
label sets that contain all of the labels of Y, and there is a plane wellconnecting edge set E for
G Uv, where v is a new vertex labelled by ¥ embedded in the interior of the face F'. Then define
AddVertex(Y,G) to be the operation which inserts the vertex v with label Y in face F, and adds
E.

Remark2 There is flexibility in the choice of rules developed and they could be chosen accord-
ing to system requirements or user preference. The rule RemoveVertex(v,G) is not applicable
if there is no plane wellconnecting edge set for G — v, but if it is applicable then it preserves
planarity and wellconnectivity. If one wanted a more relaxed system which always enabled the
application of the rule then one could alter the rule so that the vertex v is always deleted. Fur-
thermore, to attempt to improve the layout one could add a subgraph of the clique on the vertices
incident with v that maintains planarity whilst minimising the number of connectivity conditions
that are broken. Similarly, one could generalise the AddVertex(Y,G) rule to be always applicable
and to attempt to preserve the connectivity conditions for as many labels as possible.

Proposition 3 Let d* be a well connected plane labelled graph with unique vertex label sets
which is the dual of a concrete diagram d. Let Y be a set of labels corresponding to a zone
Z which is missing from d. Suppose that there is a face F of d* which has every label of Y
appearing in its incident vertices and there is a plane wellconnecting edge set E for GUv, where
v is a new vertex labelled by Y embedded in the interior of the F. Then AddVertex(Y,d*) is a
well connected plane labelled graph with unique vertex label sets, and the operation corresponds
to the addition of zone z with label set Y to d yielding d'; i.e. when applicable, this lifts to the
operation AddZone(z,d). Let w be a vertex of d* and let w' be its corresponding zone in d.
Then RemoveVertex(w,G) is a well connected plane labelled graph with unique vertex label
sets and the operation corresponds to the removal of zone w' from d; this lifts to the operation
RemoveZone(w',d).

Proof. The operations preserve the planarity and connectivity conditions as well as the unique-
ness of vertex label sets by construction of the rules. Matching the vertex label sets with the zone
sets of the abstract diagram before and after the transformation shows that the operations lift to
the abstract transformations. O

Example 6 In Figure 4, the middle dual graph d;; shows the effect of AddVertex({A,B,C},d7)
applied to the left hand dual graph d, using the outer face F and wellconnecting edge set as
shown. This corresponds to the addition of the zone {A,B,C} to d; to give d». Since d is
wellconnected, the application of RemoveVertex(v,G*) to d;, where v is labelled by {A,B,C},
returns d; corresponding to the removal of the zone {A,B,C} of the diagram d, giving d.

The incorporation of techniques to alter the dual graph to remove various breaks in well-
formedness conditions, or to exchange them, would facilitate the construction of different sys-
tems. For instance, in the right hand side of Figure 4, we see the insertion of an extra edge into
the dual graph between {A} and {A,B} surrounding {A,C} and {A,B,C}. Since we obtain ex-

7 This condition can be relaxed if the system allowed disconnected zones.

Proc. GT-VMT 2009 14 /17

Eg ECEASST

actly one vertex in each face when taking a dual, this has the effect of moving the contour C away
from the intersection point of A and B in the Euler diagram, thereby removing the tangentiality
and the multiple point.

4 Conclusion

Logical reasoning systems based on Euler diagrams are commonly constructed at an abstract
level, and the concrete level is merely a visualisation of the abstract level. Then, changes at
the abstract level are not consistently reflected by changes at the concrete level that preserve the
mental map (i.e. the usual approach is the complete regeneration of a new diagram after a trans-
formation, which does not take account of the diagram prior to the transformation). Building
transformation systems at the concrete level which are realisations of the abstract level trans-
formations addresses this concern, enabling the presentation of diagrams that reflect change in
a local manner when it is possible to do so. This enables strong control of the topological and
geometric properties of the diagrams allowed in order to assist with user comprehension and
preferences. In this paper we have viewed concrete diagrams as graphs and provided the first
concrete level dual graph transformation system which can be utilised to transform concrete dia-
grams. Altering the graph theoretic properties of the system will enable the realisation of trans-
formation systems of concrete diagrams satisfying different sets of wellformedness conditions
and should facilitate interplay between such systems. The concrete level dual graph transfor-
mations preserve the mental map in the sense that will preserve much of the original layout of
the diagram (because the diagram is generated from the embedded dual graph and much of the
original embedded dual graph is preserved). Furthermore, if one desired systems in which the
rules were applicable more often than at the concrete level, but which lose some of the geometric
information, then one could build abstract level dual graph transformation systems.

In the future, specialisations of this theory could be used to provide fast computations of
restricted classes of diagram transformations. This could be utilised in a graph transformation
based library system for generation and manipulation of diagrams for instance, where a collection
of initial graphs together with a set of transformation rules is used to attempt to generate a
diagram requested by a user, whether that user be human or a system request.

Acknowledgements: Funded by UK EPSRC grant EP/E011160: Visualisation with Euler Di-
agrams. Thanks to John Taylor for helpful comments on the work, to John Howse for performing
a typographic check, but especially to the anonymous reviewers whose detailed reviews helped
to improve the paper substantially.

Bibliography

[BTO02] S. Bridgeman, R. Tamassia. A User Study in Similarity Measures for Graph Draw-
ing. Journal of Graph Algorithms and Applications 6:225-254, 2002.

[Cho07] S. Chow. Generating and Drawing Area-Proportional Euler and Venn Diagrams.
PhD thesis, University of Victoria, 2007.

15/17 Volume 18 (2009)

Euler Diagram Transformations Eﬁ

[CMP99]

[CRO3]

[DES03]

[DF07]

[FFO8]

[FFHOS5]

[FFHO8]

[FHJTOS]

[FS06]

[HEST05]

[HSTOS5]

[Ken97]

[KMGBO5]

[LLYO06]

S. Chok, K. Marriott, T. Paton. Constraint-Based Diagram Beautification. In Pro-
ceedings of IEEE Symposium on Visual Languages. Pp. 12-19. IEEE Press, 1999.

S. Chow, F. Ruskey. Drawing Area-Proportional Venn and Euler Diagrams. In
Proceedings of Graph Drawing 2003, Perugia, Italy. LNCS 2912, pp. 466—477.
Springer-Verlag, September 2003.

R. DeChiara, U. Erra, V. Scarano. VennFS: A Venn Diagram file manager. In Pro-
ceedings of Information Visualisation. Pp. 120-126. IEEE Computer Society, 2003.

R. DeChiara, A. Fish. EulerView: A non-hierarchical visualisation component. In
Proceedings of IEEE Symposium on Visual Languages and Human Centric Com-
puting. IEEE 134, pp. 145-152. 2007.

A. Fish, J. Flower. Euler Diagram Decomposition. In Proceedings of 5th Inter-
national Conference on Diagrams 2008. LNAI 5223, pp. 28—44. Springer-Verlag,
2008.

A. Fish, J. Flower, J. Howse. The Semantics of Augmented Constraint Diagrams.
Journal of Visual Languages and Computing 16:541-573, 2005.

J. Flower, A. Fish, J. Howse. Euler Diagram Generation. Journal of Visual Lan-
guages and Computing 19:675-694, 2008.

A. Fish, J. Howse, C. John, J. Taylor. A normal form for Euler diagrams with shad-
ing. In Proceedings of Diagrams 08. LNAI 5223, pp. 206-221. Springer, 2008.

A. Fish, G. Stapleton. Formal Issues in Languages Based on Closed Curves. In
Proceedings of Distributed Multimedia Systems, International Workshop on Visual
Languages and Computings. Pp. 161-167. Knowledge Systems Institute, Grand
Canyon, USA, 2006.

P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer, M. Mehrotra, D. Bobrovnikoff.
Collaborative Knowledge Capture in Ontologies. In Proceedings of the 3rd Inter-
national Conference on Knowledge Capture. Pp. 99-106. 2005.

J. Howse, G. Stapleton, J. Taylor. Spider Diagrams. LMS Journal of Computation
and Mathematics 8:145-194, 2005.

S. Kent. Constraint Diagrams: Visualizing Invariants in Object Oriented Modelling.
In Proceedings of OOPSLA97. Pp. 327-341. ACM Press, October 1997.

H. Kestler, A. Muller, T. Gress, M. Buchholz. Generalized Venn Diagrams: A New
Method for Visualizing Complex Genetic Set Relations. Journal of Bioinformatics
21(8):1592-1595, 2005.

Y. Lee, C. Lin, H. Yen. Mental Map Preserving Graph Drawing Using Simulated
Annealing. In Proceedings of the 2006 Asia-Pacific Symposium on Information Vi-
sualisation. Pp. 179-188. Australian Computer Society, Inc., 2006.

Proc. GT-VMT 2009 16 /17

E

ECEASST

[MELS95]

[MF94]

[MMMO8]

[RMF04]

[RZFO08]

[SHRZ08]

[SMF+07]

K. Misue, P. Eades, W. Lei, K. Sugiyama. Layout Adjustment and the Mental Map.
Journal of Visual Languages and Computing 6:183-210, 1995.

E. C. M. Egenhofer, P. di Felice. Topological Relations between Regions with
Holes. International Journal of Geographical Information Systems 8:129-144,
1994.

S. Maier, S. Mazanek, M. Minas. Layout Specification on the Concrete and Ab-
stract Syntax Level of a Diagram Language. In Proceedings of 2rd International
Workshop on the Layout of Software Engineering Diagrams. ECEASST 13, pp. 40—
54.2008.

P. Rodgers, P. Mutton, J. Flower. Dynamic Euler Diagram Drawing. In Visual
Languages and Human Centric Computing. Pp. 147-156. IEEE Computer Society
Press, 2004.

P. Rodgers, L. Zhang, A. Fish. General Euler Diagram Generation. In Proceed-
ings of 5th International Conference on Diagrams 2008. LNAI 5223, pp. 13-27.
Springer-Verlag, 2008.

G. Stapleton, J. Howse, P. Rodgers, L. Zhang. Generating Euler Diagrams from
Existing Layouts. In Proceedings of 2rd International Workshop on the Layout of
Software Engineering Diagrams. ECEASST 13, pp. 16-31. 2008.

G. Stapleton, J. Masthoff, J. Flower, A. Fish, J. Southern. Automated Theorem
Proving in Euler Diagrams Systems. Journal of Automated Reasoning 39(4):431—
470, 2007.

17 /17

Volume 18 (2009)

	Introduction
	Related work

	Euler Diagrams and Graphs
	Transformation Systems
	Adding and removing contours
	Adding and removing zones

	Conclusion

