Electronic Communications of the EASST

Volume 18 (2009)

Proceedings of the
Eighth International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

A Meta-Model-Based Approach for
Specification of Graphical Representations

Merete Skjelten Tveit

15 pages

Guest Editors: Artur Boronat, Reiko Heckel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

A Meta-Model-Based Approach for
Specification of Graphical Representations

Merete Skjelten Tveit

merete.s.tveit@uia.no
Faculty of Engineering and Science, Department of ICT
University of Agder, Grimstad, Norway

Abstract: Meta-models are widely used for the specification of the internal struc-
ture of graphical modelling languages, and well-established standards (e.g. MOF)
exist for this. For the graphical representation there is not the same agreement and
no related standards. This paper presents a new meta-language for an independent
specification of graphical representations. A diagram from the domain-specific lan-
guage Service is used as a running example to show how this meta-model-based
approach is appropriate for specifying the graphical representation in a precise way,
but still on a high level of abstraction.

Keywords: language specification, graphical representations, meta-models, map-
ping descriptions

1 Introduction

Graphical modelling languages are an important part of information technology and in the soft-
ware development process as they are very suitable for visualising structures, compositions and
relationships between elements. Unfortunately, there is not the same broad understanding and
agreement of how these graphical languages are specified in a formal way. A formal language
specification for a graphical language normally consists of a structure definition (also known as
abstract syntax), a graphical representation definition (concrete syntax) and a definition of the
semantics. A formal specification of the language, including the graphical representation is im-
portant both for the users and for the tool developers that intend to build appropriate tool support
for the language.

Meta-models are well-known as specification approach for the structure of a language, and
there already exist standards like MOF [OMGO3] for this purpose. MOF is a meta-language,
also called a meta-meta-model, and defines all the concepts that are necessary to specify the
structure of a language. A language structure that is specified based on the concepts in MOF
is said to conform to MOF. The UML 2.0 [OMGO04] meta-model is an example of a language
structure definition that conforms to MOF. The structure meta-model is in turn instantiated when
models in the language are made. This kind of instance hierarchy is one of the fundamental
concepts in a meta-model-based approach.

For graphical representations, there still does not exist any standards similar to MOF. A meta-
language for the graphical representation can however be based on the same principles as MOF,
that is importing and reusing concepts from the UML Infrastructure [OMGO7]. This paper

1/15 Volume 18 (2009)

mailto:merete.s.tveit@uia.no

Specification of Graphical Representations E}

presents such a meta-language for specification of graphical representation based on reuse and
extensions of concepts from UML Infrastructure, with some extensions for the graphics. The
meta-language defines all the concepts that are required to specify the graphical representation
of languages. The placement of the approach in the hierarchy is illustrated at the right-hand side
in Figure 1. It is very important to note that the reuse of concepts from the UML Infrastructure
does not restrict the application of meta-language to only the graphical representation of UML.
This approach is suitable for most graphical languages, and is already applied to SDL [ITU99]
in [PSTO7] and several domain-specific languages.

The main difference between the meta-language presented in this paper and already exist-
ing model driven approaches for specification of graphical representation is the combination of
independence, completeness and expressiveness. The independence implies that the graphical
representation is specified independent of the structure meta-model. This independence is a
clear advantage when the languages are complex and when it is necessary to have more than one
graphical representation for the structure. This independence is also identified as a crucial part of
language specification approaches in [Tve08a]. Because of this independence, it is important to
have precisely defined mapping relations between the structure and the graphical representation.
In addition to this, the meta-language gives the possibility to describe the graphical representa-
tion of both languages and diagrams as complete constructions. This is opposed to the UML-DI
[OMGO06], the closest to a standard for graphical representation, whose purpose is to exchange
diagrammatic information, not specify it. Features to describe all kinds of spatial relationships
between elements in a graphical language also make the meta-language more expressive than
many other approaches. The approach that is most similar to ours regarding independence is
GMF [GMF], but this approach has weaknesses both regarding completeness and expressive-
ness. Section 5 presents these differences in more details.

The focus in this paper is mainly on the conceptual parts of the approach, nevertheless, a
prototype that can be used to define graphical languages and generate graphical editors based on
the description is implemented on the GMF platform, and is outlined in Section 4. The following
sections will give a bottom-up description of the approach, starting at the diagram level. Section
2 presents the meta-model-based approach both for a specific diagram and for the language
aspects (Section 2.3). Section 2.4 presents the most important concepts from the meta-language.
Section 3 describes how the relationship between the structure and the representation is handled
in this approach. The concluding remarks are found in Section 6.

2 An Overview of the Approach

The biggest difference between a string language and a graphical language is the dimensional
space of the sentences in the language. While sentences in a string language are linear, the
sentences (i.e. the diagrams) in a graphical language have a minimum of two dimensions. The
differences are in the concrete representation. We consider a diagram expressed in a graphical
language as a collection of graphical elements that are arranged in various ways. There are
different methods for describing how the graphical elements are located and arranged to form
valid diagrams. One way is to specify the placement of an element physically by using concrete
coordinates. The coordinates will give the exact position of an element. Another method is

Proc. GT-VMT 2009 2/15

E

to specify the placement logically. A logical placement is normally described by using spatial
relationships to describe where an element is placed relative to other elements. A deeper outline
on how graphical elements are spatially related and arranged in diagrams is found in [BG04].
In the approach presented in this paper, the arrangements of the graphical elements are also

ECEASST

specified in a logical way using spatial relationships.

meta-language

graphical

{MOF) meta-language
M3
conforms to conforms to
raphical
structure grap .
representation
meta-model
) meta-model
mapping
M2 description
conforms to conforms to
diagram
structure <) gran
description
model model
mappin
M1 pping
structure graphical representation

Figure 1: The meta-architecture of the approach

At the lowest level, M1, in the architecture presented in Figure 1, we have the diagram descrip-
tion model, which describes the graphical representation of one particular diagram. This includes
instances of the graphical elements, their properties and how they are related. The model is an
abstraction of a diagram, and is complete in the sense that the diagram can be constructed from
it. The diagram description model conforms to the graphical representation meta-model for the
language.

The graphical representation meta-model specifies all the graphical elements in the language,
their role in the diagram and how they are spatially related to form well-formed diagrams. By
role, we here refer to the fopological role a graphical element plays, for instance connection or
container. The approach provides a basis library which contains a set of pre-defined shapes.
The library is language independent, that is, it can be used for all graphical representations.
The graphical elements in the graphical representation meta-model specializes the pre-defined
shapes in the library to get their geometrical properties. How the basis library is used in practise
is described more detailed in Section 2.3.

At the upper-most level we have the graphical meta-language which defines all the role con-
cepts that are necessary for specifying the graphical representation of a language. This meta-
language re-uses concepts from UML Infrastructure. The three different levels are explained in
more detail in Section 2.

3/15 Volume 18 (2009)

Specification of Graphical Representations Eﬁ

2.1 Specification of Graphical Representation

As an example for the article, a diagram from the domain specific language Services will be used.
The language is used to model service devices with plugs, and their connections. The example
diagram in Figure 2 includes the following graphical elements: two device symbols with names
“PC” and “Keyboard”, one female plug symbol with name “USB_in” and one male plug symbol
named “USB_out”, one connection point symbol (the filled ellipse) and two connector symbols.

=) . Keyboard

|Z USB_out

USB_in

Figure 2: The service diagram used as running example

It is not only important to identify the graphical elements in a diagram, it is also necessary
to describe how the elements could legally be related to each other. The relations between the
elements are what actually create the diagrams in a language. For the service diagram we can
recognise the following relations between the graphical elements: The device symbols have two
compartments placed inside, one name compartment and one plug compartment. A horizontal
line, also placed inside the device symbol, is separating the two compartments. The device name
is placed inside the name compartment. The plug symbols are placed inside the plug compart-
ments of the devices. The plug names are associated with the plug symbols. The connector
symbols are connected to a plug symbol at their source end and to a connection point at their
target end.

The next sections will give a bottom-up description of how the graphical elements and their
spatial relationships can be specified in a meta-model-based way. We start with the description
of the diagram in Section 2.2, the language graphical concepts in the service language are pre-
sented in Section 2.3 and finally the most important concepts in the graphical meta-language are
presented in Section 2.4.

2.2 The Diagram Description Model (M1)

The graphical elements and how and where they are related form the most important aspects of
the graphical representation of the service diagram, and are also what we would like to describe
in the diagram description model in Figure 3. This diagram model is an object model which
conforms to a meta-model defining the meta-classes like DeviceSymbol and ConnectorSymbol.
The graphical elements are represented as objects and the relations as plain links with end names
representing the spatial relationships between the elements involved in the relation. The meta-
model is presented in Section 2.3.

Three kinds of relations were identified in the service diagram, and these three kinds of rela-

Proc. GT-VMT 2009 4/15

Eg ECEASST

— : DeviceSymbol . DeviceSymbol N
inside inside
: NameCompartment o : NameCompartment
I Inslde inside |
. DeviceName . DeviceName
name = "PC” name = "Keyboard” o
inside inside
. . PlugCompartment [~
L| : PlugCompartment : PlugName d D

name = “USB_in"

associatedWith - PlugName
. : d -
inside inside
name = “"USB_out”
. FemalePlugSymbol associatedWith : MalePlugSymbol
connectedTo connectedTp
: ConnectorSymbol . ConnectionPointSymbol . ConnectorSymbol
conneftedTo conneFtedTo connecte11To connecteFTo connecteFTo connectddTo
. CPConnectionAnchor . CPConnectionAnchor
: FPToConnectorAnchor : MPToConnectorAnchor

Figure 3: The diagram description model (M1) specifying a complete abstraction of the service
diagram

tionships are also presented in the model: inside, connectedTo and associatedWith. The inside
relation represents one graphical element placed inside another graphical element, and is given in
the model as a link between the two objects that are involved in the relationship, e.g. the device
name “PC” inside the name compartment.

The associatedWith relationship describes a special kind of relation since it is not directly
visible in the diagram. An example of use is the instance of a plug name which is associated
with an instance of a male plug symbol or female plug symbol. In the diagram it is not possible
to see that these elements have a concrete relationship in between, but they are still related with
an “invisible” association.

The connectedTo relationship is used to describe that two (or more) graphical elements are
connected physically to each other. In the service diagram we have the connector symbol which
at each target end is connected to the border of a connection point symbol. The connectedTo
relationship (and also the associatedWith in some cases) also involves an anchor object (e.g. cp
connection anchor) that specifies where the connecting appears. The anchor specifies a single
point or a set of points that represent the concrete intersection point/area between the graphical
elements that are involved. In the diagram description model (Figure 3), the cp connection
anchors specify one single point at the border of the connection point where it intersects with
the target end of a connector symbol.

The three spatial relationships, inside, connectedTo and associatedWith, are the only ones that
are found necessary. Combining them with anchors gives possibilities to specify more complex

5/15 Volume 18 (2009)

Specification of Graphical Representations E}

relationships, and also more specific connection areas, than for the connectors and connection
points.

2.3 The Graphical Representation Meta-model (M2)

The model in Figure 3 is an abstraction of how the elements are arranged in the particular di-
agram. The objects in the model are instances of the graphical elements which are specified
for the language. One particular diagram is just one, among many, legal representations in a
language. At the M2 level in the meta-model hierarchy (see Figure 1) we have the graphical
representation meta-model describing all the graphical elements in the language and their legal,
spatial relations.

1]
graphical representation basis library
1Y A I T >
meta-model for shapes
<<uses>
language specific language independent

Figure 4: The graphical representation meta-model uses a language independent basis library

The graphical representation meta-model consists of an identification of all the graphical el-
ements in the language, which roles (connection, container shape etc.) they play and how they
are related to form well-formed diagrams. The graphical elements get their geometric properties
from classes in a basis library (see Figure 4). The language independent basis library contains
a number of pre-defined shapes that are considered as the most important shapes for graphical
languages. The abstract descriptions of the geometrical shapes are all instances of UML::Class
(cf. Section 2.4). The relationship between the graphical representation package and the ba-
sis library package is expressed by the UML dependency use, and the relationship between the
graphical elements and the related pre-defined shapes is expressed by inheritance (also UML)
in the meta-model for graphical representation. This implies that the graphical elements get the
semantics of their roles from the meta-language at the M3 level, and their geometrical shape by
inheritance.

A device symbol in the service language is shaped like a rectangle. Figure 5 illustrates how this
is expressed in the meta-model: the device symbol inherits from rectangle in the basis library. In
addition, the device symbol plays the role as a container shape, which means that device symbol
can have other shapes inside. The role is set as a property role, where the type of the property
indicates the actual role the element plays. While the role a graphical element is playing impact
the spatial relationships the element can be involved in, the geometrical shape and properties the
graphical element inherit from the basis library, impact the boundary and the attachment area(s).
The boundary and the legal attachment areas are necessary to be able to specify where two
graphical components can be connected together. The bounding is a point set representing the
outer border (visible or invisible) of the geometrical shape. The attachment area is also a point
set, representing the point or area where the shape could be legally related to other graphical
elements through spatial relationships. In many cases, the bounding and attachment area are
equal, like for the connection point. The classes Point and PointSet are part of the basis library.

Proc. GT-VMT 2009 6/15

Eg ECEASST

DeviceSymbol inside| NameCompartment From basis library
) - > role : Compartment

role : Contalnt_arshape expandHoriz = true —|>

bounding : PointSet I>

inside| PlugCompartment [: Rectangle

role : Compartment |(ge—
MPToConnectorAnchor expandHoriz = true
role : ConnectionArea connectedTo insid
anchor : PointSet 1
MalePlugSymbol | _|>
9>y MalePlugShape
FPToConnectorAnchor role : SimpleShape
bounding : PointSet
role : ConnectionArea
anchor : PointSet FemalePlugSymbol |ins|de

copnectedTo feonnectedTo I role : SimpleShape
A ounding : PointSet 4[> FemalePlugShape
ConnectorSymbol Fonnected 1 g
role : Connection D
source : Point onnectedTo Line
target : Point
ConnectionPointSymbol

CPConnectionAnchor

connectedTdole : Connection —> Ellipse
role : ConnectionArea source : Point
anchor : PointSet target : Point

Figure 5: A subset of the graphical representation meta-model (M2) for the Service language

The connector symbol is shaped like a line and plays the role as a connection. A connection
is special since it is always a part of a connectedTo relationship. For all the shapes in the basis
library that are not characterised by their circumference, for instance different variations of lines,
the attachment areas are set based on the endpoints of the shape. A connector symbol is shaped
like a line and are in the basis library provided with two properties, source and target.

The anchor property in the connection area is derived from the attachment properties for
the graphical elements involved in the relationship, and represents the possible intersection
point/area. For the cp connection anchor, the anchor is specified (by constraint) to be all the
possible points where the target of the connection symbol intersects the attachment area of the
connection point. On this level, the anchor is relative to the involved elements. The compartment
role is used for specification of compartments within a container shape. Name compartment and
plug compartment are examples, and they both expand the container, the device symbol, hori-
zontally.

Using a combination of spatial relationships (inside, connected to and associated with) and the
connection areas for describing relationships between graphical elements makes this approach
different from most other meta-model-based approaches. The advantage by using these features
is the possibility to express complex spatial relationships on a high level of abstraction. The
specification of the legal attachment areas for a graphical element is not a new idea itself, and
especially in the traditional grammar-approaches (e.g. DiaGen [Min06]), attachment areas are
used. In meta-model-based approaches on the other hand, these kinds of features are omitted in

7/15 Volume 18 (2009)

Specification of Graphical Representations E}

many cases, which makes it difficult to specify attachment areas that are unequal to the shape
boundings. The meta-model-based approaches that are most similar to the one presented in this
paper, are described in more detail in Section 5.

2.4 The Graphical Meta-meta-model (M3)

The graphical meta-meta-model is the meta-language at the M3 level in the meta-model hierar-
chy (see Figure 1), and defines all the concepts that are necessary for specification of graphical
representations. This section presents a slightly simplified version of the meta-meta-model, with
focus on the concepts that are used in earlier sections.

<<enum:>:>
UML :: Property UML :: DataType SpatialKind
inside
AN 0 AN connectedTo
) associatedWith
ConnectionArea
Compartment
RoleProperty
Connection
ow ContainerShape
RoleProperty
Shape
UML :: Class [@— SimpleShape
class
class
Text UML :: Association
ownedSpatialProperty memberEnd 1 /_F‘
SpatialProperty 2 spatialRelationship SpatialRelationship
kind : SpatialKind ownedEnd .
aggregation : AggregationKind owningSpatialRelationship
upper ; UnlimitedNatural [0..1]
lower : Integer [0..1] navigableOwnedEnd

Figure 6: The meta-language (M3) for graphical representations

As a meta-language it is defined at the same level as MOF, and as for MOF it is defined by a
meta-meta-model by re-using concepts from UML Infrastructure. The meta-classes representing
roles are all defined as subclasses of UML::DataType which gives the type to the role property
as illustrated in Figure 6. The role a graphical element plays, impacts which kind of spatial
relationship the element can be a part of. There are four main kinds of types which all represent
a special role a graphical element can have: shape, connection, connection area and text. A
container shape is a special kind of shape that acts as container for other graphical elements. A
container shape can contain compartments, which are used to arrange their contents.

To be able to describe how the graphical elements can be related to construct well-formed
diagrams it is necessary to include features to express spatial relationships in the meta-language.

Proc. GT-VMT 2009 8/15

Eg ECEASST

Also here, concepts from UML Infrastructure are used as basis. The most important concept is
the spatial property, which is an extension of UML property. This concept gives the possibility to
express spatial relationships (extension of UML association) with aggregation, multiplicity and
navigable end. The new feature presented in spatial property is the spatial kind. This property
is used to specify which kind of spatial relationship (inside, connectedTo, associatedWith) that
exist between graphical elements.

The properties for the different roles on the language level are semantically generated from
OCL constraints that are defined for the meta-language. For instance, only container shapes
can act as containers for other graphical elements. This implies that whenever an inside relation
is specified in the meta-model for graphical syntax, we need to assure that the element at the
opposite end of the inside property, is of type container shape.

context SpatialProperty
inv: self.kind = SpatialKind::inside implies
spatialRelationship.memberkEnd ->
forAll(s | s <> self implies
s.class.ownedRoleProperty.datatype —->
0clIsKindOf (ContainerShape))

As we can see, the meta-language for specification of graphical representation is not very
different from MOF, but it contains some additional semantics which are especially related to
the different roles that a graphical element can have and the spatial arrangement of graphical
elements.

3 Relating the Representation and the Structure

As we have seen in Section 2, the graphical representation is specified completely indepen-
dent from the structure definition. This means there needs to be some kind of mapping defined
between the two syntactic aspects to keep them synchronized. The complete separation is an
important feature in this approach as it gives the possibility to have several representation def-
initions for the same structure and vice versa. The importance of keeping the structure and
representation separated is discussed more widely in [Fon07]. The mapping meta-language that
is defined within this approach is based on a study of the graphical languages SDL [ITU99]
and UML [OMGO04] and a categorisation of their relationships between the structure and the
representation. From this study, three important mapping patterns were identified.

e One-to-one is the simplest kind of mapping, and also the most common.

e Merge is used to map graphical concepts which have several notation options. A well
known example is signal declarations in SDL.

o Partial description is used to map graphical concepts which have a partial representation
in addition to a complete. A typical example is partial descriptions of classes.

These patterns are also described with some more examples in [TveO8b]. The patterns are im-
plemented as a mapping meta-meta-model, and a mapping meta-model that conforms to it is

9/15 Volume 18 (2009)

Specification of Graphical Representations E}

transformed to the gmfmap model in the GMF framework. This is expressed in Figure 9 in Sec-
tion 4. In the Service language, all mapping relationships are described using instances of the

ServiceMapping . _L ServiceSpec |
= = F| kind : OneToOne r'y
+ 9 t
containedDeviges< ~ T ~|Z == DeviceMapping =~ {1~ DeviceSymbol
Device «r kind : OneToOne P , inside
? ? PlugCorrpartment
containedPlugs| v B P
9 — PlugMapping T Y
Plug \J kind : OneToOne 47 inside
% connects] |~ | Zﬁ | |- “FemalePlugSymbol
I ~ 1- hd
\ N —=" |1 T connectedTo
FemalePlug - -+ 4 - | FemalePlugMapping | 4 s
» kind : OneToOne ,{ [FemaleToConnectorAnchor
MalePlug h A
containedConnections ; N / “ connectedTo
ConnectorMapping -
! = ConnectorSymbol
Connection " kind : OneToOne
(M2) structure meta-model mapping meta-model graphical representation
meta-model

Figure 7: Illustration of mapping relationships in the Service Language

one-to-one pattern. This is illustrated in figure 7.

4 The Architecture of the Implementation

The prototype is implemented using the Eclipse framework, EMF, GMF and QVT for model-to-
model transformation. The aim of the tool is to be able to use the approaches for specification of
the graphical representation and the mapping description to generate a graphical editor. Figure 8
gives an overview of the workflow in the prototype.

To generate a graphical editor for a language using the prototype, the user needs to define:

1. The structure of a language.
2. The graphical representation of a language

3. The mapping description that specifies the relationships between the graphical representa-
tion and the structure.

These three definitions, which together cover the complete syntactic aspects of a language,
is automatically transformed using pre-defined QVT transformation, to GMF descriptions
of the given language. The descriptions provide the necessary information to automatically
generate:

4. A GMF graphical editor for the language

Proc. GT-VMT 2009 10/15

Eg ECEASST

transformations

@graphioal
editor

Agtomatically
Generated

graphical mappingi
' representation descriptio'g

User Defined

€ -~

structure

User Defined

Figure 8: An overview of the implementation

The Eclipse Modeling Framework (EMF) [BSM 03] makes it possible to easily create tree-
editors by generating code from the meta-languages for graphical representation and mapping
that are defined as ecore-models. These tree-editors can be used directly to specify the graphi-
cal representation, and the mapping relationships to the structure. To make the prototype more
user-friendly, the Textual Editing Framework (TEF) TEF [Sch08] have been used to specify
textual representations and to generate textual editors for the two meta-languages. The textual
editors makes it more straight-forward to specify a graphical language and its representation.
This high-level description is then transformed to the lower level GMF framework [GMF] which
is responsible for generating the graphical editor features that are necessary. The model-to-
model transformations between the high-level specification and the GMF models are completely
handled using QVT-R [OMGOS], implemented using the tool ikv++ medini QVT. The transfor-
mations are illustrated in Figure 9 which shows the high-level approach on the left-hand side,
the GMF framework on the right hand side (with the EMF in the middle since the structure
meta-model is used by both approaches) and the transformation arrows in between. The three
transformation descriptions are in the figure illustrated by numbered, stippled arrows:

1. from the graphical representation meta-model to graph.gmfgraph

2. from the graphical representation meta-model to tool.gmftool

11/15 Volume 18 (2009)

Specification of Graphical Representations E}

high-level approach EMF GMF
graphical TEERERE e gmftool.ecore | |gmfgraph.ecore
meta-meta- for ecore.ecore
model mapping
gmfmap.ecore gmfgen.ecore)
M3
.IIIIIIIIIIII1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘I
|
confofms to . Qvt conforms td conformsto W
n
.-Illlllllllz IIIIIIIIIIIII'
== QuT conforms to tool.gmftool ||graph.gmfgraph|
graphical = =
representation as.ecore |. bicie to | !
meta-model ! <<use> |
= conforps to o | I
| ! ‘ <<L‘|se>> | conforms td
<<use=k <duse=> ! le<ysest:]
‘--1 mapping |- -~ -4
meta-model F* "% 3 seunnn b map.gmfmap |—gen.gmfgen
M2 QvT
confprms to conforms to genefate
- d.notation |-
diagram
description model.as Editor
model
M1

Figure 9: An overview of the high level approach (left-hand side) and its transformation to the
GMF platform

3. from the mapping meta-model (high-level approach) to map.gmfmap

These three gmf-models are sufficient for generating a GMF editor.

There are some minor differences between the conceptual aspects presented in Section 2 and
the practical aspects covered by the prototype. This is mostly related to the implementation of the
meta-language, since the conceptual part of the approach are described re-using concepts from
UML Infrastructure, while the implementation is based on EMF. These differences are solved
as follows: The UML::Class is replaced by EClass. For the spatial relationship, which extends
UML:: Association, and spatial property, which extends UML::Property, the challenge is bigger.
While UML uses associations, with properties for the association ends, EMF uses references
to express relationships between classes. In the implementation, this is solved by merging the
spatial relationship and spatial property into one unit, and let it extend EReference. The property
EOpposite from EReference is used on the level below to express bidirectional spatial relations
between graphical elements. By adding the property kind of type spatial kind to the new unit all
the necessary semantics are kept.

5 Related Work

There exist a number of meta-tools that generate graphical editors from language specifications
which involve meta-models to some degree: XMF-Mosaic [Lim05], The Graphical Modeling

Proc. GT-VMT 2009 12/15

Eg ECEASST

Framework (GMF) [GMF], MetaEdit+ [Met05], The Generic Modeling Environment (GME)
[LBMO7] and Tiger [EEHTO5] to mention some. All of these meta-tools present their own ap-
proach for handling and specifying the graphical representation. While most of these approaches
(e.g. MetaEdit+ and GME) specifies the graphical representation on top of the structure meta-
model and with this keep the graphical information as properties in the structure elements, GMF
and XMF-Mosaic presents new, independent meta-languages for the graphical representation.
The graphical representation description is then related to the structure meta-model by a syntac-
tic mapping description. Of these two, GMF is the approach that shares most with the approach
presented in this paper as it has a strong focus on separating the structure and the representation.

The biggest differences between the Eclipse-based GMF and the approach presented in this
paper are related to two aspects: expressiveness and completeness. It is not possible to explicitly
specify spatial relationships between graphical elements or specific attachment areas in GMF,
except compartments, which make it possible to handle inside relationships. The relationships
between nodes and connections are handled implicitly. This implicit specification makes the
approach less expressive than the one presented in this paper. The other difference is related to
the completeness of the graphical representation. The meta-language presented in this approach
aims to specify the graphical representation as a complete construction (model), and not only
single graphical elements collected in a container (canvas in GMF) without any relationships
in between. In GMF, the relationships between a compartment and its content, and between
a connection and its connected node, are specified in the mapping description, and not in the
graphical representation itself.

This is also the case for another approach presented by F. Fondement in [Fon(07] that is worth
mentioning. This approach is different from both GMF and XMF as it does not provide a new
meta-language for the graphical representation, but instead proposes to extend the already exist-
ing structure meta-model by an extra layer of visual objects. This approach is interesting as it
presents features for specification of spatial relationship (contains, overlap, connects and nearby)
between graphical elements. The weakness with this approach, as with GMEF, is that the spatial
information is specified as a part of the mapping description, and not in the graphical represen-
tation itself.

6 Conclusion

This paper presents an approach for meta-model-based graphical representation. The central part
of the approach is a new meta-language based on re-use and extensions of concepts from UML
Infrastructure. The meta-language provides features for specification of graphical elements and
their spatial relationships, and this is done independently of the structure meta-model. This is
an advantage since it allows languages to have more than one graphical representation. The
introduction of connection areas together with three kinds of spatial relationships (inside, con-
nected to and associated with) gives the possibility to specify both simple and more sophisticated
relationships between and within diagram elements on a high level of abstraction. The expres-
siveness, the possibility to describe the graphical representation for both the language and its
diagram as a complete construction, and the complete independence from the structure specifi-
cation are the main advantages with the approach presented.

13/15 Volume 18 (2009)

Specification of Graphical Representations Eﬁ

A prototype tool for the meta-languages for graphical representation and the mapping ap-
proach are implemented, based on EMF and transformed to the GMF platform. In the tool the
meta-languages has textual representations and textual editors implemented using TEF [SchOS8].
With this, the approach can be used to specify the graphical representation of a graphical lan-
guage, which together with a structure specification and the mapping description makes it possi-
ble to generate a GMF editor from the specification. The future plan is to also specify a graphical
representation for the meta-language and generate a graphical editor for it, using the approach
and the meta-language itself.

Bibliography

[BG04] P. Bottoni, A. Grau. A Suite of Metamodels as a Basis for a Classification of Vi-
sual Languages. 2004 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2004), 26-29 September 2004, Rome, Italy, pp. 83-90, 2004.

[BSM*03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. Eclipse Modeling
Framework (The Eclipse Series). Addison-Wesley Professional, Aug. 2003.

[EEHTOS] K. Ehrig, C. Ermel, S. Hinsgen, G. Taentzer. Generation of visual editors as eclipse
plug-ins. In 20th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2005), November 7-11, 2005, Long Beach, CA, USA. Pp. 134-143.
2005.

[FonO7] F. Fondement. Concrete Syntax Definition For Modeling Languages. PhD Thesis.
Ecole Polytechnique Federale De Lausanne, 2007.
http://library.epfl.ch/en/theses/"nr=3927

[GMF] Graphical Modeling Framework.
http://www.eclipse.org/gmf

[ITU99] ITU-T. SDL - ITU-T Specification and Description Language (SDL-2000). ITU-T
Recommendation Z.100, 1999.

[LBMO7] A. Ledeczi, D. Balasubramanian, Z. Molnar. An Introduction to the Generic Model-
ing Environment. In Proceedings of MDD-TIF07, Model-Driven Development Tool
Implementers Forum. 2007.
http://www.dsmforum.org/events/MDD-TIF07/GME.2.pdf

[Lim05] X. Limited. Language Driven Development and XMF-Mosaic. 2005.
http://www.xactium.com

[Met05S] MetaCase. MetaEdit+. Version 4.0. Evaluation Tutorial. Technical report, MetaCase,
2005.
http://www.metacase.com/support/40/manuals/eval40sr2a4.pdf

[Min06] M. Minas. Syntax Definition with Graphs. Electronical Notes in Theoretical Com-
puter Science 1:19-40, Feb. 2006.

Proc. GT-VMT 2009 14 /15

http://library.epfl.ch/en/theses/?nr=3927
http://www.eclipse.org/gmf
http://www.dsmforum.org/events/MDD-TIF07/GME.2.pdf
http://www.xactium.com
http://www.metacase.com/support/40/manuals/eval40sr2a4.pdf

E

ECEASST

[OMGO3]

[OMGO04]

[OMGO06]

[OMGO07]

[OMGO8]

[PSTO7]

[Sch08]

[TveO8a]

[TveO8b]

OMG. Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group, Oct. 2003. ptc/03-10-04.

OMG. UML 2.0 Superstructure Specification. Object Management Group, Oct.
2004. ptc/04-10-02.

OMG. Diagram Interchange, version 1.0. Object Management Group, Apr. 2006.
ptc/06-04-04.

OMG. OMG Unified Modeling Language (OMG UML) Infrastructure, V2.1.2. Ob-
ject Management Group, Nov. 2007. ptc/06-10-06.

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
Object Management Group, Apr. 2008. ptc/07-07-08.

A. Prinz, M. Scheidgen, M. S. Tveit. A Model-Based Standard for SDL. In SDL
Forum. Pp. 1-18. 2007.

M. Scheidgen. Textual Modelling Embedded into Graphical Modelling. In Model
Driven Architecture - Foundations and Applications, 4th European Conference,
ECMDA-FA 2008, Berlin, Germany, June 9-13, 2008. Proceedings. Lecture Notes
in Computer Science 5095, pp. 153-168. Springer, 2008.

M. S. Tveit. Specification of Graphical Representations - using hypergraphs or meta-
models? In Norsk informatikkonferanse NIK 2008. Pp. 39-50. tapir akademiske
forlag, 2008.

M. S. Tveit. Towards Diagrammatic Patterns. In Diagrammatic Representation and
Inference, 5th International Conference, Diagrams 2008, Herrsching, Germany,
September 19-21, 2008. Proceedings. Lecture Notes in Artificial Intelligence 5223,
pp. 427-429. Springer, 2008.

15/15

Volume 18 (2009)

	Introduction
	An Overview of the Approach
	Specification of Graphical Representation
	The Diagram Description Model (M1)
	The Graphical Representation Meta-model (M2)
	The Graphical Meta-meta-model (M3)

	Relating the Representation and the Structure
	The Architecture of the Implementation
	Related Work
	Conclusion

