Electronic Communications of the EASST

Volume 18 (2009)

Proceedings of the
Eighth International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Aspects for Graph Grammars
Rodrigo Machado, Luciana Foss and Leila Ribeiro

13 pages

Guest Editors: Artur Boronat, Reiko Heckel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Aspects for Graph Grammars

Rodrigo Machado?, Luciana Foss? and Leila Ribeiro!

1 (rma, leila)@inf.ufrgs.br
Instituto de Informatica
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil
2 luciana.foss@ufpel.edu.br
Instituto de Fisica e Matematica - Departamento de In&ica
Universidade Federal de Pelotas
Pelotas, Brazil

Abstract: Aspect-oriented programming (AOP) is an extension to theablori-
ented paradigm that aims to provide better modularity fatecthat is usually scat-
tered across an object-oriented system such as loggirgeratidation and distributed
object handling. Aspect weaving is a novel way to compos&esys, focusing on
the integration of system-wide policies through pattestiem rules. While there are
several semantic proposals for representing aspects awarescode and programs
aspect weaving for visual models such as graph rewritingesys is still not fully
established. In this work, we propose the definition of aspgented graph gram-
mars, an extension to conventional graph grammar where@spe modeled as
transformation rules over the structure of a base graphmi@am

Keywords: aspect-oriented software development, graph grammaub)elpushout
approach.

1 Introduction

Aspect-oriented programming (AORILM "97] is an extension to the object oriented paradigm
that aims to provide better modularity for code that is sratt across object-oriented systems,
such as logging, authentication and distributed objectlfr@n The main idea of the paradigm
is to encapsulate the statements that deal with such sihgaith a module called aspect. Inside
the aspect there are rules (advices) that describe how stetsenents should be weaved into the
base code. Every advice actuates over a specific set (piofcsystem execution points (join
points), executing some actidnefore, after or in place of the join point.

Aspect-orientation can be seen as a kindmefa-programming that allows one to describe
system-wide behaviors in a compact notation. Since itsgualdn the late 90s, the paradigm has
been gaining acceptance and development tools. Althowagk tire several proposal&/FL03,
JIJR06 DDFBO06 CLO€] to describe the operational effect of aspect weaving ovagnams, the
weaving of aspects over visual models is still not totalliabbshed.

The fact that several visual languages can be naturally leddesing graphs makes graph
grammars an appealing formalism to define the semanticaélmdor such languages. A graph
grammar (GG)Roz97 is a model in which the state is represented by a graph aridrayevo-

1/13 Volume 18 (2009)

mailto:(rma,\ leila)@inf.ufrgs.br
mailto:luciana.foss@ufpel.edu.br

Aspects for Graph Grammars @

lution is represented by graph rewriting productions. &avateresting models for computation
and software development, such as UML diagrams, have aahataph-based interpretation,
and thus can be naturally modeled by means of GGSI[0]].

In this work we address the issue of crosscutting concergsaiph grammars, and propose the
definition ofgraph aspects to modularize their treatment. Our main contribution isdleénition
of aspect-oriented graph grammars (AOGG), where aspeeteepresented by a second-order
transformation over the productions of a base GG. We alstfgg®w aspects are combined to
a base grammar, resulting inmgaved graph grammar. By defining formally aspects and aspect
weaving over graph grammars, we also provide a semantigpietation for aspect-oriented
concepts over other models that are instances of GGs.

The rest of the text is organized as follows. Initially, incBen 2, we informally present the
main concepts of the aspect-oriented paradigm. In Se&tiave review graph grammars and
introduce our working example. Then, in Sectibnwe discuss how to modify the example in
order to implement system-wide policies such as loggingdation5, we provide a description
of aspects over graph grammars and formally define aspieetted graph grammars. Finally,
in Section6, we compare our approach to other proposals, state our &nerks and present
future work.

2 Aspect-Oriented Paradigm

The main purpose of using AOP is to spread some behavior atittatly over the whole source
code (or bytecode) of the application. The fundamentalrabisons of the paradigm are the
following: i) join points. execution points that can be affected by aspédtgpintcuts. specific
sets of join pointsiii) advices: rules that, given a pointcut, define some behavior to bedrig)
when the system reaches some of its join pointsjnter-type declarations. extensions to the
static structure of the system, which may be needed by thavimthintroduced by the advices.
V) aspects: modules containing all advices and inter-type declaratfondealing with a specific
crosscutting concern.

In aspect-oriented programming languages, join pointganerally defined as a subset of the
system named transitions, like method calls and attribotesses. Pointcuts are specific sets of
join points, specified by means ofpaintcut language. Advices substitute the join points that
match its associated pointcut with some programmed behavitich can also include the orig-
inal behavior. The module that combines the aspects ovearitimal base code is calleapect
weaver. As a simple example of aspect weaving, consider the Aspectite code depicted in
Figurel (AspectJ is the most popular AOP extension for the Java anogning language). The
AspectJ weaver receives both the base code and the aspect Then, it applies the advices
within the aspect, inserting the commands provided in tivécad every time it finds their point-
cuts in the base code. In the example of Figlrehe aspects simply introduces a print command
right before the start of the execution of any method withgarameters sent to an object of class
A. Although the result of the combination is shown as a souotke transformation, the AspectJ
compiler actually performs byte-code level weaving, i.ee aispect weaving occurs after the
compilation of both base code and aspects.

Proc. GT-VMT 2009 2/13

@ ECEASST

Base code:
public class A{
void a() { ... body of a ...}
void b() { ... body of b ...}
void c(int x) { ... body of c ...}
}
Aspect:

public aspect Log4
before () : execution (x A.x()) {
System.out. println ("Method without parameteys”);
}
}

Weaved code = Aspect Weaver(Base code, Aspect):

public class A{
void a() { System.out.printin("Method without parametéeys”);
. body of a ...}
void b() { System.out.printlin ("Method without parametéeys”);
. body of b ...}
void c(int x) { ... body of c ...}

}

Figure 1: Example of aspect weaving in AspectJ

3 Graph Grammars

A graph grammar (GG) is a visual model to represent systems dG, the states of the system
are graphs and the system behavior is defined by an startipdy gogether with a set of graph
rewriting rules. In this section, we recall the basic contseagf GGs, according to the DPO
(double-pushout) approack{97], and provide the working example to be used in the rest of
the paper. We will usg/ped graph grammars, i.e. grammars where all states and rules are typed.

Definition 1 ((Typed) Graph and Graph Morphisms) ghaph is a tupleG = (Vg, Eg,s°,t%),
whereVg andEg are sets of vertices and edges, afid® : Eg — Vg are the source and target
function. A(total) graph morphism f : G — G’ is a pair of functiong fy : Vo — Vg, fe : Ec —
Eg) such thatfy os® = s% o fg and fy ot® = t® o fe. The category of graphs and total graph
morphisms is calledGraph. Let T € Graph be a fixed graph, called type graph Tatyped
graph G' is given by a graplG and a (total) graph morphisig : G — T. A morphism ofT-
typed graphs : GT — G'" is a (total) graph morphisnfi : G — G’ that satisfiesg o f =tg. A
typed graptG' is calledinjective if the typing morphisnig is injective. The category df-typed
graphs and -typed graph morphisms is the comma catedergph| T, shortened by -Graph.

Definition 2 (Graph Productions and Graph Grammars) TAyped (graph) production (or

|
graph rule) is a tupley: L b Kq A Ry, whereq is the name of the productiot,qg, Kq and

3/13 Volume 18 (2009)

Aspects for Graph Grammars @

Ry are T-typed graph]q andrq are injective morphisms. The class of @ltyped graph pro-
duction is denoted by -Prod. A T-typedgraph grammar is a tuple¥ = (T,P, T,Go), where

T is a type graphP is a set of production names,is a function mapping production names to
productions inl -Prod, andGg is aT-typed graph, named thaitial graph.

Definition 3 (Direct derivation and Derivations) GivenTatyped graphG, a T-typed graph
productiong = Lq L Kq 5 Ry and a match (i.e. aninjectivie-typed graph morphisnmi: Lq — G,
adirect derivation from G to H usingq (based orm) exists if and only if the diagram below can
be constructed, where both squares are pushouisGnaph. In this case the direct derivation
is denoted by : G 'Y or 5 : G = H if we do not make explicitn.

Lq | Kq - Rq
@ k[@ lm*
G D H

Elements inLy which are not in the range dfare said to be deleted hy, while elements
in Ry which are not in the range of are said to be created iy Given a graph grammar
¢ = (T,P,T,Gp), aderivation p : Go Pt G, P2 G, ... of @ is a finite or infinite list of direct
derivationsd; : G L.l Hi, whereG;,; = H;j andi > 0. If a derivationp : Gg PLlt .. Pudh Ghis
finite we callG,, the final graph.

Example 1 (Graph grammar) Figure 2 shows a graph grammar thats models a client-server
scenario. The type graph represents the possible kinds of nodes: clients (stylizzdgms),
content servers (cylinders), addresses (pentagons)(réatangles with sharp angles), signaling
messages (rectangles with rounded angles), and conrebitween clients and servers (circles
with the letterC). There are basically two kinds of interactions in this eyst clients can recover
information from servers providing an address as paraireatelrclients can store information in
servers, passing both the address and the desired informastiparametefs In order to retrieve
or store information, the client must first connect with aveerthat provides the required ad-
dress. After the connection, the information is exchanget] &inally, the connection is released.
The graph production€onnect Get , Tr ansf er Get andCl oseGet perform the informa-
tion retrieval from servers, and the graph producti@osinect Send, Tr ansf er Send and

Cl oseSend perform the information update. Inside the rules, the iteimsotated with small
D’s are the ones being deleted, and the ones with SO'sdire the ones being created. The initial
graph of the system consists of two clients and three serv@rge of the clients comes with
an initial send message for addréss (the “updater” client), while the other one has two get
messages for addressé® andA3 (the “reader” client). According to the order in which the
productions are applied, the reader client can retrievarnimétion about the addres2 before

or after it is updated by the updater client. Also, the reatlent can get connected to any server
that provides addreds3, retrieving different results according to the server itmects to.

1 inthis example, it would be necessary to have attributesdardo properly represent addresses and numeric data.

Since our main focus is in the crosscutting concerns, for wevieft attributes out of the theoretical development.

Proc. GT-VMT 2009 4/13

ECEASST

Shddi [Data |

o~ ° o
' D
(< enacom

<y | (s Gendom)

C

TransferSend

=

D
> o) S
GO
B

@<
-GetData
S <y

/
/

Figure 2: Example of graph grammar for clients and servers

B @m0

?

Graph grammars provide a natural and visual way to repreBsiibuted and nondetermin-
istic systems, such as the one shown in ExamplBistribution is naturally represented by the
graph topology. The semantics of graph grammars is basedodugtion applications. If there
are matches for more than one production in one state (grepy) may all be applied in paral-
lel, if there are no conflicts. Conflicts exist if two (or mog@pductions try to delete the same
portion of a graph at the same time. In such situation, thécehaf which production will be

actually applied is non-deterministic.

4 Crosscutting Concerns in Graph Grammars

The main purpose of the aspect-oriented paradigm is to sleévproblem of lack of modularity
for the code that handles crosscutting concerns. In ordBustrate crosscutting concerns in the

5/13 Volume 18 (2009)

Aspects for Graph Grammars @

context of graph grammars, we propose two simple modifinatio the system of Figurz the
inclusion of alogging object (to log executions) and of a security policy for seecess.

4.1 Logging Execution Steps

Suppose we want to register every execution step withinytstesn in order to have access to the
execution history. For instance, it is very common thateerstore information about the start
and the end of each client connection, both for profiling aexligty reasons. In the context of
GGs, this would mean that we have to record each productiplicagon, or derivation step. In
our example, the changes that have to be performed to irtecsluch a log object are:

1. the type graph would have to be extended to introduce thvekimel(s) of element(s);

2. the initial graph should be populated with initial instaa of the new elements (if any). In
the case of log, we must introduce one global instance ofatpelbject;

3. all relevant productions must be modified in order to reéftee desired behavior. The
left-hand side of every rule should have an additional etdr{tbe log register), and some
information related to the effect of a production applicaton this log shall be included.

i
Q@
' 5 Get D
L C
G' T
GO U _
empty (5] L empty | 29" ¥ ney
(L]
end

Figure 3: New type graph, initial graph and variations of thiginal rule Connect CGet to
implement log.

Figure 3 depicts the required modifications over the GG presenteckaniplel in order to
implement a simple log policy. The square node witH.arepresents the global log object. The
square node with ak represents a log entry, which carries information aboutpifegluction
application. In order to keep the example simple, we omittéglinformation from log entries —
they actually only represent the number of applied produstithis abstraction is fine, since our
purpose is not to show how to model logs, but rather how to inoalesformation of specifica-
tions, that is, how one specification is transformed intotlagoby considering an aspect). Log
entries are connected to each other in a way that resembfdeed list structure, represented by

Proc. GT-VMT 2009 6/13

@ ECEASST

the arrowsegi n, end andnext . The empty list is represented by the endoarespt y. The
modification to the initial graph would be only the additidirone empty log object, i.e. one with
a uniqueenpt y arrow. The greatest impact comes from the modificationsadysctions, since
all of them must be altered to cope with two different sitoasi: when the log list is empty, and
when it has at least one element. For instance, theQmhect Get must be rewritten as a pair
of productions, as shown in FiguB This should be done for every production of the original
specification, duplicating the total number of productiohthe graph grammar. This very small
example shows how structural patterns for productions neagcale well in the usual definition
of graph grammars.

One interesting effect of this log model concerns the grapmgnar execution. Since we have
a global log object which is updated by all productions, wselthe possibility of simultaneous
application of productions, even if they refer to differ@tient and servers. Thus, this imple-
mentation of logging modifies the concurrent semantics efsystem, although the sequential
semantics is not changed at all.

4.2 Security policy for server access

Another system requirement that is a crosscutting conedireiimplementation cecurity poli-
cies. Suppose it is important to distinguish between two kindassrs:content administrators,
the ones that have write and read access to the servers,) qha i users, who can only read
information. Every time a user tries to connnect to a seftgetype should be taken into account
to decide if the connection should be allowed. A very simpiplementation of such policy is
depicted in Figuretl, which shows a new type graph and new versions for rGtasnect Get
andConnect Send. The user attribut® representsead privilege andw write privilege. Both
user marks are preserved by the productions. Unlike the aligyp which affected all the pro-
ductions, these are the only rules affected by the secueiigyp since the permissions may be
verified only when the connections are being made.

<}> ® ©/C ©*>@

TII
Q I
(et Gy &TT
D C
(Getbata)~

& Bw | © &R
IPOS
@ ZC

—{ ConnectSend"

Figure 4: Modified rules and type graph for security policy.

Notice that both the log and the security implementatiorsraodelled as modifications of
both the structure (type graph) and the behavior (initi@pgrand graph productions) of the
original GG. If both crosscutting concerns are needed inspecification, the productions may

7113 Volume 18 (2009)

Aspects for Graph Grammars @

become excessively complex and difficult to understand;esthey may have to treat several
crosscutting concerns. One of the original motivationsuging visual methods such as GG is
its ease of use, and such lack of modularity can difficultdispgion for modeling large systems.
In the next sections we introduce aspect-oriented grapmmieas (AOGG) as an extension of
traditional graph grammars. In AOGGs, the modificationsdeeeto treat every crosscutting
concern are encapsulated intoapect, allowing clearer specifications.

5 Aspect-Oriented Graph Grammars

In this section, we describe formally how to define aspects gvaph grammars, leading to the
definition of aspect-oriented graph grammars (AOGG).

Graph advices may be seen as meta-productions defining teowritiinal graph productions
should be modified in order to implement a given crosscuttorgcern. Therefore, we employ the
same mechanism for graph rewriting in order to describeumrtioh rewritings. First, we define
a notion of how to relate productions (production morphistmat will be used to formally define
graph advices.

Definition 4 (Production morphism) Leb: L, <I—p< Kp >r—p> Rpandq:Lq <I—q< Kq >r—q> Ry beT-typed
graph productions. Avroduction morphism f : p — q s a triple (f_, fk, fr) of T-typed graph
morphisms between the left-hand side, interface and hightd side of the productions such
that the diagram below commutes. The production morphise (f, fx, fr) is injective iff

all its components are injective. The categoryTefyped productions andi-typed production
morphisms is denote@-MSpan.

|
Lp <> <Kp=—"- Ry

| | |

Lq Kq Rq

r
Iq q

Definition 5 (Graph advice) AT-typedgraph advice a is a production oveT -typed produc-
tions, i.e. itis a monic spap < i — ein T-MSpan. In terms ofT -typed graphs, a graph advice
has the structure depicted below, where all squares commute

Lp Kp Rp Le Ke Re

Given aT -typed advicea : p«i—e, the productiorp is called theadvice pointcut, i, theadvice
interface, ande, theadvice effect.

Proc. GT-VMT 2009 8/13

E

Definition 6 (Graph aspect) Given a graph gramrias (T, P, 11, Gp), we define araph aspect
Aover¥ as atriple(D,t,g), whereD is a set ofT’-typedgraph advices (see Definitiorb), and
t: T — T'andg: Gy — G are graph inclusions. The graphsandGy are called, respectivelly,
thetype graph andinitial graph of the aspecA.

ECEASST

Example 2 (Graph aspects) Figure5 depicts a graph aspect for the graph grammar of Figure
implementing an execution log. The regiohsand Q) refer to the original type graph and
initial graph, respectively. The advica§ anda2 implement the modifications over the original
productions as presented in Sectibn The fact that the pointcut is empty makes them match
all the original productions, as will be shown. Figuieshows a graph aspect implementing a
security policy that affects only tHeonnect Get andConnect Send productions, since there
are matches for the advice pointcuts in those productions.

end D

end C

[[EbxE]e

next

¢}

empty
5
end

C
begin GO
L empty L C
p end e
C
TI
a2

begin next
}z

T

Figure 5: Example of a graph aspect implementing executign |

| G | & b1 G @ ® ©
® ® - GO
&0 & O 34
=
| o | & b2 @\/@
A A & -..T
e d (S & |

Figure 6: Example of a graph aspect implementing securiligypo

Definition 7 (Aspect-oriented graph grammar) An aspect-oriented ggapimmar (AOGG) is
a pair«Z = (¢4,A), where¥ is a graph grammar, amtl is a (possibly empty) finite sequence
[A1,A2,...,Aq] of graph aspects ovéf.

9/13 Volume 18 (2009)

Aspects for Graph Grammars @

The behavior of an AOGGY = (¢,4) is given by itsweaved graph grammar, i.e. the graph
grammar resulting from the combination of all aspectdiover¥. We start by defining how
a single advice modifies one production (advice weavingn thow an aspect is weaved to a
graph grammar (aspect weaving), and finally how one obtamsveaved graph grammar from
a given aspect-oriented graph grammar (AOGG weaving).

Definition 8 (Advice weaving) Given & -typed graph production, a T-typed graph advice
a: p < i»— eand a production monomorphism: p — q (called aproduction match), an
advice weaving from g to g usinga (based omm) exists if and only if the diagram below can be
constructed, where both squares are pushoutsifiSpan. In this case the advice weaving is

denoted by =4 q.

An advice can rewrite a production if there is an inclusiorit®fpointcut in the production.
Then, the resulting production is obtained by a double-pushonstruction applied componen-
twise in their left- and right-hand sides and in its integfad¢ntuitively, the elements that are in
the pointcut production (for each graph componenk andR) but not in the effect production
are deleted, and those that are in the effect but not in theqdiare created.

Definition 9 (Aspect weaving) Le¥ = (T,P,11,Gp) be a graph grammar, ad= (D, T AR T,
Go N G') and aspect ove¥. Then theaspect weaving of A over¥, denoted byW,sp(¥,A), is a
graph gramma¥’ = (T', P/, ',G’), whereP’ and 7’ are calculated as follows:

1. all T-typed productions< € range(r) areretyped for T’ by composing their respective
typing morphisms with the inclusidn This generates the s8f ' of T'-typed productions:

2. the selY) is defined as the smallest set which the following holds: foy a& QT/,

(a) if does not exist an advi@e D and a matchm such thay%n)/, thenye Q
() if yZ'y for someaandm, theny € Q'

3. The setP’ of rule names and the functiam : P — Q' are chosen arbitrarily, respecting
the restriction that’ must be a bijection.

Proc. GT-VMT 2009 10/13

@ ECEASST

The application of an aspect weaving in a AOGG generates adb§isting of the type and
initial graph of the aspect and all productions obtained pglyng all advices based on all
possible matches over all productions of the AOGG. The prtiolos that are not updated by any
advice are kept in the resulting GG.

Definition 10 (AOGG weaving) Lete = (¢,A) be an AOGG, such th& = (T, P, 11, Gp) and
A= [(D;,T &, Ti,Go g, Gi) | 1 <i < n]. The weaved graph gramni&f) is calculated as follows:

1. the type grapfy of 4 is the object of the colimit (ilGraph) of the diagrams containing
all type graph inclusions if, as shown in the diagram below.

A

Cinjy, injs

. |nJ2 L
Tw

2. in order to relate the initial graphs and productions Iragpects, we need to retype the
original graph gramma¥ and all aspects ih by composing all their typing morphisms
with the respective injections ovay. This generates the retyped AOG@w,P™, '™,
GgW>,ATW>, where all type graph inclusionﬁ’v : Tw — Tw (in all aspects) become identi-
ties.

3. the initial graphGy of 4% is the object of the colimit (infw-Graph) of the diagram
containing allfy-retyped initial graph inclusions iA™, as shown in the diagram below.

Gl G - G

4. the graph grammé#y is obtained as the result W.oco((Tw,P™, T, Gw),A™). The
operationW,os is defined inductively, combing all aspectsAf according to the order
they appear.

WAOGG(glv H) =9
WAOGG(g/a [A17A27 . An]) :WAOGG(WASP(g/aAl)a [AZ, cee ,An])

Finally, the AOGG weaving is done by applying all aspectsriaeo of occurrence: the first
aspect is applied over the original grammar and the subséques are applied over the grammar
resulting of the previous aspect weaving.

The AOGG weaving model has the following characteristi¢sgositive pointcut match: the
pointcut matching is given by a single production monomapi ii) hon-reentrant weaving:

11/13 Volume 18 (2009)

Aspects for Graph Grammars @

our weaving model combines one advice and one rule at mostfonevery possible matchij)
deterministic aspect combination: by using a sequence instead of a set, we enforce a canonical
ordering for the aspects in a AOGG. Although these properlow us to easily express the
aspects for our example, they also may not be the most ei@egdwices. In aspect-oriented
languages, usually there is a rather compepression language for defining pointcuts, which
also includes negative expressions such as “all methodseuteurn type isot void”. Without
negative matches, we can not differ created elements fr@sepred elements in the pointcut,
since we can not test their absence from the interface of tb@uption. It would also be of
interest to define how pointcuts should be composed in oyghgbased setting. Concerning the
non-reentrant weaving, this brings both advantages andbdicks. The positive effect is that
non-deleting advices (the ones where the left-hand sideimarphic to the interface) pose no
problem to the weaving, since they will never start a nomteating rewriting. On the other
hand, it may not suffice to describe more complex aspects.

6 Concluding Remarks

One of the first connections between graph rewriting systemdsaspect-oriented programming
was made inAL99], where graph rewriting mechanism was proposed has a toalegcribing
aspects over graph based models. Some proposals, suchivé&TAdramework [WJ07, follow
this principle, characterizing aspect weaving as a sp&iidl of model transformation. Most of
these works do not extend the theory of graph rewriting fpeats, employing it as a language
for specifying diagram transformations. As far as we kndwere is no other formal approach
for defining aspects and aspect weaving over graph grammars.

In this work, we addressed the problem of the lack of modwylddr crosscutting concerns
in graph-grammars, and claimed that aspects for graph geasnare an interesting approach
for the modularisation of such requirements. We providedreél definition for aspects over
graph grammars, leading to the definition of aspect-oréegtaph grammars (AOGG). We also
defined the aspect weaving process that combines all thetagpeer the base grammar in an
AOGG, resulting in a (weaved) graph grammar. We showed bynme&an example how the
use of AOGGs may reduce the size of GG-based specificatiansnilist deal with crosscutting
concerns.

Our approach differs from others that relate aspects amghgewriting systems mainly be-
cause it propose the definition of aspects over graph gramymaad not graph grammars as
rewriting models for aspects. On the technical side, thestili room for improvements on the
proposed theory, such as extending the pointcut matchirdghamd defining composition oper-
ations for pointcuts and advices. It would be interestingatafirm that this theory holds for other
kinds of graph rewriting models, such as attributed graplngnars or even in the single-pushout
approach. The way AOGG is defined models static weaving ¢ésys Thus, it remains an open
question if there is a way to define dynamic modifications lasuluring the system execution.
Other topics of investigation include the study of aspetdriierence over the execution of the
base grammar and the possible conflicts between aspects.

Acknowledgements: The authors would like to thank the anonymous referees &r ittelpful

Proc. GT-VMT 2009 12 /13

E

ECEASST

comments and suggestions. This work was partially supgpdiyeCNPq — Conselho Nacional
de Desenvolvimento Cientifico e Tecnologico.

Bibliography

[AL99]

[C*97]

[CLOB]

[DDFBO6]

[HETO8]

[JJRO6]

[KLM 97]

[R0z97]

[WJO07]

[WZLO3]

U. ABmann, A. Ludwig. Aspect Weaving with Graph Reting. In Czarnecki and
Eisenecker (eds.l3CSE. LNCS 1799, pp. 24—-36. Springer, 1999.

A. Corradini et al. Algebraic Approaches to Graph Transfation |: Basic Concepts
and Double Pushout Approach. In Rozenberg (étBhdbook of Graph Grammars
and Computing by Graph Transformation. Volume 1, chapter 3, pp. 163-245. World
Scientific, River Edge, February 1997.

C. Clifton, G. T. Leavens. MiniMA®@: an imperative core language for studying
aspect-oriented reasoningsi. Comput. Program. 63(3):321-374, 2006.

S. D. Djoko, R. Douence, P. Fradet, D. L. Botlan. GASCommon Aspect Se-
mantics Base,. Technical report, Research Report, Netefdeikcellence in AOSD
(AOSD-Europe, August 2006, no D54)., 2006.

F. Hermann, H. Ehrig, G. Taentzer. A Typed Attriit€raph Grammar with In-
heritance for the Abstract Syntax of UML Class and Sequeriagrams.ENTCS
211:261-269, 2008.

R. Jagadeesan, A. Jeffrey, J. Riely. Typed parampettymorphism for aspectsci.
Comput. Program. 63(3):267-296, 2006.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lodesnarc Loingtier,
J. Irwin. Aspect-oriented programming. Enopean Conference on Object-Oriented
Programming, ECOOP’97. LNCS 1241, pp. 220-242. Springer, Finland, June 1997.

G. Rozenberg (ed.Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1. World Scientific, River Edge, February 1997.

J. Whittle, P. K. Jayaraman. MATA: A Tool for Aspectiénted Modeling Based on
Graph Transformation. In Giese (ed)JpDELSWbrkshops. LNCS 5002, pp. 16-27.
Springer, 2007.

D. Walker, S. Zdancewic, J. Ligatti. A Theory of Aggs. InICFP ' 03: Proceedings
of the eighth ACM S GPLAN international conference on Functional programming.
Pp. 127-139. ACM Press, New York, NY, USA, 2003.

13/13

Volume 18 (2009)

	Introduction
	Aspect-Oriented Paradigm
	Graph Grammars
	Crosscutting Concerns in Graph Grammars
	Logging Execution Steps
	Security policy for server access

	Aspect-Oriented Graph Grammars
	Concluding Remarks

